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Abstract: Deep learning significantly advances object detection. Post processes, a critical
component of this process, select valid bounding boxes to represent the true targets during
inference and assign boxes and labels to these objects during training to optimize the loss
function. However, post processes constitute a substantial portion of the total processing
time for a single image. This inefficiency primarily arises from the extensive Intersection
over Union (IoU) calculations required between numerous redundant bounding boxes in
post processing algorithms. To reduce these redundant IoU calculations, we introduce
a classification prioritization strategy during both training and inference post processes.
Additionally, post processes involve sorting operations that contribute to their inefficiency.
To minimize unnecessary comparisons in Top-K sorting, we have improved the bitonic
sorter by developing a hybrid bitonic algorithm. These improvements have effectively
accelerated the post processing. Given the similarities between the training and inference
post processes, we unify four typical post processing algorithms and design a hardware
accelerator based on this framework. Our accelerator achieves at least 7.55 times the speed
in inference post processing compared to that of recent accelerators. When compared to the
RTX 2080 Ti system, our proposed accelerator offers at least 21.93 times the speed for the
training post process and 19.89 times for the inference post process, thereby significantly
enhancing the efficiency of loss function minimization.

Keywords: deep learning; object detection; post process; accelerator

1. Introduction
Object detection, a fundamental task in deep learning, has found widespread ap-

plication in fields such as autonomous driving [1,2], agricultural monitoring [3,4], and
geological exploration [5,6]. The complete training process for object detection includes
feature extraction through the backbone [7,8], feature fusion via the neck [9,10], detection
heads [11–13], post processing [14], loss calculation [12,13,15,16], and back propagation.
During inference, the steps of loss calculation and back propagation are omitted. The back-
bone, neck, and head are typically implemented using Convolutional Neural Networks
(CNNs). Post processing mainly involves selecting valid bounding boxes. In the training
phase, post processing is responsible for assigning labels to the bounding boxes produced
by the detection head. This step involves matching the detected bounding boxes with
ground truth targets and is commonly referred to as label assignment (LA). During the
inference phase, post processing involves choosing bounding boxes that represent the true
targets using Non-Maximum Suppression (NMS).
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Figure 1a shows how in applying NMS to inference, box2 is selected as the optimal
bounding box based on the IoU and confidence. Figure 1b illustrates Faster-RCNN’s
training post process, assigning the dog label and box2 to the true target. Both NMS and
label assignment aim to match the bounding boxes with the true targets to enhance the
model’s accuracy. However, while previous CNN hardware accelerators [17–20] have
focused on the feature process, post processing acceleration has been explored less due
to algorithmic differences. For instance, Faster-RCNN [21], YOLOv8s, and GFL [22] use
different assigners, such as a Max IoU Assigner, Task-Aligned Assigner [23], and Dynamic
Soft Label Assigner, in training, whereas NMS is consistently used in inference. Thus,
creating a unified post processing workflow is challenging.

Figure 1. The (a) inference and (b) training post processes. The box represents the bounding box,
while GT denotes the ground truth, which corresponds to the box that accurately delineates the
true target. Red boxes denote the bounding boxes of the detected objects (indicated by blue arrows
pointing to specific numbered boxes), while green boxes denote the GT (indicated by green arrows
pointing to the GT). Red arrows indicate post processing outcomes.

Previous post processing accelerators have primarily focused on NMS due to its
significance in edge inference tasks. However, as edge devices require more advanced
detection capabilities, they perform local fine-tuning using real-time camera data [24,25],
eliminating the need for cloud-based training and the complexities of data transmission.
This highlights the need for hardware acceleration in the training post process. Despite
this, research on training post processing acceleration is limited due to challenges in its
standardization and a steep learning curve. Our observations show that both the training
and inference post processes consume a significant portion of the total processing time for a
single image. As Figure 2 illustrates, using an RTX 2080 Ti to measure the processing times
on the COCO dataset, the average time dedicated to post processing during training and
inference accounted for 20.5% and 22.1% of the total processing time, respectively.

Post processing involves fewer parameters than feature processing but lacks a unified
statistical approach. We propose two methods. Unlike feature processing, which focuses on
weights and biases, post processing emphasizes bounding boxes, thresholds, and empirical
parameters. The number of bounding boxes, which depends on the input image size,
includes confidence scores, categories, and coordinates, while the thresholds and empirical
parameters are fewer. The first method includes all of the bounding box data, thresholds,
and empirical parameters. The second method only focuses on the thresholds and empirical
parameters, aligning with feature processing. As shown in Figure 3, if the feature map size
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is considered in post processing, the feature process’s parameters are 2.28 to 4.92 times
greater than those in post processing. If not, they can be up to 787,000 times greater for
training and 21.4 million times greater for inference. Accelerating post processing is crucial,
with the main bottleneck being the repeated bounding box filtering. Reducing ineffective
filtering is the key to improving its efficiency.

Figure 2. The time proportions for training and inference post processes in three detectors. LA is the
training post process, NMS is the inference post process, and Feature Process includes the backbone,
neck, and head processing. For Faster-RCNN training, feature processing averages 96.9 ms and LA
25.0 ms per image, accounting for 79.5% and 20.5% of the total time, respectively.

Figure 3. Parameter count statistics: Feature Process includes parameters from the model’s backbone,
neck, and head. Minimum of Single Layer is the parameter count of the convolutional layer with
the fewest parameters, and Maximum of Single Layer is that for the layer with the most. Label
Assignment with Picture and Non-Maximum Suppression with Picture count the parameters when
feature maps are considered in the post processes, while Label Assignment and Non-Maximum
Suppression do not include the feature map parameters.

Reducing redundancy in post processing involves minimizing unnecessary IoU calcu-
lations and comparisons.

• Minimizing redundant IoU calculations: The traditional methods often include re-
dundant IoU calculations. We introduce the priority of confidence threshold checking
combined with classification (CTC-C) into NMS, effectively reducing the computation
of ineffective IoUs. Given the operational similarities between the inference post
process and the training post process, we also implement the priority of CTC-C in
the training post process of Faster-RCNN. For YOLOv8s and GFL, we incorporate
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the priority of center point position checking combined with classification (CPC-C) to
further reduce redundant IoU calculations.

• Reducing redundant comparisons: Traditional Top-K selection methods involve full
sorting, leading to unnecessary comparisons. We introduce a hybrid bitonic sorter
to avoid this, efficiently sorting the bounding boxes by the IoUs and identifying the
Top-K elements, optimizing the selection of the best bounding boxes during training.

The core research content of this paper is post processing software–hardware accelera-
tion. In terms of the software, we use the priorities of CTC-C and CPC-C to implement the
reduction in redundant IoU calculations, employ a hybrid bitonic sorter to reduce redun-
dant comparisons, and unify four post processing algorithms. In terms of the hardware,
we design the hardware accelerator under a unified algorithmic framework.

The main contributions of this paper are as follows:

• Post processing software–hardware acceleration: We highlight the importance of
hardware acceleration in both the training and inference post processes, proposing a
co-design strategy to integrate the software and hardware for improved efficiency.

• Unified algorithm framework and hardware design: We explore unifying the training
and inference post processing algorithms, presenting a hardware design framework
that achieves significant speedups. Compared to recent accelerators, our design offers
at least 7.55 times faster NMS acceleration.

• Priorities of CTC-C and CPC-C: We address the redundant IoU calculations by in-
troducing the priorities of CTC-C and CPC-C into the training and inference post
processes, reducing the bounding boxes to 12.9% and 11.9% of their original counts,
respectively, and achieving a speedup of 1.10 to 1.19 times.

• Hybrid bitonic sorter: We introduce a hybrid bitonic sorter that enables efficient
parallel comparisons and Top-K selection, reducing redundant comparisons. This
design achieves a speedup of 1.05 to 1.25 times compared to the speed of recent sorters.

2. The Related Works
2.1. Object Detection and Post Process Algorithm

Traditional object detectors, with their complex handcrafted features and lower accu-
racy, are being replaced by deep learning models [26]. These models use large network
architectures with parameters of up to hundreds of megabytes [27,28], allowing for exten-
sive feature learning without manual intervention. They offer end-to-end solutions that
integrate image processing, feature learning, object classification, and localization into a
unified framework. Object detectors are categorized into one-stage and two-stage detectors.
One-stage detectors, such as YOLO and SSD, directly regress boxes in images, making
them faster but traditionally less accurate [29,30]. In contrast, two-stage detectors like
Faster-RCNN first generate candidate regions and then classify and refine them, achieving
higher accuracy at the cost of speed [21,31]. Recent advancements, including anchor-free
methods like CornerNet and CenterNet [32–34]; improved feature fusion in neck archi-
tectures [19,27]; and adaptive post processing algorithms, have enhanced the accuracy
of one-stage detectors. These improvements have made one-stage detectors increasingly
popular in applications such as intelligent transportation [35] and fire detection [36], where
speed and efficiency are crucial.

Object detection post processing algorithms are categorized into training and inference
processes. The training process aims to classify samples as positive or negative, compute
the losses using ground truth boxes, and guide learning through supervisory signals. Label
assignment is crucial, divided into static and dynamic methods based on the threshold
variability. Static methods use fixed thresholds, such as the distance and IoU, exemplified
by FCOS [37], Faster-RCNN’s Max IoU Assigner [21], and RFLA [38]. Dynamic methods
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adjust the thresholds dynamically, including ATSS [14], PAA [39], OTA[40], the Dynamic
Soft Label Assigner [22], SimOTA [41], and the Task-Aligned Assigner [23]. While ATSS
uses dynamic IoU thresholds, others combine classification predictions and IoU scores
to align the training and inference processes, improving the accuracy. The shift from the
Max IoU Assigner to the Task-Aligned Assigner reduces the reliance on the empirical
parameters, enhancing the model’s generalizability. Despite this, post processing remains
complex. Approaches like DETR [15,42,43] simplify the training post process with one-to-
one matching, but other Transformer-based detectors [44,45] using Swin Transformer [7]
maintain one-to-many processes for higher accuracy and faster convergence. Although
DETR claims to eliminate complex post processing, NMS is still required during inference.

In contrast to the training post process, which has seen significant evolution, the
inference post process has developed more incrementally, with most of the advancements
focusing on the IoU calculation paradigm [46–49]. Standard NMS remains the predominant
technique, ranking the candidate bounding boxes by confidence scores and iteratively
removing those that overlap significantly with higher-IoU candidates [50]. However, it uses
fixed empirical thresholds and does not adapt to each input image’s unique characteristics,
potentially limiting the detector performance. To address this, some research has redefined
the NMS threshold selection into a convex optimization problem, applying swarm intelli-
gence optimization algorithms to find the optimal solutions [51]. Adaptive NMS strategies
have also been developed for crowded scenarios, such as pedestrian and vehicle detec-
tion [52,53]. Despite these innovations, methods aiming to eliminate NMS by improving
the network architectures (i.e., NMS-free mechanisms) often exhibit a lower performance
in practical applications compared to that of detectors that utilize NMS [15,54,55].

In this paper, we focus on the latest advancements in the label assignment algorithms,
selecting both the Dynamic Soft Label Assigner and the Task-Aligned Assigner. While both
are derived from the paradigms established by OTA and SimOTA, they exhibit notable
algorithmic differences. Additionally, we use the Max IoU Assigner from Faster-RCNN
as a representative of static label assignment methods. For the inference post process, we
retain the standard NMS as our experimental approach.

2.2. The Hardware Accelerator in Inference Post Processing Algorithms

Hardware accelerators for the inference post process in edge object detection are crucial,
with NMS being a key step. It selects the highest-confidence bounding box, computes
the IoU using the other boxes, and filters those above a certain threshold, then repeating
this until no boxes remain. Due to the computational complexity of IoU calculation,
which involves multiple operations per comparison, significant power consumption and
hardware resource usage occur. To address this, approximations can replace multiplications
and divisions with simpler operations like additions and shifts, reducing the power and
hardware demands. For instance, Shi et al. [56] approximate the IoU using coordinate
maximums, and Fang et al. [57] introduce boundary constraints to eliminate division.
However, these methods may reduce the model’s accuracy.

To address the loss of model accuracy with IoU approximation, enhancements to the
NMS algorithm can minimize redundant calculations and leverage parallelism without
accuracy loss. Chen et al. [58] enhance NMS by routing the bounding boxes to three out-
put head branches, each for a different ratio, and selecting the most suitable box after
merging. This method increases the parallelism but faces challenges in maintaining con-
sistent parallelism across different ratios. Choi et al. [59] improve NMS by limiting the
number of valid bounding boxes in each IoU calculation, though this reduces adaptability
in target detection.
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Optimizing NMS by maintaining its core principles and using the threshold parameters
to reduce IoU redundancy is another strategy for improving the algorithm’s performance.
Research [60–63] shows that applying confidence thresholds can significantly reduce the
number of boxes involved in the IoU calculations. Anupreetham et al. [64] innovate by
adapting NMS to SSD detectors, employing a pipelined system with three criteria for the
box selection: class membership, IoU thresholds, and confidence levels. This approach
incorporates class information into the selection process, unlike Shi et al.’s [56] method,
which focused on coordinate-based clustering without addressing the class distribution.
However, Anupreetham et al.’s approach does not fully address the IoU redundancy.

This work introduces an approach that prioritizes both class and confidence threshold
checking to significantly reduce the IoU calculations between bounding boxes of different
classes before performing the IoU computation. Table 1 provides a detailed comparison of
recent studies highlighting these differences.

Table 1. Hardware accelerators for post processing.

Standard IoU Priority of Confidence Threshold Checking Priority of Classification Support for Training Post Process

2019-TCASII [56] × × × ×

2021-ASSCC [57] × × × ×

2021-FPL [60] X X × ×

2021-ICCE [59] X X * ×

2022-DATE [58] × X × ×

2023-FPT [61] X X × ×

2023-ISCAS [62] X X × ×

2023-TCASII [63] × X × ×

2024-TReTS [64] X X * ×

Ours X X X X

* indicates that in this work, classification is typically prioritized after the IoU calculation, which leads to redundant
IoU computations between bounding boxes of different classes. X indicates that this work supports the technology.
× indicates that this work does not support the technology.

2.3. The Hardware Accelerator in the Sorter Algorithm

Efficient sorting techniques are crucial for NMS and label assignment algorithms
due to the need for sorting by the confidence scores and IoUs, as well as Top-K selec-
tion. Fang et al. [57] address sorting storage challenges using a comparator tree, which
efficiently manages elements by focusing on the maximum confidence values in each itera-
tion. Sun et al. [63] use parallel bitonic sorting to order the IoU values between bounding
boxes. Bitonic sorting [65] offers faster sorting than traditional bubble sorting through
parallel comparisons. It consists of two phases: the merge phase, where the input elements
are organized into bitonic sequences with both ascending and descending subsequences,
creating two subsequences at the end, and the sort phase, which recursively subdivides
these subsequences until each is reduced to a length of one. While bitonic sorting improves
the efficiency, its hardware implementation becomes costly with more elements due to the
need for multiple comparators. Chen et al. [66] reduce the resource consumption by using
dual insertion sorting after the merge phase, avoiding further recursion. Zhao et al. [67]
introduce a smaller merge sort after the merge phase to facilitate Top-K extraction, particu-
larly for K = 2. Alternatively, Fang et al. [68] use insertion sorting for Top-K identification,
though this is limited by the sorting scale and longer delays.

In line with the hybrid bitonic sorting methods proposed by [66,67], our work intro-
duces hybrid bitonic sorting that supports both full sorting and Top-K extraction. However,
our method differs by incorporating multi-comparator trees during the merge phase to di-
rectly obtain the Top-K elements, instead of the traditional approach, which only identifies
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the maximum value. Additionally, we overcome the K = 2 limitation present in previous
methods, enabling greater parallelism due to the parallelizable nature of retrieving K el-
ements. Table 2 presents the sorting schemes of recent sorting accelerators and provides
a comparison.

Table 2. Sorting schemes.

Sorter Type Support for Full Sorting Support for Top-K Sorting

- Bitonic Sorter X X

2023-TCAD [68] Insertion Sorter × X

2023-TCASI [66] Bitonic Sorter + Insertion Sorter X X

2024-TCAD [67] Variant of Bitonic Sorters × X

Ours Bitonic Sorter + Sorter Tree X X

X indicates that this work supports the technology. × indicates that this work does not support the technology. Note:
Supporting full sorting implies supporting any Top-K sorting.

3. The Unification of the Post Process Algorithm and Optimization
3.1. Analysis of the Uniformity of Post Processing Algorithms

In Faster-RCNN, the Max IoU Assigner begins by filtering out unsuitable bounding
boxes based on a confidence threshold. It then calculates the IoU between the remaining
bounding boxes and the ground truth boxes, selecting the bounding boxes that match
the ground truth boxes according to predefined thresholds. Similarly, in Yolov8s, the
Task-Aligned Assigner and GFL’s Dynamic Soft Label Assigner first eliminate unsuitable
bounding boxes based on whether their center points fall within the ground truth boxes.
They then compute the alignment scores for each bounding box by combining the classifi-
cation scores and IoUs. The Task-Aligned Assigner assigns a fixed number of bounding
boxes to each ground truth target, whereas the Dynamic Soft Label Assigner adaptively
determines the number of bounding boxes by selecting and summing the Top-K alignment
scores for each ground truth target, making it more flexible.

For NMS, the process starts by selecting the bounding box with the highest confi-
dence score from all of the candidate boxes. The IoU is then calculated between this
highest-confidence box and the remaining boxes. Bounding boxes with an IoU exceeding
a predefined threshold are removed. This process of selecting the highest-confidence box
and recalculating the IoU is repeated until no bounding boxes remain.

From a procedural standpoint, as illustrated in Figure 4, we categorize the workflow
into four stages: Pre Process, Alignment, Dynamic Sampling, and Sorter:

• Step 1. Pre Process: This step involves extracting the bounding box with the highest
confidence or verifying whether a bounding box’s center point is within the ground
truth boxes. To be detailed, as shown in Figure 4, the light green background represents
the Pre Process stage, where the input is data related to the bounding boxes, and the
output is qualified bounding boxes that have undergone classification and confidence
judgment and whose centers have been determined. The core element is the Pre
Process Engine.

• Step 2. Alignment: This step calculates the IoU between the bounding boxes and the
ground truth. Both the Task-Aligned Assigner and the Dynamic Soft Label Assigner
additionally compute the alignment scores by integrating the classification values
with the IoUs. As shown in Figure 4, the light pink background represents the
Alignment stage, where the input includes the coordinate and category information
on the qualified bounding boxes, as well as the coordinate and category information
on the ground truth. Possible outputs include the IoU matrix and the alignment score
matrix constructed based on the qualified bounding boxes and the ground truth. The
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core elements are the IoU Engine, the Score Engine, the and Cost Engine, with the
IoU Engine responsible for calculating the IoU matrix, the Score Engine responsible
for calculating the classification score matrix, and the Cost Engine responsible for
calculating the alignment score matrix.

• Step 3. Dynamic Sampling: This step determines the number of bounding boxes
corresponding to each ground truth target, a requirement specific to the Dynamic Soft
Label Assigner based on its alignment scores. In Figure 4, the light yellow background
represents the Dynamic Sampling stage, where the input is the alignment score matrix,
and the output is the maximum number of bounding boxes that each ground truth
can be assigned to. The core element is the Top-K Sampling Engine, used only for the
Dynamic Soft Label Assigner.

• Step 4. Sorter: This final step involves sorting and selecting the bounding boxes
based on the IoU matrix or the alignment score matrix. In Figure 4, the light blue
background represents the Sorter stage, where possible inputs include the IoU matrix,
the alignment score matrix, and the number of bounding boxes that each ground truth
can be assigned to, with the output being the assignment of the bounding boxes to
each ground truth or true target.

Figure 4. Unified implementation process for post processing algorithms.

Figure 5 illustrates the re-expression of the four types of algorithms within a unified
workflow. The orange boxes highlight the enabled steps, while the light blue arrows indicate
the flow of data.

• NMS: In the Pre Process stage, NMS identifies the bounding box with the highest
confidence score. During the Alignment stage, it calculates the IoU between the
selected bounding box and the remaining ones. In the Sorter stage, the IoUs are sorted,
and the bounding boxes are filtered based on predefined IoU thresholds. This iterative
process continues until no bounding boxes remain.

• Max IoU Assigner: This algorithm filters the bounding boxes based on the confidence
in the Pre Process stage. It then computes the IoU matrix between the bounding boxes
and the ground truth boxes in the Alignment stage. In the Sorter stage, the IoUs are
sorted and used to filter the bounding boxes according to the IoU thresholds, mapping
each bounding box to its corresponding ground truth box.

• The Task-Aligned Assigner: In the Pre Process stage, this algorithm filters the bound-
ing boxes based on confidence. The Alignment stage involves calculating the IoU
matrix and the alignment score matrix. During the Sorter stage, the alignment scores
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are sorted, and bounding boxes are selected based on a fixed number of boxes per
ground truth target, mapping them accordingly.

• The Dynamic Soft Label Assigner: This method filters the bounding boxes based on
the confidence in the Pre Process stage. It calculates the IoU matrix and the alignment
score matrix, using both the classification and IoU results, during the Alignment
stage. The number of allowable bounding boxes per ground truth target is determined
based on the alignment scores in the Dynamic Sampling stage. In the Sorter stage,
the alignment scores are sorted, and bounding boxes are selected according to the
number required for each ground truth target, effectively mapping them to the ground
truth boxes.

Based on our analysis of the post processing algorithms, we propose a unified algo-
rithmic workflow. By investigating the implementation details and characteristics of each
algorithm, we examine their specific functionalities within this unified framework. This
approach establishes a solid foundation for the hardware design.

Figure 5. Re-expression of post processing algorithms in a unified implementation process.

3.2. Redundancy Analysis of Post Processing Algorithms

Both the training and inference post processes involve extensive IoU calculations. The
IoU calculation involves computing the areas of two bounding boxes, A and B, and their
overlapping region. The IoU is then defined as the ratio of the overlapping area to the total
area covered by both bounding boxes, as expressed by Equation (1). Here, Equation (2)
calculates the area SA of A based on the width wA and height hA of A, Equation (3)
calculates the area SB of B based on the width wB and height hB of B, and Equation (4)
marks the overlapping area of A and B as Scross. Each IoU calculation requires three
multiplications and one division. Consequently, optimizing the IoU calculation is crucial
for efficiency. Unlike the methods proposed in [56,57], which simplify the IoU calculation
to reduce the number of multiplications and divisions, our approach retains the standard
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IoU computation. This choice ensures the accuracy of the alignment scores and maintains
the algorithm’s generalizability in the training post process.

IoU =
Scross

SA + SB − Scross
(1)

SA = wA × hA (2)

SB = wB × hB (3)

Scross = SA ∩ SB (4)

In post processing algorithms, IoU calculations are performed either between different
bounding boxes or between bounding boxes and ground truth boxes. As depicted in
Figure 6, the volume of such IoU calculations in post processing can reach the order of
millions. Given the previously discussed principles of post processing, these calculations
often involve redundancy. Consequently, eliminating redundant IoU calculations can
significantly reduce the system’s overall power consumption and improve its accelera-
tion efficiency.

Figure 6. Operator count statistics for post processing algorithms.

In standard post processing algorithms, a substantial number of IoU calculations are
performed between bounding boxes of different classes or between bounding boxes and
ground truth boxes of different classes. However, many of these IoU calculations do not aid
in the selection process. To address this inefficiency, distinguishing bounding boxes by class
through a prior classification step can be advantageous. Unlike the approach taken in [64],
our method incorporates classification before performing the IoU calculations. Specifically,
this classification strategy is applied after confidence filtering or bounding box qualification
but prior to the IoU computation.

3.3. Redundancy Optimizations for Post Processing Algorithms

Employing early classification prior to computing the IoUs can significantly reduce
the number of redundant IoU calculations. For instance, in the inference phase, as depicted
in Figure 7, the object detector’s classification head generates eight bounding boxes, ne-
cessitating pairwise IoU calculations. This results in a total of 64 IoU computations. By
incorporating early classification and limiting the IoU calculations to bounding boxes of the
same class, the number of required IoU computations is reduced to 22. Consequently, this
approach decreases the total IoU calculations to 34.4% of the original amount. Similarly,
during the training phase, if 8 bounding boxes are returned and need to be matched with
5 ground truth boxes, the number of IoU calculations would otherwise total 40. However,
with early classification, this number is reduced to 13, which is 32.5% of the original number.
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Figure 7. IoU calculation before and after classification: (a) classification settings for 8 boxes and
5 GTs, with categories A, B, and C. (b) In NMS inference, the IoUs are calculated between all boxes
initially (64 calculations) but only within the same category after classification (22 calculations). (c) In
Faster-RCNN training, the IoU is calculated between each box and GT initially (40 calculations) but
only for the same category after classification (13 calculations).

In contrast to [56,57], our approach, consistent with several other studies, retains the
confidence filtering in the NMS algorithm and preserves the bounding box center point
position checking in the post processing phase. Despite incorporating early classification,
we have not modified the post processing algorithms. Instead, we have reduced the
redundant calculations by leveraging early classification.

4. Accelerator Framework Design
4.1. Overall Framework Design of the Accelerator

Based on the previous analysis of the uniformity and redundancy in the post process-
ing algorithms, we identify that the post processes can be effectively structured into four
key stages: the Pre Process, Alignment, Dynamic Sampling, and Sorter.

We propose a hardware accelerator architecture for the post processes, as illustrated
in Figure 8. The system consists of a CPU for managing the read/write control registers,
a DMA for transferring data to BRAM, BRAM which supplies data to the accelerator IP,
the post processing accelerator IP, and a bus system for control and data transfer. The
post processing accelerator IP is designed to implement the four stages: the Pre Process,
Alignment, Dynamic Sampling, and Sorter. Control signals are utilized to identify whether
the algorithm is in training or inference mode. In training mode, additional differentiation
is made among the Max IoU Assigner, the Task-Aligned Assigner, and the Dynamic Soft
Label Assigner. Data pathways are selected through enabling mechanisms, as depicted in
Figure 5.

In our design, the data width is set to 8 bits, primarily because the precision loss during
post processing is considerably less significant compared to that in the feature processing
network layers. Consequently, this choice does not markedly affect the final detection
accuracy, with an observed average accuracy loss of only 0.02%. We process 8 ground truth
boxes and 64 bounding boxes in a single pass. The input data comprise two coordinates for
each GT, center point coordinates, width and height dimensions for each bounding box,
and the category data and confidence scores for each box. These data are written to the
corresponding BRAM write ports via DMA, while the read ports of BRAM supply data to
the post processing accelerator IP.
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Figure 8. Hardware accelerator architecture for training and inference post processes: Blue arrows
show data flow direction. Labeled arrows (YOLOv8s, GFL, Faster-RCNN, and NMS) relate to these
algorithms. Unlabeled arrows are unrelated to any of the four algorithms.

4.2. The Design of the Hybrid Bitonic Sorter

The Top-K Engine and the Full Sorter within the post processing accelerator (shown
in Figure 8) all require sorting. In this paper, we propose an innovative hybrid sorting
approach based on bitonic sorters. During the merge phase of bitonic sorting, the ascending
and descending subsequences can be utilized to pinpoint the maximum values. Moreover,
leveraging the known order relationships within these subsequences, a comparator tree
can efficiently determine the Top-2 and Top-3 maximum values. This approach allows us to
replace the traditional sorting phases with a comparator tree, thus minimizing unnecessary
sorting operations and facilitating faster retrieval of the Top-K data. Our sorter design
features a fundamental unit comprising a 32-input sorter, capable of managing up to
16 Top-K elements, as demonstrated in Figure 9.

Figure 9. Hybrid bitonic sorter. An ascending subsequence and a descending subsequence (each
containing 8 elements) obtained through the merge phase can be used to determine the Top-1 element
by comparing the maximum values of the two subsequences. The Top-2 element can be found by
comparing the second largest values in both subsequences, excluding the Top-1 element.

4.3. The Design of the Pre Process Submodule

As illustrated in Figure 10, the bounding boxes are derived from different ratio layers
centered at various points (denoted as × on the left side of Figure 10). By sliding across the
image frames (i.e., moving × from left to right as shown), the number of bounding boxes
that needs to be compared or filtered can be significantly reduced. This method is effective
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because a bounding box in the bottom-right corner of the image is unlikely to overlap with
one in the top-left corner. Moreover, this approach tends to group bounding boxes near the
same center point into a limited number of categories, thereby facilitating the formation
of clusters of bounding boxes within the same class. We utilize this sliding technique for
bounding boxes around the input center points in our approach.

Figure 10. The design of the Pre Process submodule.

In the Pre Process submodule, the data path varies according to the algorithm type, as
depicted in Figure 10. The input to the Pre Process submodule can come from bounding-
box-related data in both the YOLOv8s training post process and the GFL training post
process, as well as from the NMS and Faster-RCNN training post process. For the former,
the data are processed in the Box Center Check to determine whether the bounding box’s
center point lies within the ground truth box. Here, x, w, y, and h represent the x-coordinate
of the ground truth center point, the ground truth’s horizontal width, the y-coordinate of
the ground truth center point, and the ground truth’s vertical height, respectively. xl, xr,
yb, and yu represent the left x-coordinate, right x-coordinate, bottom y-coordinate, and top
y-coordinate of the ground truth, calculated based on x, w, y, and h. xc and yc represent the
x-coordinate and y-coordinate of the bounding box’s center point, respectively. The output
results are entered into the Trace Table’s inout column—for example, 1 , where 1 indicates
that the bounding box’s center point is within the ground truth, and 0 indicates it is not.
For the latter, the bounding box’s confidence is filtered using the Box Confidence Filter
using a confidence threshold, and the results are filled into the filter column of the Trace
Table—for example, 1 , where 1 indicates confidence above the threshold, and 0 indicates
confidence below the threshold. Subsequently, all four algorithms proceed to Classification,
where they are categorized using a classification tree. For example, both 2 and 2 send the
probability of each category for qualified bounding boxes into Classification, and the results
are written into the Trace Table, such as 3 and 3 , which record the category judgment
results into the corresponding class column of the Trace Table. With this, the Pre Process
for the post processes of YOLOv8s, GFL, and Faster-RCNN training is complete, and the
Trace Table can be passed on to the Alignment submodule. NMS, however, still needs to
send bounding boxes of the same category to Box Confidence Top-1 to obtain the bounding
box with the highest confidence for each category, such as box5 and box7, these being the
bounding boxes with the highest confidence in the first and third categories, respectively,
and then passing the identifier and the Trace Table to the Alignment submodule. The Top-1
Sorter with confidence still employs the classification tree. Figure 11 shows the circuit
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implementation of the corresponding key modules. Data Supply provides the input data
for the four algorithms. Yolov8s and GFL use the Box Center Check to calculate xr, xl, yu,
and yb, comparing them with xc and yc. Three AND gates determine whether the GT box
contains the center point (xc, yc). Faster-RCNN and NMS employ the Box Confidence Filter
to compare conf with the threshold, outputting filter=1 if conf exceeds this threshold. The
Classification and Box Confidence Top-1 modules share multiple 32-input comparator trees.
The first input port is linked to Module A and the other 31 ports to Module B. To handle
cases with over 32 comparison objects and find the maximum value, the current round’s
maximum value is re-input into the first port for subsequent rounds until all objects are
compared. Module A uses a counter and a priority arbiter to decide between re-inputting
the previous round’s maximum or a new comparison object (new conf/new cls) into the
first port. Module B decides between inputting the remaining or new comparison objects
(conf/cls or new conf/new cls) into the other 31 ports using counters and priority arbiters.

Figure 11. The circuit implementation of the Pre Process submodule.

4.4. The Design of the Alignment Submodule

As shown in the left part of Figure 12, the data flow within the Alignment submodule
differs based on the algorithm used. Taking the training post processes of YOLOv8s and
GFL as examples, in the IoU Engine, the GT coordinates for class 1 and class 3 serve as one
input for the IoU calculation, while the other input comes from the coordinates of bounding
boxes of the same class, thereby obtaining the IoU between the GT and the bounding boxes.
Subsequently, in the Score Engine, the category of the bounding box is input to obtain
the cross-entropy category score. Due to the computational complexity of the logarithmic
operations in the cross-entropy function, a lookup table is utilized within the module for
this calculation. Following this, in the Cost Engine, the alignment score for GFL is derived
by summing the classification score and the IoU. For YOLOv8s, the alignment score is
obtained by multiplying the classification score and the IoU after applying a power function
with an exponent of 1, which does not significantly affect the model’s accuracy. Finally, GFL
sends the alignment score to the Dynamic Sampling submodule, while YOLOv8s sends
the alignment score to the Sorter submodule. In contrast, for NMS and Faster-RCNN’s
training post process, the Score Engine and the Cost Engine are not required. NMS uses the
coordinates of the highest-confidence bounding boxes output by the Pre Process submodule
as one input for IoU calculation, with the other input being the coordinates of the other
bounding boxes of the same class. Faster-RCNN, on the other hand, uses the GT coordinates
for class 1 and class 3 as one input for the IoU calculation, with the other input coming from
the coordinates of bounding boxes of the same class, thereby obtaining the IoU between
the GT and the bounding boxes. The IoU obtained from NMS and Faster-RCNN’s post
processes through the IoU Engine is directly sent to the Sorter submodule. As shown in
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the right part of Figure 12, the IoU Unit, essential for all four algorithms, calculates areas
S1 and S2 from the dimensions of two bounding boxes, determines the overlap area’s
dimensions (∆h and ∆w), and computes the overlap area Scross. The IoU is then calculated.
Yolov8s and GFL use the Score Engine to find scores in the LUT based on class probabilities.
Yolov8s employs the Cost Engine for element-wise multiplication, while GFL performs
element-wise addition, with the selection paths controlled by enable signals.

Figure 12. The design and circuit implementation of the Alignment submodule.

4.5. The Design of the Dynamic Sampling and Sorter Submodules

As shown in the left part of Figure 13, the Dynamic Sampling submodule is exclusively
used for the training post process in GFL. The alignment scores between each bounding box
and ground truth (i.e., the Cost Table) are obtained from the Cost Engine of the Alignment
submodule. These alignment scores are then processed by the Top-K Engine and the Sum
Engine within the Dynamic Sampling module, as shown in Figure 8, yielding the results
presented in the blue table of Figure 13. The Top-K Engine first selects the top-K maximum
cost values between the ground truth and the bounding boxes, and then the Sum Engine
calculates the Sum values for each gt in the blue table in Figure 13. For example, for gt1,
the top-K maximum numbers are only 0.8 and 0.3, so they sum up to 1.1, and thus the Sum
for gt1 is filled with 1.1. To determine the maximum number of bounding boxes, Num, that
can be assigned to each gt, a decision is made based on whether the decimal part of the
fixed-point number is zero—if it is zero, the integer part is taken, such as 1.0 being taken as
1; if it is not zero, the integer part is incremented by one, such as 1.1, where the integer part
is incremented by one to get 2. This result is stored in the buffer of the Dynamic Sampling
submodule and subsequently passed to the Sorter submodule.

Figure 13. The design and circuit implementation of the Dynamic Sampling and Sorter submodules.
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For the Sorter submodule, the inputs vary among the four types of algorithms. For
GFL, the number of boxes, Num, corresponding to each gt and the Cost Table is used as
the input, with boxes being assigned to the appropriate gt through the Top-K Engine; for
YOLOv8s, the Cost Table is used as the input, and boxes are assigned to the appropriate gt
through the Top-K Engine; for Faster-RCNN and NMS, the IoU Table is used as the input.
For Faster-RCNN, boxes are assigned to the appropriate gt using the Top-K Engine, while
for NMS, the most suitable boxes for representing the true targets are selected through
the Full Sorter and the Threshold Filter. Taking GFL as an example, gt1, gt2, and gt3 are
allowed to be assigned up to 2, 1, and 2 boxes, respectively. Therefore, gt1 can initially be
assigned to box1 and box5; gt2 can be assigned to box1 (box5, due to its large cost value
and the fact that gt2 can be assigned to at most one box, is not assigned to gt2, which is
referred to as the allocation failure using Top-K in training or using a filter in NMS); and
gt3 can be assigned to box4 and box7. Since the same box cannot be assigned to two gts, gt1
and gt2 compete for box1. According to the principle of the smallest cost, gt2 obtains box1,
and gt1 loses its box1 (this is referred to as the allocation failure using Top-K in training
after horizontal allocation). The same applies to YOLOv8s and Faster-RCNN. For NMS, the
Full Sorter first completes the IoU sorting between each high-confidence box and the other
boxes within the same category, and then the Threshold Filter removes the bounding boxes
above the IoU threshold. As shown in the right part of Figure 13, the Data Supply feeds
the data, with Yolov8s and GFL needing the cost and NMS and Faster-RCNN using the
IoU. GFL determines the max bounding boxes per gt via Round Sum. The Top-K Engine
employs a hybrid bitonic sorter, and the Full Sorter uses a bitonic sorter. The Threshold
Filter adapts the Box Confidence Filter from Figure 11, applying the IoU threshold and
using the IoU input instead of confidence.

5. Experiments and Result Analysis
5.1. The Experimental Setup

We deployed the solution on the ZCU102 platform. Vivado was used to build the IPs
and SoCs, and the Vitis SDK qA utilized to implement the post processing algorithms.

For the IP design and SoC construction, we used the Xilinx Central DMA IP for the
data transfer and the Xilinx AXI BRAM Controller for memory management. Radix-8 Booth
multipliers replace simple Verilog multiplications, using shift and add operations. The post
processing accelerator is an AXI Slave module connected via AXI Interconnect, configured
by the CPU for NMS, Faster-RCNN, Yolov8s, and GFL. The FPGA resource constraints
limit the parameter configurability for GFL and Yolov8s, allowing only specific parameters.
However, the system remains software-programmable.

For algorithm implementation, the Vitis SDK implements the post processing al-
gorithms in CNN object detection. Data are exported from PyTorch-based CNN layers
using the print API, written to the main memory using Vitis SDK’s write commands, and
loaded into the accelerator using read commands. During acceleration, the post process-
ing algorithms are managed with write and read commands for the registers to ensure
accurate computations.

In terms of the data distribution and memory mapping, the accelerator’s memory
space allocates separate address spaces to the confidence, coordinates, and classes of the
bounding boxes and ground truths. Storing them as intact units maintains their integrity,
simplifying memory management and data access. Consecutive storage of these values
streamlines the data retrieval and optimizes the acceleration performance.
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5.2. Redundancy Result Analysis

By employing the priorities of CTC-C and CPC-C, we effectively reduce redundant
calculations. As shown in Figure 14, we assess the impact of classification on the redun-
dancy reduction using the COCO dataset. Applying the priority of CTC-C and CPC-C
alone reduces the total number of bounding boxes to 12.9% and 11.9% of the original counts
(original), respectively. Furthermore, incorporating classification further reduces the maxi-
mum number of bounding boxes per category (the maximum reduction in the category)
to between 4.4% and 19.1% of the original number (original). These results confirm the
effectiveness of our methods.

Figure 14. Analysis of reducing redundant bounding boxes using priorities of CTC-C and CPC-C.

5.3. Analysis of the Results for Sorter Optimization

We conduct a comparative analysis of several sorting algorithms, focusing on the
sorting cycles and resource utilization. Figure 15 presents a comparison of the resource
consumption between our proposed sorter and other existing sorters. Notably, parallel
bubble sorting exhibits substantially higher resource requirements. In contrast, our pro-
posed sorter maintains a moderate level of resource usage, demonstrating more efficient
use of resources.

Figure 15. Comparison of resource utilization between our proposed sorter and existing sorter solutions.

Table 3 presents the cycle data, which detail the number of cycles needed for full
sorting, finding the maximum value among 32 elements, and identifying the top 16 val-
ues among 32 elements. Although parallel bubble sorting demonstrates shorter sorting
cycles, it requires substantial hardware resources due to its complexity. In contrast, our



Information 2025, 16, 63 18 of 23

proposed sorting solution uses only a modest amount of additional resources for Top-K
element extraction compared to a basic bitonic sorter. When evaluating both the resource
consumption and cycle efficiency, our proposed sorting solution offers a well-balanced
performance across all of the compared schemes.

Table 3. Comparison of sorting cycles between our proposed sorter and existing sorting solutions.

Sorter Sorter Type Cycle

Parallel Bubble Sorter Bubble Sorter 7, 7@32:1, 7@32:16

2023-TCAD [68] Insertion Sorter 261, 261@32:1, 261@32:16

Bitonic Sorter Bitonic Sorter 21, 21@32:1, 21@32:16

2023-TCASI [66] Bitonic Insertion Sorter 106, 15@32:1. 106@32:16

Ours Hybrid Bitonic Sorter 21, 15@32:1, 21@32:16
Note : In the context of cycle data, 7, 7@32:1, 7@32:16 represent the number of cycles required for full sorting,
selecting the top-1 out of 32, and selecting the top-16 out of 32, respectively.

5.4. Analysis of the Results for the Post Processing Accelerator

We compare the performance, power, and resource usage of various post processing
accelerators within the same dataset, as detailed in Table 4. In Table 4, the variations
among the compared items are due to the types of sorters, with the hardware architecture
differing only in the sorter implementations. The power data are directly derived from
the power results provided by Vivado for the specified simulation activity files after the
implementation, which include static power and dynamic power. Our proposed hybrid
bitonic sorter achieves performance improvements of up to 1.25 times and no less than
1.05 times compared to that of the solution presented in [66]. Relative to the original bitonic
sorter, our implementation provides faster post processes for both inference and training.

Table 4. Comparison of performance between our proposed sorter and existing sorting solutions.

2023-TCAD [68] Bitonic Sorter 2023-TCASI [66] Ours

Sorter Type Insertion Sorter Bitonic Sorter Bitonic Insertion Sorter Hybrid Bitonic Sorter

Frequency (MHz) 200 200 200 200

Time (ms)

0.416@F 0.252@F 0.309@F 0.248@F
0.208@G 0.184@G 0.193@G 0.182@G
0.206@Y 0.186@Y 0.193@Y 0.187@Y

0.388@F-NMS 0.255@F-NMS 0.304@F-NMS 0.253@F-NMS
0.220@G-NMS 0.192@G-NMS 0.202@G-NMS 0.190@G-NMS
0.210@Y-NMS 0.188@Y-NMS 0.196@Y-NMS 0.186@Y-NMS

Static Power (W) 0.222 0.218 0.228 0.216

Dynamic Power (W) 2.806 2.010 3.512 2.105

LUT 204,200 158,329 351,365 166,417

FF 154,203 135,901 181,732 136,652

F denotes Faster-RCNN, G denotes GFL, and Y denotes Yolov8s in the training post process. F-NMS denotes Faster-
RCNN’s NMS, G-NMS denotes GFL’s NMS, and Y-NMS denotes Yolov8s’s NMS in the inference post process.

Due to the differing degrees of redundancy among the various solutions, we evalu-
ate the effectiveness of the redundancy reduction across different algorithms using our
proposed accelerator scheme. Table 5 shows the differences in the types of redundancy op-
timization algorithms, with the overall hardware architecture remaining the same across all
items. Our solution provides a maximum speedup of 1.19 times and a minimum speedup
of 1.10 times.
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Table 5. Comparing different redundancy schemes on our proposed post processing accelerator.

2023-TCASII [63] 2024-TReTS [64] Ours

Confidence Threshold Checking in Inference X X X

Box Center Position Checking in Training X X X

Classification Priority × * X

Frequency (MHz) 200 200 200

Time (ms)

0.295@F 0.272@F 0.248@F (1.10×)
0.217@G 0.214@G 0.182@G (1.18×)
0.209@Y 0.212@Y 0.187@Y (1.13×)

0.368@F-NMS 0.287@F-NMS 0.253@F-NMS (1.13×)
0.228@G-NMS 0.226@G-NMS 0.190@G-NMS (1.19×)
0.209@Y-NMS 0.209@Y-NMS 0.186@Y-NMS (1.12×)

X indicates that this work supports the technology. × indicates that this work does not support the technology.
* Classification is typically prioritized after the IoU calculation, which leads to redundant IoU computations
between regression boxes of different classes. Note: The meaning of the data highlighted in red is the ratio of
“2024-TReTS” to the corresponding items in “Ours”—for example, 0.272 divided by 0.248 equals 1.10.

Table 6 compares our approach with recent studies. Notably, our work is among the
few that retrieve data from DDR and load it onto the accelerator while adhering to the
official bounding box specifications. We considered two modes: IP simulation, assuming
data are always available in the accelerator, and DMA transfer from DDR, aligning with
system testing. Our solution achieves at least a 7.55× speedup in NMS using DDR. For the
IP simulation alone, it offers greater acceleration, especially with many candidate boxes.
Compared to systems using an RTX 2080 Ti, our solution provides at least a 21.93× speedup
in the training post process and 19.89x in the inference post process.

Table 6. Comparison with other post processing accelerators.

2020-ISVLSI [69] 2021-ICCE [59] 2022-DATE [58] 2023-FPT [61] Ours

Support Train × × × × X

IoU Accuracy Expression X X X X X

Testing Mode IP Simulation Data From DDR IP Simulation IP Simulation Data Fetched by DMA From DDR IP Simulation

Frequency (MHz) 100 - 400 150 200

Time (ms)

0.248@F 0.080@F
0.182@G 0.014@G

0.032@NMS 1.91@NMS 0.05@NMS 0.014@NMS 0.187@Y 0.015@Y
5.19@NMS 0.253@F-NMS 0.083@F-NMS

0.190@G-NMS 0.022@G-NMS
0.186@Y-NMS 0.017@Y-NMS

Box Number
22,000@F

3000 - 1000 2880 8400@G
6300@Y

Selected Boxes 5 11/48 5 24 10

Platform ZYNQ7-ZC706 ZCU106 Gensys2 Virtex7 690T ZCU102

LUT - - 14,188 26,404 166,417

FF 11,139 - 2924 21,127 136,652

LUTRAM 714 - 7504 2 0

DSP 22 - - 450 0

X indicates that this work supports the technology. × indicates that this work does not support the technology.
- indicates that data cannot be obtained.
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6. Conclusions
This paper provides a detailed analysis of the training and inference post processes,

accelerating the algorithms from a software–hardware co-design perspective. On the
software side, we introduce the priorities of CPC-C and CTC-C to address the inefficiency
of the IoU calculations, design a hybrid bitonic sorter to reduce the number of redundant
comparisons, and unify four post processing algorithms. On the hardware side, we have
designed a hardware accelerator for these post processing algorithms.
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