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Abstract: Time-series data are widely applied in real-world scenarios, but the non-stationary
nature of their statistical properties and joint distributions over time poses challenges for
existing forecasting models. To tackle this challenge, this paper introduces a forecasting
model called DFCNformer (De-stationary Fourier and Coefficient Network Transformer),
designed to mitigate accuracy degradation caused by non-stationarity in time-series data.
The model initially employs a stabilization strategy to unify the statistical characteristics of
the input time series, restoring their original features at the output to enhance predictability.
Then, a time-series decomposition method splits the data into seasonal and trend compo-
nents. For the seasonal component, a Transformer-based encoder–decoder architecture
with De-stationary Fourier Attention (DSF Attention) captures temporal features, using
differentiable attention weights to restore non-stationary information. For the trend compo-
nent, a multilayer perceptron (MLP) is used for prediction, enhanced by a Dual Coefficient
Network (Dual-CONET) that mitigates distributional shifts through learnable distribution
coefficients. Ultimately, the forecasts of the seasonal and trend components are combined
to generate the overall prediction. Experimental findings reveal that when the proposed
model is tested on six public datasets, in comparison with five classic models it reduces the
MSE by an average of 9.67%, with a maximum improvement of 40.23%.

Keywords: time-series prediction; non-stationary; attention mechanism; coefficient
network; Transformer

1. Introduction
Long-time-series forecasting (LTSF) has found extensive applications in areas such

as energy demand, traffic flow, disease spread, and finance [1–5]. However, the non-
stationary nature of time-series data—including continuity, seasonality, trends, and real-
world noise—makes forecasting challenging. One distinct feature of non-stationary time
series is the dynamic evolution of their statistical properties and joint distributions over
time, which can be interpreted as distributional shifts. This shift hampers model general-
ization, significantly impacting forecasting performance.

Given the remarkable success that Transformers have achieved in natural language
processing and their proficiency in effectively capturing long-range dependencies, fore-
casting models based on Transformers have recently attracted significant attention within
the domain of LTSF [6]. Researchers have increasingly acknowledged the importance
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of seasonal and trend decomposition in revealing underlying sequence patterns and en-
hancing forecasting accuracy [7,8]. This performance enhancement via decomposition is
particularly consistent when applying Transformers to LTSF. Notably, studies [9,10] intro-
duced decomposition methods, as well as strategies like self-correlation and frequency-
domain-enhanced sparse attention mechanisms, to improve model performance in LTSF.
However, their decomposition strategies do not fully separate trend and seasonal compo-
nents; trend forecasting still relies on the attention module. Since the attention mechanism
typically allocates weights by calculating correlations between each time step, it tends to
focus more on local features and short-term dependencies, potentially overlooking global
trend characteristics.

Currently, scholars have proposed various strategies to tackle non-stationary time
series, with one of the most widely adopted methods being Reversible Instance Normal-
ization (RevIN), introduced by Kim et al. [11]. This approach dynamically addresses
non-stationarity by normalizing and denormalizing the input data, effectively adjusting
the statistical properties of time series and mitigating issues caused by distributional shifts.
While normalization strategies can enhance predictive performance, they may lead to
“over-stabilization”, especially on datasets sensitive to long-term trends and in combination
with attention mechanisms, potentially diminishing the attention module’s ability to detect
specific time dependencies from the original non-stationary data [12]. This is because
notable changes in a series, such as sharp jumps or slopes, are often due not merely to
random noise but potentially to significant external events [13]. This suggests that, while
reducing non-stationarity in time series can improve forecasting accuracy, preserving key
dynamic features within the series remains a critical area for future research.

In order to further investigate the influence of non-stationarity on forecasting, this
paper presents the DFCNformer model. This model combines stabilization preprocessing,
Fourier transforms, time-series decomposition, and Transformer networks. It is charac-
terized by two central modules: a module for forecasting the seasonal component and a
module for forecasting the trend component. The primary contributions are listed below.

First, we introduce the DFCNformer forecasting model. This model has the feature
of decomposing time-series data into distinct seasonal and trend components, thereby
enabling a targeted and customized way to handle non-stationarity within each of these
components. In contrast to existing models, the DFCNformer shows better performance
in different time-series forecasting tasks, specifically by effectively alleviating the non-
stationary issues present in both the seasonal and trend components.

Second, for the seasonal component, we employ a Transformer-based encoder–decoder
architecture with a De-stationary Fourier Attention (DSF Attention) mechanism. This mech-
anism introduces a stabilization module that enhances convergence and predictive accuracy.
Moreover, by incorporating a non-stationary factor within the Fourier attention mecha-
nism, we address the issue of over-stabilization, preserving essential information such as
short-term fluctuations and abrupt shifts that are often lost in the stabilization process.

Third, for the trend component, we employ a multilayer perceptron (MLP), a feed-
forward neural network that approaches input–output mapping as a global optimization
task. This allows us to capture smooth, gradual trend patterns without requiring complex
dependency modeling. To address spatially internal and spatially external shifts caused by
distributional drift within the trend component, we integrate a Dual Coefficient Net (Dual-
CONET), which learns distribution coefficients between input and output spaces, providing
the MLP with data that more closely approximate the true underlying distribution.

Fourth, our experiments’ outcomes indicate that the DFCNformer reaches the state-of-
the-art performance level across six real-world datasets. It persistently surpasses five tradi-
tional time-series forecasting models and demonstrates strong generalization capabilities.
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The organization of this paper is as follows: In Section 2, a review of the related work
in the field of time-series forecasting is carried out. Section 3 elaborates on the architecture
of the DFCNformer model in detail. Section 4 delves into the experimental setup as well as
the corresponding results. Finally, Section 5 draws the conclusions of this study.

2. Related Work
2.1. Time-Series Prediction Model

In the field of LTSF, research focuses on effectively capturing time dependencies
and sequential characteristics. Traditional linear statistical models, such as ARIMA [14],
transform non-stationary data into stationary sequences through differencing operations
for modeling. This extends the methods applicable only to stationary time series to non-
stationary time series. Due to their exceptional automatic feature extraction capabilities
and powerful nonlinear modeling capacities, deep learning methods have been widely
adopted in LSTF. Methods based on recurrent neural networks (RNNs) [15–17] have been
proposed to apply autoregressive approaches to sequence modeling. Nevertheless, the
inbuilt limitations of the recurrent network structure that they possess cause RNNs to
be susceptible to the problems of vanishing and exploding gradients during long-term
training. The dynamic nature of non-stationary time series further exacerbates these issues,
leading to unstable training processes. This instability renders RNNs more vulnerable to
sudden changes and noise, ultimately diminishing their generalization capabilities [18]. On
the other hand, methods based on convolutional neural networks (CNNs) [19–21] utilize
convolutional filters to capture local changes within a time window of the time-series data.
Nevertheless, because of the localized characteristic of convolutional kernels, these models
encounter difficulties when it comes to capturing long-term dependencies as well as global
temporal patterns. This limitation becomes particularly pronounced when handling non-
stationary sequences that involve trend shifts, periodic fluctuations, and noise interference,
revealing shortcomings in their ability to process multi-scale features effectively [22].

In recent years, Transformer-based models have shown remarkable advantages in
modeling long-term dependencies and multi-scale features. Their self-attention mechanism
enables them to efficiently capture long-range interactions, making them particularly effec-
tive for complex temporal patterns. Although Zeng [23] and others have argued that linear
models can outperform Transformer-based models in some scenarios, linear models are less
capable of capturing non-stationarity and require more historical information for training,
with poorer adaptability to different datasets. In contrast, the Transformer, with its strong
nonlinear modeling capabilities, still holds considerable advantages in long-term sequence
forecasting. The Reformer [24] model reduces the memory and computational complexity
of the Transformer model when handling long sequences by introducing techniques such
as Locality-Sensitive Hashing (LSH) Attention and Reversible Residual Networks. The
Informer [25] introduced an efficient ProbSparse self-attention mechanism based on KL
divergence, which enhances model prediction accuracy through layer-by-layer distilla-
tion and sparse self-attention processing. The Crossformer [26] introduced a Two-Stage
Attention (TSA) mechanism combined with a segment embedding strategy to effectively
capture cross-temporal and cross-dimensional dependencies, thereby mitigating errors
induced by data fluctuations. Overall, these models mainly concentrate on refining the
self-attention mechanism to improve their ability to manage complex and long-term de-
pendencies effectively. The TDformer [27] improves the decomposition method based on
Autoformer and FEDformer by adopting the approach of “detrending first, then focus-
ing”. It decomposes the time series into independent seasonal and trend components,
combined with the RevIN [11] detrending preprocessing module and a frequency-domain
attention mechanism for the seasonal component, allowing the model to better handle
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non-stationarity in sequences. However, in the data preprocessing process of the above
model, to avoid gradient explosions or vanishing, and to allow the model to train more
stably and learn relationships between different time steps, the sequence data are nor-
malized, scaling the data to a range of [0, 1]. Nevertheless, time series in the real world
are intrinsically complex and non-stationary. Normalizing the data might unintentionally
remove the crucial non-stationary features [12,28,29]. As a result, the ability of the attention
mechanism to effectively capture and differentiate these essential patterns is weakened.

2.2. Strategies for Addressing Non-Stationarity in LTSF

The statistical attributes and joint distribution of non-stationary time series change as
time progresses, which brings about diverse data distributions in different time periods or
under various conditions. This discrepancy between the data distributions during model
training and prediction, known as distribution shift, can significantly impact model perfor-
mance [30]. In order to deal with the influence of non-stationarity on prediction precision,
scholars have put forward a variety of strategies. RevIN [11] mitigates the non-stationarity
by standardizing each data point using its mean and standard deviation, making the model
easier to train. Fan et al. [31] analyzed intra-space and inter-space distribution shifts and
noted that most existing studies focus primarily on intra-space shifts while neglecting inter-
space shifts. In response, they proposed a universal neural paradigm to alleviate both types
of distribution shifts. Ref. [32] introduced an adaptive normalization method based on a
time-slice perspective, dynamically adjusting normalization parameters to ease the chal-
lenges posed by distribution shifts in time-series prediction. However, while these methods
have improved model performance, they also weaken the discriminative power of the
attention mechanism, leading to overly stabilized attention issues. To address this, Liu [12]
and colleagues designed sequence stabilization modules and de-stabilization attention
modules, innovatively combining the self-attention mechanism with stability adjustment
techniques; although effective, this is primarily suitable for attention mechanism models.

To fully capture and model non-stationary multivariate long time series, this paper
builds upon the decomposition approach used in TDformer, which separates the time series
into independent seasonal and trend components. Different strategies are then applied
to each component, combining the strengths of previously proposed prediction models
and methods for addressing sequence non-stationarity, while addressing their respective
limitations. In the seasonal component, a de-stabilized Fourier attention mechanism is
designed, which incorporates the non-stable factors (inherent non-stationarities poten-
tially removed by stabilization processes) excluded from the stabilization module. By
dynamically adjusting attention weights and feature extraction methods, this attention
mechanism effectively focuses on key changes in the sequence without being disrupted by
stability strategies. In the trend component, to address the issue of mitigating intra-space
shifts while neglecting inter-space shifts, as in TDformer using RevIN, a dual-coefficient
network structure is used to mitigate the non-stationarity of intra-space and inter-space
distribution shifts in data trends, with an MLP layer better training and predicting data
trends. Ultimately, the predictions of the seasonal and trend components are combined.
Then, following a de-stabilization strategy, the forecast output for the non-stationary time
series is generated.

3. Proposed Method: DFCNformer
In this section, we present the proposed method for forecasting non-stationary time

series. First, we provide an overview of the time-series problem under study. Following the
problem description, we detail the architecture of the DFCNformer, with a focus on the DSF
Attention for seasonal component forecasting and the Dual-CONET for trend component
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forecasting. These components constitute the core of our method. Finally, we introduce the
overall prediction process of the DFCNformer.

3.1. Problem Description

This study centers on forecasting non-stationary multivariate long time series. Suppose
X stands for such a time series which has feature dimensions of L × C. Here, L indicates
the length of the sequence, while C represents the quantity of variables. We define X
in the following way: X = (x1, x2, . . . , xL)

T ∈ RL×C. Each xl (where 1 ≤ l ≤ L) is a
C-dimensional vector that represents the values of all C variables at time l. That is to say,
xl = (x1

1, . . . , xc
l , . . . , xC

l ) ∈ RC, with xc
l being the value of the c-th variable at time l. On the

other hand, for each variable c (where 1 ≤ c ≤ C), the series xc = (xc
1, . . . , xc

l , . . . , xc
L)

T ∈ RT

depicts its temporal development across all L time points.
The LTSF problem is centered around forecasting the future value at time l + t, which

is likewise known as t-step prediction. Specifically, our objective is to predict Yl+t(t ∈ N+)

by means of the following function, where Y represents the target variable to be predicted,
which could be a forecast result or the future value of the time series at time l + t:

Yl+t = f1(X), (1)

where f1(·) is usually the nonlinear function that we intend to learn.

3.2. DFCNformer Framework

Given that the seasonality and trend are two fundamental components of non-
stationary time series, incorporating them into the model design is essential [33]. Moreover,
the accompanying distribution changes due to non-stationarity make deep forecasting more
challenging, hence stabilization methods have been extensively explored and consistently
adopted as preprocessing steps for deep model inputs [34]. When it comes to time series
that have prominent trends, MLPs are excellent at capturing the progress of these trends,
thus allowing for the effective learning of long-term variations. Conversely, for time series
with clear seasonal patterns, frequency-domain attention proves to be more appropriate,
since it can effectively capture high-frequency seasonal changes and enhance the model’s
capacity to comprehend and predict periodic fluctuations [35]. In this regard, we present
the architectural design of the DFCNformer model (as depicted in Figure 1).

The main steps of the DFCNformer model are as follows: First, the time series is
processed with a stationarization strategy to unify the statistical data of each input. The
output is then transformed using the restored statistical data to enhance predictability,
extracting non-stationary factors to be integrated with the subsequent attention mechanism
in this step. Subsequently, a time-series decomposition module is employed to split the
series into seasonal and trend components. Each of these components is then modeled
through a customized strategy.

For the seasonal component, a de-stationary Fourier attention transformation is de-
signed to capture significant non-stationary information in the seasonal component, includ-
ing periodicity, seasonality, short-term variations, and abrupt changes. The non-stationary
factors here are also used to mitigate over-stationarization within the attention mechanism.
Fourier attention is selected because the Fourier transform converts time-series data from
the time domain to the frequency domain, allowing the model to focus on global frequency
patterns rather than being dependent on specific local time points. This aids the model
in capturing periodic patterns and global structures within the sequence [36]. Moreover,
Fourier transforms in the frequency domain are typically more robust to noise, enabling
more effective identification of true cycles and trends, thereby improving the model’s
resilience to noise and its adaptability to non-stationary sequences [37].
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Figure 1. The overall framework of DFCNformer. Firstly, we implement a stabilization strategy
for the time series. We make use of a decomposition module to split the series into seasonal and
trend components. We utilize DSF Attention as the seasonal forecasting model, where the specific
operation of the softmax σ(·) in this attention mechanism is given by softmax(· × τ + ∆). For the
trend forecasting model, we use an MLP and a coefficient network. The detailed structure of the
coefficient network can be found in Section 3.4. The final prediction is generated by combining the
outputs of the two models and applying inverse smoothing to restore the original data scale.

For the trend component, we utilize a dual coefficient network (Dual-CONET) and
MLP for linear modeling. The dual coefficient network module mitigates distribution shifts
in non-stationary trend components, allowing the MLP to more effectively extract and
predict trend features. The final prediction is obtained by adding the seasonal and trend
forecasts, followed by an inverse stationarization strategy. The advantage of DFCNformer
resides in its effective combination of various modules, which makes it possible to accu-
rately model the trends and seasonal changes in time series. This, in turn, considerably
improves both the accuracy and dependability of its predictions.

The main modules of the proposed model are detailed in the following sections.

3.3. DSF Attention Fusion for Seasonal Composition

The Fourier frequency-domain attention mechanism (Fourier attention) has been
shown to be one of the most effective methods for predicting data with fixed seasonality.
With a computational complexity of O(N log N), it is well suited for handling large-scale
time-series data efficiently. Therefore, this paper introduces improvements based on this
attention mechanism.

The seasonal component Xs is fed through a linear layer to obtain Q′, K′, V′ ∈ RL×dk ,
where dk represents the corresponding temporal dimension. The basic equation for the
attention mechanism is given below:

Attention(Q, K, V) = so f tmax
(

QKT
√

d

)
· V (2)

According to the derivation of the attention formula after applying the stationarization
strategy in the non-stationary model, it can be obtained that the softmax matrix calculation
of the stationary attention should include the non-stationary information of the standard-
ization operation (see Section 3.5) such as σx and µQ, together with K, to approximate the
original attention softmax matrix. The specific formula is given in Equation (3):
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so f tmax
(

QKT
√

dk

)
= so f tmax

(
σ2

x Q′K′T + 1µT
QKT

√
dk

)
, (3)

where σx ∈ RC×1 represents the standard deviation of sequence x, and µQ ∈ Rdk×1 is the
average value of Q in the temporal dimension.

Since using only the stationary seasonal data would lose non-stationary information,
such as σx, µQ, and K, in order for the attention mechanism to learn more data features,
this paper introduces an improvement to the foundation of the attention mechanism by
introducing non-stationary factors, i.e., τ = σ2

x ∈ R+ and ∆ = KµQ ∈ RL×1, resulting
in the de-stationary Fourier attention mechanism (De-stationary Fourier Attention), as
shown in Figure 1 on the left. Here, τ and ∆ are shared by all layers in the de-stationary
Fourier attention.

The current Q′ and K′ provide limited access to non-stationary information. The
most logical source for additional non-stationary insights is the original, unnormalized x.
Therefore, we should use a multilayer perceptron as the projection layer to extract τ and ∆
from the non-stationary x, as detailed in Equation (4).

DSFAttention(Q′, K′, V′, τ, ∆) = F−1
(

so f tmax
(

τF(Q′)F(K′)T + 1∆T
√

dk

)
F(V′)

)
(4)

3.4. Dual-CONET for Trend Composition

Conventional normalization operations are ineffective in handling non-stationary data
drift in trend components. To tackle this challenge, this paper utilizes a Dual-CONET and
an MLP for prediction. By incorporating Dual-CONET into the normalization module, the
input sequence is mapped to learnable distribution coefficients to alleviate the problem
of distribution drift. The primary function of the integrated dual coefficient network is
to map the input trend data into distribution coefficients, which are then used to process
the input data. This processing ensures the data fall within a certain distribution range,
making them more predictable after normalization. The structure of the trend component
prediction model is shown in Figure 2.

The general formula of the coefficient network is as follows:

φ, ξ = Conet(x), (5)

where φ represents the overall scale of the input data (level coefficient), and ξ represents
the amplitude scale (amplitude coefficient) of the input data, which is the deviation of x
relative to the mean φ. To mitigate the distribution shift issue between the input space and
the output space, as well as the direct distribution shift within these spaces, two coefficient
networks are employed. These networks are processed through a linear projection layer for
normalization. The input sequence Xinput, along with vl

b and vl
p ∈ RS×N , represents the

learnable weights of the two coefficient networks in the l-layer fully connected layer. The
input coefficient network, BackConet, can be defined as shown in Equation (6).

φ
(i)
b,t , ξ

(i)
b,t = BackConet

(
X(i)

input

)
, i = 1, . . . , N, X

input(i)=x(i)t−S:t

φ
(i)
b,t = σ

dim(vl
b,i)

∑
τ=1

vl
b,iτx(i)τ−S+t

, ξ
(i)
b,t =

√
E
(

x(i)t − φ
(i)
b,t

)2

x(i)back =
γ

ξ
(i)
b,t

(
x(i)t − φ

(i)
b,t

)
+ β

, (6)
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Figure 2. Trend component model (including Dual-CONET and MLP).

Here, t denotes the time step, S stands for the length of the input window, N is the
quantity of time series, σ refers to the nonlinear leaky ReLU activation function, and γ and
β are parameters that can be learned. The terms φ

(i)
b,t and ξ

(i)
b,t denote the horizontal and

wave parameters of the input parameter network for input data. After processing by the
input parameter network, Xinput yields Xback, which is normalized to obtain X′. It is then
input into the MLP layer for model training to improve the predictive performance of the
MLP. When the MLP outputs the prediction result X′

output, the output parameter network
is used to predict future components and returns the final normalized result. The formula
for the output parameter network PredConet is given in Equation (7):

φ
(i)
p,t, ξ

(i)
p,t = PredConet

(
X(i)

input

)
, i = 1, . . . , N, X(i)

input = x(i)t−S:t

φ
(i)
p,t = σ

dim(vl
p,i)

∑
τ=1

vl
p,iτx(i)τ−S+t

, ξ
(i)
p,t =

√
E
(

x(i)t − φ
(i)
p,t

)2

x′(i)output =
γ

ξ
(i)
p,t

(
x(i)t − φ

(i)
p,t

)
+ β

, (7)

φ
(i)
p,t and ξ

(i)
p,t represent the level and amplitude coefficients predicted by the output coeffi-

cient network model. X′
output is obtained after applying the inverse normalization operation

to Xoutput. Although the two coefficient networks share the same input, they serve distinct

purposes: BackConet is designed to approximate the distribution of the input data X(i)
input,

whereas PredConet leverages the input data to predict the future distribution.

3.5. Overall Forecasting Process

Current attention models primarily focus on interpolating historical data in a given
context, which presents limitations in inferring linear trends. In contrast, MLPs have
demonstrated more accurate performance in trend forecasting [38]. Building on this frame-
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work, our proposed model comprises two parts: a seasonal part and a trend part. Each of
them is specially designed to learn and predict its corresponding portion of the time series.
The final prediction outcome is acquired by combining the predictions of both components.
The model architecture is shown in Figure 3.

Figure 3. Overall forecasting process.

First, we perform normalization on the temporal dimension using a sliding win-
dow, and after prediction, we restore the original data characteristics through an inverse
normalization operation. The normalization module can be represented as

µx =
1
L

L

∑
i=1

xi, σ2
x =

1
L

L

∑
i=1

(xi − µx)
2, x′i =

1
σx

⊙ (xi − µx), (8)

where µx, σx ∈ RC×1 and 1
σx

represent the mean and standard deviation vectors, respec-
tively. The normalization module minimizes deviations among the input time series,
resulting in a more stable input distribution for the model.

The inverse normalization module is represented by the following equation:

y′ = H(x′), ŷi = σx ⊙ y′i + µx (9)

After that, we break down the time series into its seasonal and trend components. The
implementation requires the application of multiple moving average filters with different
sizes to capture diverse trend patterns. These patterns are then integrated into the final
trend component by means of adaptive weights. Subsequently, the seasonal component is
obtained by subtracting the trend component from the original time series:

xt = σ(ω(x)) ∗ f (x), xs = x − xt, (10)

where σ represents the softmax operation, ω(x) denotes the data-related weights, and f (x)
represents the moving average filter.

For the seasonal component, we adopt the Transformer encoder–decoder architecture.
We design the DSF Attention (see Section 3.3 for module design details) to address the
instability in attention learning for the seasonal component. The seasonal component is
first processed through an M-layer encoder, as follows:

Sm,1
en = DSFAttention(xm−1

en )

Sm,2
en = Add&Norm(Sm,1

en )

Sm,3
en = FeedForward(Sm,2

en )

xm
en = Add&Norm(Sm,3

en )

(11)

In the above equations, Sm,i
en , where i ∈ {1, 2, 3}, denotes the intermediate variables

within the i-th module of the m-th layer encoder.
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Similarly, the seasonal component is zero-padded for the future time steps and then
passed through the N-layer decoder, as follows:

Sn,1
de = DSFAttention(xn−1

de )

Sn,2
de = Add&Norm(Sn,1

sde)

Sn,3
de = DSFAttention(Sn,2

sde)

Sn,4
en = Add&Norm(Sn,3

en )

Sn,5
de = FeedForward(Sn,4

sde)

xn
de = Add&Norm(Sn,5

de )

(12)

In the above equations, Sn,i
de , where i ∈ {1, 2, . . . , 5}, represents the intermediate

variables in the i-th module of the n-th layer decoder.
For the trend component, we use a three-layer MLP to forecast future trends. Mean-

while, to alleviate distribution shift issues caused by non-stationary phenomena in the trend
component that cannot be resolved by normalization operations, we add a Dual-CONET
module before and after the MLP (see Section 3.4 for detailed architecture):

Xt = DualConet(MLP(DualConet(xt))) (13)

By combining the seasonal forecast results from the Transformer and the trend fore-
cast results from the MLP and then applying inverse normalization, we obtain the final
output forecast.

4. Experiment and Result Analysis
4.1. Datasets

To validate the effectiveness of the model, this paper selects six publicly available
multivariate time-series datasets for experimentation. These datasets are as follows:

1. ETTh2 [26]: Records hourly power loads of six substations and one oil temperature
feature in a county in China from July 2016 to July 2018.

2. Exchange [39]: Covers daily exchange rates of eight different countries from 1990 to
October 2010.

3. Traffic [40]: Records hourly lane occupancy rates from 862 different sensors on the
I-80 highway in the Bay Area, California, from July 2016 to July 2018.

4. Weather [41]: It encompasses 21 meteorological indicators that were recorded every
10 min during the whole year of 2020 in Germany.

5. ILI [42]: Contains weekly records of influenza patient numbers in the United States
from 2002 to June 2020.

6. Citypower [43]: Records weather conditions every 10 min and power consumption in
three power distribution networks throughout 2017 in Dusseldorf.

The basic information about the datasets is summarized in Table 1. We follow the
standard protocol, dividing each dataset into training, validation, and testing sets in a
7:1:2 ratio according to the chronological order.
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Table 1. Basic information of the datasets.

Dataset Sampling
Frequency Dimensions Timesteps

ETTh2 Hourly 7 17,420
Exchange Daily 8 7588

Traffic Hourly 862 17,544
Weather 10 min 21 52,696

ILI Weekly 7 966
Citypower 10 min 8 52,416

4.2. Computational Resources and System Setup

All experiments were conducted based on the PyTorch 2.1.2 framework on an NVIDIA
GeForce RTX 4090 GPU with CUDA version 12.2. The code was written in Python 3.9.19.
To verify the effectiveness of the proposed model, TDformer [27], FEDformer [10], Auto-
former [9], Informer [25], and DLinear [23] were selected as baseline models for comparative
analysis. Each model was trained for a maximum of 20 epochs, with early stopping based
on the best performance on the validation set to avoid overfitting and improve computa-
tional efficiency. The model that performed best on the validation set during training was
selected for final evaluation on the test set. In addition, dropout was applied with a rate
of 0.05 to prevent overfitting on the training set and enhance the model’s generalization
ability. The Adam optimizer was utilized with a batch size of 32. The initial learning rate
for DLinear was set to 0.05, while for other models it was initialized at 0.0001 and gradually
decreased during training. This paper adopts mean square error (MSE) and mean absolute
error (MAE) as evaluation metrics, where lower values reflect higher prediction accuracy.

4.3. Main Results

To ensure a fair comparison with other models, the input historical length for all mod-
els in this study was fixed at 96. Predictions were made for 96, 192, 336, and 720 timesteps
on six datasets (for the ILI dataset, predictions were made for 24, 36, 48, and 60 timesteps).
The experimental results are presented in Table 2, with the lowest MSE and MAE values
for each dataset highlighted in bold.

In 22 out of 24 configurations with different datasets and prediction lengths, DFC-
Nformer outperforms other benchmark models. As shown in Table 2, the MSE of our
model is, on average, reduced by 9.67% compared to other benchmarks, with a maximum
reduction of 40.23%. In the configurations where DFCNformer is the best, the minimum
reduction is also 2.39%. Similarly, the MAE is reduced by an average of 6.22%, with a
maximum reduction of 17.72%, and the minimum reduction is 0.99%. Compared with
TDformer, a Transformer-based model with relatively superior predictive performance,
and the linear model DLinear, DFCNformer’s MSE is reduced by an average of 14.14% and
13.52%, respectively. This improvement is primarily attributed to the enhancement of the
attention mechanism, using the instability factor and the mitigation of trend distribution
shifts achieved by the Dual-CONET. Although DLinear demonstrated excellent predictive
performance in two configurations, its performance was more modest in other configu-
rations (e.g., steps 96 to 336 of Exchange, and steps 96 and 720 of Traffic), indicating that
the model’s relatively simple structure may limit its predictive stability across different
datasets and prediction lengths.



Information 2025, 16, 62 12 of 17

Table 2. Prediction results of multivariate time-series models under different forecast horizons.

Dataset
DFCNformer TDformer FEDformer Autoformer Informer DLinear

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Tr
af

fic

96 0.559 0.327 0.575 0.335 0.572 0.358 0.671 0.429 0.741 0.414 0.649 0.396
192 0.571 0.328 0.602 0.358 0.618 0.390 0.615 0.388 0.764 0.427 0.598 0.370
336 0.583 0.332 0.616 0.348 0.622 0.384 0.607 0.375 0.847 0.473 0.605 0.373
720 0.612 0.341 0.627 0.351 0.643 0.396 0.706 0.418 0.966 0.541 0.646 0.395

Ex
ch

an
ge 96 0.087 0.206 0.091 0.210 0.151 0.281 0.147 0.278 0.908 0.774 0.098 0.217

192 0.176 0.298 0.184 0.305 0.276 0.382 0.597 0.559 1.101 0.834 0.217 0.338
336 0.325 0.413 0.356 0.431 0.445 0.490 0.462 0.508 1.618 1.017 0.420 0.469
720 0.829 0.685 0.881 0.706 1.133 0.819 1.099 0.814 2.920 1.410 0.742 0.651

W
ea

th
er 96 0.176 0.219 0.186 0.225 0.244 0.332 0.262 0.330 0.389 0.447 0.201 0.266

192 0.219 0.259 0.233 0.267 0.308 0.368 0.311 0.371 0.443 0.458 0.236 0.293
336 0.261 0.301 0.291 0.304 0.602 0.552 0.350 0.385 0.575 0.534 0.283 0.335
720 0.357 0.351 0.367 0.353 0.407 0.418 0.422 0.432 1.095 0.776 0.348 0.383

IL
I

24 2.211 0.983 2.889 1.124 2.849 1.180 3.380 1.290 5.257 1.616 2.403 1.097
36 2.087 0.960 2.922 1.075 2.746 1.149 3.460 1.310 5.530 1.677 2.385 1.095
48 2.129 0.992 2.843 1.068 2.731 1.128 3.130 1.200 5.537 1.646 2.349 1.089
60 2.360 1.056 2.999 1.106 2.802 1.136 2.860 1.470 5.704 1.685 2.405 1.109

ET
T

h2

96 0.207 0.314 0.312 0.361 0.344 0.383 0.356 0.401 2.845 1.335 0.329 0.380
192 0.250 0.353 0.430 0.429 0.435 0.442 0.533 0.505 6.197 2.070 0.431 0.443
336 0.279 0.368 0.444 0.447 0.485 0.479 0.461 0.472 5.225 1.934 0.459 0.462
720 0.321 0.396 0.458 0.470 0.468 0.479 0.459 0.476 3.689 1.622 0.774 0.631

C
it

yp
ow

er 96 0.205 0.279 0.244 0.311 0.278 0.374 0.312 0.395 0.404 0.494 0.239 0.311
192 0.251 0.304 0.271 0.323 0.279 0.360 0.446 0.489 0.528 0.571 0.273 0.346
336 0.302 0.336 0.324 0.355 0.319 0.389 0.453 0.487 0.644 0.627 0.308 0.380
720 0.349 0.365 0.373 0.382 0.459 0.499 0.504 0.523 0.817 0.701 0.350 0.426

Overall, DFCNformer is better at capturing relationships between data and demon-
strates strong robustness and generalization capability in long-term time-series forecasting.
Figure 4 presents a comparison of the predictions made by DFCNformer, TDformer, and
DLinear on the ETTh2 and ILI datasets. An input sequence length of 96 is selected to
predict the next 96 time steps (60 time steps for ILI). The dark gray curve depicts the real
data, while the light gray curve illustrates the predicted results. As shown in the figure, our
model exhibits smaller errors when handling data spikes, abrupt changes, and predicting
trend directions.

The proposed model is also compared with Transformer-based models in terms of
computational speed, parameter count, and predictive performance to assess its overall
efficiency. Figure 5 presents a comparison using the Exchange dataset, with an input
length of 96 and an output length of 192. The size of the circles represents the parameter
count, where smaller circle areas, closer to the origin, indicate fewer parameters, faster
computation, and lower error.

In terms of computation speed and parameter count, FEDformer has the largest num-
ber of parameters and the slowest computation speed (12.99 s), while DLinear has the
fewest parameters and the fastest computation speed (0.689 s) among all models. DFCN-
former, on the other hand, achieves the lowest MSE, outperforming the second-best model
(TDformer) by 4.55%. Among Transformer-based models, DFCNformer demonstrates a
speed comparable to Informer and TDformer, only 0.2 s slower than the fastest Informer.
However, Informer shows relatively larger prediction errors. In terms of parameter count,
FEDformer has the highest, while Autoformer has the lowest. Our model has only 3.94%
more parameters than Autoformer. It is important to note that DLinear, due to its linear
nature, achieves relatively good performance at a lower computational cost. However,
its generalization capability is limited compared to DFCNformer, and it performs poorly
on certain datasets (such as Traffic and ETTh2). This indicates that, while DLinear offers
advantages in computational efficiency, it may fail to capture complex patterns in data with
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nonlinear relationships or large-scale datasets. Nevertheless, the design concept of DLinear
provides valuable insights for our future research, particularly in exploring how to achieve
better prediction performance with limited computational resources.

Figure 4. Comparison of predictions among DFCNformer, TDformer, and DLinear on ETTh2 and ILI.

Overall, DFCNformer outperforms other Transformer-based models in terms of aver-
age performance. Moreover, compared to DLinear, it adapts well to the characteristics of
different datasets, demonstrating strong generalization across data from various domains.

Figure 5. Comparison of efficiency across models.

4.4. Ablation Study

To independently assess the contributions of the stabilization–destabilization strategy,
seasonal component, and trend component, an ablation study was conducted using the
Traffic dataset, characterized by clear seasonality, and the Weather dataset, which exhibits a
distinct trend. The results are presented in Table 3, with the lowest MSE and MAE values
for each dataset highlighted in bold.
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Table 3. The MSE and MAE results from our model’s ablation study are reported. The variant
of the model that specifically employs Fourier-based attention is referred to as DFCNformer-FA.
DFCNformer-FA-DSFA replaces the MLP with Fourier attention (FA) to capture trends. DFCNformer-
MLP-FA uses Fourier attention to capture seasonal patterns. DFCNformer w/o Dual-CONET removes
the Dual-CONET module for trend modeling, and DFCNformer w/o Norm. removes the sequence
stabilization-destabilization module. Average increase represents the average percentage increase in
MSE/MAE compared to DFCNformer.

Method Metric
Traffic Average Weather Average

96 192 336 720 Increase 96 192 336 720 Increase

DFCNformer MSE 0.559 0.571 0.583 0.612 - 0.176 0.219 0.261 0.357 -
MAE 0.327 0.328 0.332 0.341 - 0.219 0.259 0.301 0.351 -

DFCNformer-FA MSE 0.659 0.666 0.679 0.707 16.70% 0.301 0.372 0.412 0.517 58.50%
MAE 0.348 0.359 0.371 0.413 12.35% 0.332 0.384 0.420 0.515 45.94%

DFCNformer-FA-DSFA MSE 0.603 0.612 0.609 0.607 4.65% 0.181 0.223 0.265 0.361 1.98%
MAE 0.333 0.346 0.343 0.342 2.71% 0.234 0.271 0.332 0.358 5.65%

DFCNformer-MLP-FA MSE 0.577 0.600 0.619 0.632 4.48% 0.182 0.234 0.288 0.374 6.72%
MAE 0.339 0.350 0.355 0.356 5.42% 0.243 0.297 0.338 0.398 12.72%

DFCNformer w/o Dual-CONET MSE 0.565 0.576 0.586 0.613 0.69% 0.193 0.242 0.301 0.378 10.28%
MAE 0.330 0.339 0.344 0.345 2.41% 0.231 0.274 0.307 0.630 27.56%

DFCNformer w/o Norm. MSE 0.589 0.612 0.621 0.644 6.20% 0.197 0.248 0.306 0.379 11.86%
MAE 0.337 0.342 0.351 0.355 4.22% 0.253 0.303 0.341 0.404 14.84%

As shown in Table 3, the model using only Fourier attention performs the worst
on complex time-series forecasting, with average MSE increases of 16.70% and 58.50%
and average MAE increases of 12.35% and 45.94% on the Traffic and Weather datasets,
respectively, indicating the necessity of decomposing time series and applying independent
predictive measures to each component. Furthermore, replacing the MLP with Fourier
attention in the trend component (DFCNformer-FA-DSFA) results in an increase in MSE
across all cases, which underlines the poorer generalization competence of the Fourier
attention model in dealing with trend data.

Additionally, the models without the instability factor in the seasonal attention compo-
nent (DFCNformer-MLP-FA) and without the Dual-CONET module in the trend component
(DFCNformer w/o Dual-CONET) show average MSE increases of 4.48% and 0.99% on
Traffic, and 6.72% and 10.28% on Weather, respectively. This highlights the importance of
introducing the stabilization factor in the seasonal component and the coefficient network
in the trend component for handling non-stationary data. For the strongly seasonal Traffic
dataset, the model without the instability factor structure experiences a greater increase in
MSE compared to the model without the dual-coefficient network structure. Conversely,
for the trend-dominated Weather dataset, the model without the dual-coefficient network
structure sees a greater MSE increase than the model without the instability factor structure.
This may be due to the enhanced role of the stabilization attention mechanism in capturing
seasonal changes and abrupt patterns in highly seasonal datasets, while the dual-coefficient
network better learns non-stationary trend patterns in strongly trend-oriented datasets.

DFCNformer w/o Norm. is based on DFCNformer-MLP-FA but excludes the stabi-
lization and de-stabilization strategies. Figure 6 presents the prediction comparison for
a forecasting horizon of 96 steps on the Traffic (Figure 6a–c) and Weather (Figure 6d–f)
test datasets. From the subfigures, it can be observed that the prediction curves in the
DFCNformer-MLP-FA (Figure 6a,d) model fit the actual curves more closely. This may
be due to the fact that the stabilization and de-stabilization strategies effectively remove
noise and short-term fluctuations in the data, making the error distribution more con-
centrated and stable, allowing the model to more accurately capture long-term trends
and key patterns. After removing the de-stabilization structure (Figure 6b,e), the model’s
predictive performance significantly declines, with a large deviation from the actual curve.
This is because the predictions are not promptly corrected, failing to effectively follow the
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distribution of the input sequence. Subsequently, after removing the stabilization structure
(Figure 6c,f), the model’s predictions exhibit large errors and significant fluctuations in the
data. This is due to the model’s difficulty in effectively learning the relevant features of
non-stationary sequences, leading to reduced generalization capability.

Figure 6. Effectiveness comparison of stabilization and de-stabilization strategies of 96 steps on
Traffic and Weather datasets. (a–c) show the comparison for the Traffic dataset, while (d–f) display
the results for the Weather dataset. (a,b) illustrate the prediction results of the DFCNformer-MLP-FA
model, whereas (b,e) show the prediction results of the same model with the de-stabilization strategy
removed. (c,f) represent the predictions of DFCNformer w/o Norm., where both the stabilization
and de-stabilization strategies are excluded.

5. Conclusions
This paper introduces the DFCNformer model, which improves the forecasting per-

formance of non-stationary time series by addressing their inherent non-stationarity. The
model uses a stabilization strategy and decomposes the time series into seasonal and trend
components. The seasonal component is handled using a de-stationary Fourier attention
mechanism, while the trend component uses a dual-coefficient network and MLP to predict
long-term trends. The results of the seasonal and trend components are then combined,
and the final non-stationary time-series forecast is produced through a de-stabilization
strategy. The experimental results on six public datasets demonstrate that DFCNformer
outperforms other benchmark models in prediction accuracy, successfully mitigating errors
caused by non-stationarity and exhibiting strong generalization capabilities.

Despite its strengths, the model’s performance is sensitive to the quality and com-
pleteness of historical data. In cases of insufficient data, prediction accuracy may be
compromised. Additionally, the model’s computational cost could be improved. Future
work will focus on enhancing the model’s predictive efficiency in scenarios with limited or
incomplete data, while also exploring simpler and more efficient architectures to reduce
computational costs.
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