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Abstract: Remote assistance for highly automated vehicles (HAVs), i.e., third-party assis-
tance from support staff outside the vehicle in times of the need for assistance, presents a
solution to extend the capabilities of HAVs by integrating a third party for decision making
in uncertain situations. Similar to other control center positions, we expect the remote
assistance tasks to exert high mental demands on the human operators. Therefore, we
assessed impact of elevated mental workload during HAV remote assistance in a controlled
environment in a user study (N = 37) with the goal of identifying cues to differentiate work-
load levels based on eye-tracking-related, skin conductance, and cardiovascular indicators.
The results provide evidence that (A) elevated workload induced via a secondary task
depreciates performance, and (B) we can identify workload levels person-independently
as differences in tonic skin conductance (F(2,72) = 24.538, p < 0.001, partial η² = 0.405) and
pupil dilation (F(2,72) = 13.872, p < 0.001, partial η² = 0.278), resulting in a classification
accuracy of 58% in a three-class classification task. The results provide evidence that we are
able to differentiate operator workload during remote assistance in a time-resolved way
with the ultimate goal to provide adaptations to counteract task deficiencies.

Keywords: remote operation; autonomous vehicles; remote assistance; user state monitoring;
mental workload; physiology; eye tracking

1. Introduction
Despite advances in automated driving technologies, it will likely still take several

years until fully autonomous vehicles (SAE level 5 [1]) will populate our roads in large
quantities. Yet, technology is expected to soon mature to render SAE level 4 vehicles a
reality. Such vehicles can drive autonomously in defined operational design domains but
may reach their system’s limit at certain times due to different external or internal events.
In these cases, level 4 vehicles should be able to transition to a safe state for passengers and
freight without human intervention (e.g., in case of obstacles, adverse weather conditions,
or dirty sensors). However, in order to continue a ride after such safety maneuvers, input of
a human may often be necessary. Recent legal changes in some countries (e.g., Germany [2])
enabled vehicle operation concepts in which this human fallback operator does not have to
be in the vehicle itself but may act from a remote operation center. In this way, one person
may take care of several vehicles of a fleet, resulting in a lower number of operators needed,
which may be beneficial given the current and expected future shortage of professional
human drivers in public transport and logistics.

In principle, remote operation of vehicles can be realized in two different ways: as
remote driving or remote assistance [1,3]. Remote drivers actually steer the vehicle from a
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distance via standard interfaces, such as the steering wheel, throttle, and brake, in real time,
whereas remote assistants rather provide high-level guidance to deal with certain situations,
such as setting waypoints or giving clearance [1,3]. At the moment, the current legislation
in Germany only permits remote assistance as an implementation for remote operation
of highly automated vehicles on public roads [2]. Since workplaces for remote assistance,
unlike those for remote driving, will likely not at all resemble the vehicle cockpit, these
have only been conceived recently [4,5], and little is known about the actual challenges of
remote operation in practice. A recent overview paper [6] compiled a list of human-factor
challenges that arise when implementing remote operation. One crucial human-factor
issue is to design the human–machine interface, including the information management in
the workplace, in a way that the remote operator’s mental workload is kept in an optimal
range. Mental workload can be seen as the relationship between the mental demands
placed on an operator and their capacity to deal with these (e.g., [7,8]). For optimal task
completion, avoiding phases of too high or too low a workload is desired because these
often come along with performance degradation (for a review, see [7]). Analyses of similar
tasks in control rooms like air traffic control have supported this claim. For instance, a
recent survey study with professional air traffic controllers investigated operator states
with potential negative effects on task engagement [9]. The study’s result listed different
states of degraded engagement that result from different levels of workload as potential
threats to efficient and safe operation. These include inattentional deafness and blindness,
overload, and perseveration (high workload) as well as task-related and task-unrelated
mind wandering (low workload) [9]. The authors of [6] proposed that one approach to
balance the remote operators’ workload is the design of workload-adaptive interfaces
that adjust the task allocation and information presentation to the operator based on their
momentary workload level. Integrating workload-adaptive human–machine interfaces
in the remote assistance workstation could therefore help to avoid phases of low or high
workload. This measure could make the workplace of remote assistants safer and less
stressful and thus make an important contribution to increasing the efficiency and safety
of level 4 vehicles in various scenarios. Still, in order to design such workload-adaptive
user interfaces, a better understanding of remote operators’ mental workload is needed.
Especially, research on potential indicators for the operators’ mental workload that can be
recorded and interpreted during task execution is needed.

Up to the present day, to the best of the authors’ knowledge, there are no studies
on indicators for the mental workload of operators in the context of remote assistance
for highly automated vehicles (HAV). From a human factors perspective, when assessing
mental workload in workplaces, it is desired that the methods for assessing the workload are
as little task-invasive as possible, meaning that they should not hinder the remote assistant
in the task completion. Hence, sensors are most suitable if these are either contactless
or wearable without restricting the freedom of movement of the operator at his or her
workplace. Theoretical considerations as well as earlier studies from similar task settings
imply that eye-tracking-related, skin conductance, as well as cardiovascular indicators
have the potential to be used for assessing mental workload (e.g., [10–14]). Generally,
we can identify three related but separate constructs that might be indicative of overall
experienced workload.

(A) Cognitive load describes the amount of effort extended to process information
and perform tasks. When focusing on demanding tasks, we find that operators reduce
scanning behavior and narrow their focus on selected information sources (often referred to
as cognitive tunneling) [15]. Pupil diameter, fixation duration, as well as fixation dispersion
seem to be relevant indicators for cognitive load (e.g., [16,17]).
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(B) Mental stress is a concept related to regulatory processes that occur when trying to
cope with incoming stressors (such as during work). Stress responses are often associated
with activity of the autonomic nervous system, such as cardiovascular responses and
changes in skin conductance [18,19].

(C) Mental fatigue describes a state of mental exhaustion after prolonged task periods
that require mental effort. Fatigue is related to hypo-vigilance and drowsiness and is
likewise related to ocular activity, such as droopy eyelids or increased blink rate [20–22].

Assessing these indicators satisfies the abovementioned criteria for being not task-
invasive when (cable-free) wearables and cameras integrated into the workstation are used.
A combination of different indicators is advised for the assessment of mental workload [23],
and hence, a combination of indicators as a potential feature space for mental workload
assessment in remote assistance of automated vehicles should be used.

Despite the paucity of research in the field of remote assistance of HAVs, there are
several studies that have explored mental workload assessment based on eye-tracking-
related, skin conductance, and cardiovascular indicators in other contexts. For instance,
recent research revealed that the pupils are more dilated with higher workload in an air
traffic control task [24] or control room operation [25]. Wanyan and colleagues [26] reported
changes in heart rate variability, pupil diameter, and eyelid opening with changing mental
workload levels in a flight task. Furthermore, in a simulated naturalistic driving task, the
skin conductance level was increased at a higher experienced workload [27]. Similarly,
in a simulated driving task, Foy and Chapman [28] reported a higher skin conductance
level as well as changing eye movement patterns with increasing workload during driving.
Unni et al. [29] found that heart rate and heart rate variability, among others, changed
with increasing working memory load in the context of simulated manual driving. These
insights from studies in related domains further outline that a multimodal assessment
of mental workload is necessary because the particular demands of the task (in terms of
cognitive load, mental stress, and fatigue) influence which features are indicative.

Based on the aforementioned considerations, this work has to two research objectives
(ROs). RO1 is to assess whether the effects of increased mental workload during remote
operation manifest as eye-tracking-related, skin conductance, and cardiovascular changes
of the remote assistant and whether we can measure these changes effectively. In order
to do this, we examined a set of candidate indicators from the set of sensors used during
the study and performed a group comparison of them over the relevant task conditions.
Specifically, we utilized pupil dilation, fixation duration, fixation dispersion, eyelid opening,
blink rate, tonic skin conductance level, heart rate, and heart rate variability as candidate
indicators. For addressing RO1, we formulated and tested the following hypotheses:

Hypotheses 1: We can infer the workload level of the remote assistant by observing differences in
eye tracking, skin conductance, as well as physiological indicators. We expect that our indicators
are affected by different levels of mental workload (H1.1—multi-variate relationship). In particular,
with increasing workload, we expect an increased pupil size (H1.2), a prolonged fixation duration
(H1.3), a lower fixation dispersion (H1.4), a lower average eye opening (H1.5), a higher blink rate
(H1.6), an elevated average tonic skin conductance level (H1.7), an increased heart rate (H1.8), as
well as a decreased heart rate variability (H1.9).

RO2 is to build a predictive model on the set of candidate indicators to predict the
condition label that manipulated low, medium, or high workload as a multi-class classifi-
cation task. The performance of the predictive model was evaluated in terms of classifi-
cation accuracy as well as precision and recall for the different classes (low, medium, and
high workload).
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In this study, we used a variant of the well-established n-back task [30] as secondary
task to induce different levels of mental workload. In the n-back task, the participants have
to retain n items in their working memory so that the mental workload increases with a
higher number for n. The task has been used in various studies in different application
domains to induce mental workload (e.g., [29]). This task has the advantage that work
load increases robustly with the number of items to be retained in the working memory.
Therefore, the n-back task is particularly suitable for inducing mental workload in a
controlled fashion.

2. Materials and Methods
2.1. Design

The study was conceptualized as a dual-task study using a 4 (primary task variant:
none plus three different scenarios) × 3 (secondary task difficulty: none, N = 1, N = 2)
within-participants design. The primary task consisted of a set of three prototypical remote
assistance problems that needed to be solved using the user interface of the remote operator
workstation. The secondary task for this study was an auditory n-back task.

The data analysis focusing on eye-tracking, skin conductance, and cardiovascular
indicators of the operator’s workload presented here is part of a larger study. An evaluation
of the design of the operator’s workplace based on the same participant cohort has already
been published (see [5]).

2.2. Participants

Of the N = 41 participants who took part in this study, four had to be excluded due
to technical issues in the data collection process for any of the relevant data sources (only
participants with complete datasets were included in the analysis). Hence, 37 participants
(six female) with an age range from 22 to 31 years (M = 25.9, SD = 2.3) were included
in the data analysis. Of these, 68% had experience in monitoring technical systems (e.g.,
airplanes, automated vehicles, wind channels, agricultural robots, pumps, and machines).
All participants had normal or corrected-to-normal vision. The affinity for technology of
the participants was high (Affinity for Technology Scale, ATI [31]: M = 4.88, SD = 0.5; scale
poles 1: low to 6: high), and all of them possessed a valid driver’s license for passenger
vehicles. All participants had a university or state-certified technician degree in one of
the following disciplines: mechanical, automotive, electrical, aerospace, and aviation
engineering (according to the requirements posed to the Technical Supervisor, the German
equivalent of the RO, as specified in the German Autonomous Driving Act [2]). Most
participants (89%) stated that they drive a vehicle at least multiple times per month, 38%
reported to drive several times a week or more. All participants had heard about HAVs in
the past.

The participants provided written informed consent before starting the study and
were allowed to stop at any time without consequences. They received EUR 25 as financial
compensation for taking part in the study. The study procedure was in accordance with the
Declaration of Helsinki and approved by the institute’s ethics committee.

2.3. Operation Center Simulator

For the study, we used the remote operations center as described and evaluated
in [5]. It consists of seven screens organized in a 2 (row) × 3 (columns) array (six regular
24” computer monitors) with a 24” touchscreen in front (see Figure 1). The screens in the
upper row showed a live view from the supervised HAV (a pre-recorded simulation created
in Unreal Engine for the study). The lower row consisted of a screen displaying details on
the current tasks, a notification screen, as well as a map screen. The operator could interact
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with the respective HAV via the touchscreen, e.g., by giving clearance, setting waypoints,
or selecting alternative routes. A detailed description of the operator workplace can be
found in [5]. For the study, the operator workplace was set up in the IDeE.Lab [32] of the
German Aerospace Center in Braunschweig, Germany.
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Figure 1. Remote operation center simulator together with the study set-up. The tablet on the bottom
right was used for presentation of the secondary task.

2.4. Primary Task

Three different primary task scenarios were used in the study, which were selected
based on a scenario catalog for remote assistants [3]. The scenarios were implemented with
Unreal Engine and extracted as video clips. For an overview of the three scenarios, see
Table 1, and for details, refer to [5].

Table 1. Remote assistance scenarios as primary task for remote assistant (RA).

Scenario Name Description

#1 Detected situation unclear

The supervised HAV detects obstacle
(puddle) and informs the RA. RA has to

assess the situation via the camera view and
give clearance for HAV to continue driving.

#2 Blocked lane

A parking vehicle blocks the lane of the
HAV. HAV stops and informs the RA. RA
analyzes the situation with cameras and

sets waypoints to calculate new trajectory
using the lane for oncoming traffic. RA also

has to provide clearance.

#3 Rerouting

The road on the designated route of the
HAV is closed. RA has to choose a route

from suggested alternatives on
the touchscreen.

2.5. Secondary Task

We used a n-back task as secondary task to trigger different levels of mental workload
for the remote assistant. The participants had to compare a presented item (a digit between
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1 and 9) with the item presented n steps before. It is expected that a higher n induces
higher mental workload because more items have to be maintained in the working memory.
Digits were presented as played audio recordings with an interstimulus interval of 5 s
on a tablet computer, which was not part of the operator workplace. The display of the
tablet gave a visual feedback on the remaining length of the response window to indicate
the remaining time until the next stimulus was played. The participants were instructed
to listen to the sound only and they had to respond verbally by saying “correct” (in case
the items matched) or “incorrect” otherwise. The responses were logged manually by
the experimenter.

2.6. Sensor Set-Up

A stationary infrared camera-based eye tracking system with four cameras (SmartEye-
Pro, SmartEye, Gothenburg, Sweden, 120 Hz sampling rate) was used to record pupil
and gaze data. The different screens of the operator workstation were integrated into the
eye tracker’s world model to reference participants’ gazes with the screens. Physiological
data were recorded using a sensor for electrodermal activity (EDA) (EdaMove4, MoviSens,
Karlsruhe, Germany, 128 Hz sampling rate) on the palm of the left hand and an electrocar-
diogram (ECG) (EcgMove4, MoviSens, Karlsruhe, Germany, 512 Hz sampling rate) placed
on the participants’ chest. Three out of the forty-one participants were left handed. Before
the experiment, we were assured by all participants that they were adept at using a mouse
with their right hand, which was standardized for all participants.

2.7. Measures

Based on the literature on the association between physiological and behavioral pa-
rameters and mental workload, we extracted a set of indicators from the eye tracking, EDA,
and ECG systems. For an overview, of the parameters, see Table 2.

Table 2. Description of collected candidate indicators.

Description Unit Associated with

Eyelid opening Average vertical distance of upper to lower
eyelid between both eyes millimeters Mental fatigue [22]

Blink rate Relative time that participant is blinking percentage Mental fatigue [21]

Pupil diameter Average diameter of pupil in both eyes millimeters Cognitive load [16,17]

Fixation duration Duration of fixation when detected milliseconds Cognitive load [16]

Fixation dispersion Distance between gaze locations during fixation degree Cognitive load [33]

Tonic skin conductance level Cleaned skin conductance level from raw EDA millivolts Mental stress [34]

IBI Inter-Beat Interval between R-waves of
successive heart beats. milliseconds Mental stress [19,34]

RMSSD Root Mean Square of Successive Differences in
IBI, calculated over 1 min intervals milliseconds Mental stress [19,34]

In the beginning, participants filled in a questionnaire on basic socio-demographic
information, frequency of car usage, knowledge about HAVs, experiences with remote op-
eration, as well as the Affinity for Technology Scale (ATI, [31]). After each trial, participants
filled in the NASA Task Load Index (NASA-TLX [35,36]). The NASA-TLX is a widely used
self-report measure for mental workload and assesses the facets mental demand, physical
demand, temporal demand, performance, effort, and frustration on scales from 1 (low) to
21 (high). It has to be mentioned that in the course of the study, participants also filled in
other questionnaires that are, however, irrelevant for our research questions (for details on
questionnaires and results, see [5]).
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2.8. Procedure

Participants were welcomed to the DLR campus, and then, they were guided to
the laboratory by the experimental instructor. In the lab, they were seated at the work
station and had to fill out a form detailing data protection guidelines, participant rights,
agreement on secrecy, and details for the financial reimbursement. After filling out these
necessary forms, they were given a tablet with a link to the abovementioned questionnaires.
Next, participants were introduced to the relevant information on the concept of remote
operations for highly automated vehicles and were introduced to the remote operator
workplace simulator. Then, the physiological sensors were attached. During a short training
phase, participants could work through each primary and each secondary condition in
order to make sure they understand their tasks.

After the training and eye tracker calibration, the recording of physiological and
eye tracking data began. For a participant-specific baseline reading, participants were
instructed first to relax and look at the screen in front of them for approximately 5 min.
Next, participants worked in sequence through each primary task in isolation and then
through each secondary task in isolation (random order each). After this, participants
had to accomplish the primary and secondary tasks in combination in randomized order.
Secondary task blocks always lasted 3 min, while primary task length was variable. On
average, participants took 31.7 s for scenario #1, 50.9 s for scenario #2 and 49.6 s for
scenario #3.

After the experiment, the recording was stopped, and we removed the physiological
sensors, debriefed the participants, and thanked them for volunteering. In total, the
procedure took roughly 2.5 h.

2.9. Manipulation Check

As indication of whether our experimental manipulation to induce mental workload
with the secondary n-back task was successful, we analyzed the data of the NASA-TLX
questionnaire as well as the performance data from the individual participants. In particular,
we compared the NASA-TLX ratings after the three different secondary task conditions
with each other. Moreover, primary task performance (in terms of task completion and task
initiation time) was compared between the three secondary task conditions. Finally, we
compared the secondary task performance between the N = 1 and N = 2 conditions.

2.10. Processing of Physiological and Behavioral Indicators
2.10.1. Preprocessing

In order to prepare the comparison of the eye tracking, skin conductance, and car-
diovascular indicators, all indicators were collected and timestamped on a centralized
server to ensure accurate synchronization. After verifying data quality, we used a light data
pre-processing pipeline for removing missing data points and truncating the timeseries
according to the respective condition blocks. Indicator averages were then collected from
the remaining data in each condition block. Finally, we applied a feature-wise z-scoring to
the truncated timeseries of each subject to normalize the data for the following analysis.

2.10.2. Feature Selection

To determine whether the eye tracking, skin conductance, and cardiovascular indica-
tors varied significantly across the secondary task conditions, we conducted a MANOVA
to determine the multivariate significance of our indicator set (independent variable: sec-
ondary task condition; dependent variables: candidate indicator set according to Table 2).
Then, we ran post hoc univariate ANOVAs for each indicator and post hoc paired t-tests
across conditions for all univariate significant indicators. The set of indicators differing
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significantly between the task conditions were then selected as input for the subsequent
predictive modeling task.

2.10.3. Model Training

Finally, the set of selected features was used as the basis to train a machine learning
model to predict the workload condition. For this, we employed gradient boosting trees
using the XgBoost package [37], as tree-based models do not require a common scaling
of the data, generally work well with tabular inputs, and provide an intuitive measure
of feature importance in the form of leave-split frequencies. We trained this classifier in
a multi-class setting using repeated LOSO–cross-validation, using a validation split and
random search to find the optimal hyperparameter set.

3. Results
3.1. Manipulation Check

An exhaustive overview of the results of the questionnaire data and performance
indicators was already presented in Schrank et al. [5]. The proposed manipulation check
aimed to verify that the task manipulation of the secondary task indeed elicited a higher
subjective experience of the mental load and that the secondary task condition impacted
task performances. The results of the descriptive statistics of reported workload and
performance indices can be found in Table 3. We calculated univariate repeated-measures
ANOVAs to identify the impact of the condition on each index (p-values for workload,
completion time, and initiation time were corrected for sphericity using the Greenhouse–
Geisser correction). The results are found in Table 4. We found a significant effect of the
secondary task condition on the reported task load as well as all performance indices.
Therefore, we considered the manipulation check successful and continued using the
secondary task block conditions no secondary vs. N = 1 vs. N = 2 as proxy for the workload
states low workload, medium workload, and high workload, respectively.

Table 3. Descriptive statistics on task load and performance indices.

No Secondary Task N = 1 N = 2

Subjective mental workload
(NASA-TLX) 6.62 ± 1.9 8.87 ± 2.3 10.49 ± 2.4

Task completion time (in s) 43.874 ± 16.48 40.757 ± 12.69 47.534 ± 18.81
Task initiation time (in s) 6.952 ± 3.71 6.115 ± 2.26 6.021 ± 2.17

Percentage of correct secondary task answers 99.92 ± 0.02 95.1 ± 0.06

Table 4. Results of repeated-measures ANOVAs of the secondary task conditions on task load and
performance indices.

DoF (Nom) DoF
(Denom.) F p-Value Partial η²

Condition~Task load 2 72 86.246 p < 0.001 0.706
Condition~Completion time 2 220 12.306 p < 0.001 0.101

Condition~Initiation time 2 220 4.479 p = 0.02 0.039
Condition~Secondary

performance 2 147 66.555 p < 0.001 0.312

3.2. Feature Selection

An overview on the descriptive statistics for the eye-tracking-related, skin conduc-
tance, and cardiovascular indicators can be found in Table 5. The MANOVA revealed
a statistically significant effect of mental workload on the entire indicator set (Wilk’s
lambda = 0.5358, F(8,323) = 34.9826, p < 0.001). Next, we calculated post hoc univariate
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repeated-measures ANOVAs for each indicator, correcting for multiple comparisons using
Bonferroni correction. The results are presented in Table 6. The analysis revealed statistical
effects for the pupil diameter (F(2,72) = 13.872521, p < 0.001, Partial η² = 0.27816) and tonic
skin conductance level (F(2,72) = 24.538449, p < 0.001, Partial η² = 0.405337) (see also Table 7
and Figure 2).

Table 5. Descriptive statistics on candidate indicators stratified by tasks.

Raw Means z-Scored Means

No Secondary N = 1 N = 2 No Secondary N = 1 N = 2

Eyelid opening 8.68 ± 1.4 8.774 ± 1.3 8.729 ± 1.2 0.117 ± 0.4 0.155 ± 0.4 0.137 ± 0.4

Blink rate 5.456 ± 3.4 5.045 ± 3.0 5.527 ± 3.7 −0.089 ± 0.1 −0.102 ± 0.1 −0.086 ± 0.1

Pupil diameter 3.09 ± 0.3 3.12 ± 0.4 3.201 ± 0.4 0.077 ± 0.3 0.123 ± 0.3 0.23 ± 0.3

Fixation
duration 787.306 ± 413.6 823.952 ± 466.9 815.858 ± 499.5 −0.045 ± 0.4 −0.034 ± 0.3 −0.063 ± 0.3

Fixation
dispersion 0.476 ± 0.1 0.482 ± 0.1 0.471 ± 0.1 0.017 ± 0.1 0.018 ± 0.2 −0.005 ± 0.2

Tonic SCL 26.321 ± 15.1 27.824 ± 14.1 28.18 ± 13.4 −0.165 ± 0.8 0.577 ± 0.6 0.727 ± 0.7

IBI 877.742 ± 103.7 874.51 ± 123.3 854.567 ± 116.8 0.243 ± 0.5 0.207 ± 0.5 −0.013 ± 0.6

RMSSD 45.53 ± 29.2 43.322 ± 20.9 45.361 ± 26.4 0.033 ± 1.0 −0.069 ± 0.8 −0.098 ± 0.9

Table 6. Univariate ANOVAs for each indicator.

DoF (num.) DoF (denom.) F-Statistic Uncorrected
p-Value

Corrected
p-Value Partial η2

Difficulty~Eyelid opening 2 72 0.793612 0.46 1.0 0.021569

Difficulty~Blink rate 2 72 0.932778 0.40 1.0 0.025256

Difficulty~Pupil diameter 2 72 13.872521 6 × 10−6 6 × 10−5 0.27816

Difficulty~Fixation duration 2 72 0.246608 0.78 1.0 0.006804

Difficulty~Fixation dispersion 2 72 0.735317 0.48 1.0 0.020017

Difficulty~Tonic SCL 2 72 24.538449 7 × 10−9 6 × 10−8 0.405337

Difficulty~IBI 2 72 4.351637 0.016 0.13 0.107843

Difficulty~RMSSD 2 72 0.500438 0.61 1.0 0.01371

Using our set of significant univariate indicators, we calculated post hoc pairwise
comparisons between workload conditions, correcting for multiple comparisons across
conditions. The results are shown in Table 7 and visualized in Figure 2. We found significant
differences between no secondary and N = 2 and between N = 1 and N = 2 for the pupil
diameter. For the tonic skin conductance level, we found significant differences between
no secondary and N = 1 and between no secondary and N = 2.
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Table 7. Pairwise two-sided t-tests on conditions of significant features with Bonferroni correction for
multiple comparisons.

Secondary Task
Conditions t-Statistic Uncorrected

p-Value
Corrected
p-Value Bayes Factor Unbiased

Cohen d

Pupil diameter
No

Secondary—
N = 1

−2.042008 0.048 0.14 1.106 −0.247022

No
Secondary—

N = 2
−5.291565 5 × 10−6 1 × 10−5 3833.512 −0.921550

N = 1—N = 2 −4.037813 2 × 10−4 7 × 10−4 108.054 −0.638012

Tonic SCL No
Secondary—N = 1 −5.562489 2 × 10−6 6 × 10−6 8540.83 −1.387125

No
Secondary—N = 2 −6.228975 2 × 10−7 7 × 10−7 6.241 × 104 −1.580610

N = 1—N = 2 −1.554943 0.13 0.38 0.516 −0.342061
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3.3. Model Training

Given our successful manipulation check, we can directly make inferences on the
experimental condition as a proxy to the workload state of the participants. This results in a
multi-class classification problem to be solved. In order to train a predictive model to make
prediction on unseen data sources, we used a repeated nested leave-one-subject-out (LOSO)
cross-validation with an inner-loop for hyper-parameter optimization to train the models.
Then, we calculated confusion matrices and accuracy for each run, and the average of those
yielded our estimate of the predictive power of our model. The parameters considered
for hyper-parameter optimization can be found in Table 8. Across training loops, the
optimal hyper-parameter configuration in the plurality of loops was {min_child_weight = 5,
gamma = 1, colsample_bytree = 1.0, max_depth = 2} (see also Table 8). Figure 3 shows the
results of the model training in the form of a confusion matrix. On average, we were able
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to differentiate between the three conditions with an accuracy of 57.66%. Given that the
class labels are balanced, the baseline accuracy by predicting a random class was 33%. The
precision values for the three classes were 0.66 for “no secondary”, 0.49 for “n = 1”, and
0.57 for “n = 2”. In contrast, the recall values were 0.65 for class “no secondary”, 0.42 for
“n = 1”, and 0.66 for “n = 2”. Using split frequency as a measure of feature importance,
we found that the tonic skin conductance level was the most informative feature (71.34%
split frequency), while the pupil diameter was less informative (28.66% split frequency).
Collapsing the two classes “n = 1” and “n = 2” into a combined “workload” class to create
a binary classification problem resulted in a classification accuracy of 77.17%. The precision
values for the binary classification were 0.66 (no secondary) as well as 0.83 (workload), and
the recall values were 0.65 (no secondary) and 0.83 (workload), respectively.

Table 8. Parameterizations considered for hyper-parameter optimization during training loops.

Feature Name Feature Values

Min_child_weight [1, 5, 10]
Gamma [0.5, 1, 1.5, 2, 5]

Colsample_bytree [0.6, 0.8, 1]
Max_depth [1, 2, 3, 5]
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Lastly, given our trained model pipeline, we can use our trained model to make time-
resolved predictions about the current workload state based on instantaneous predictions.
To do this, we trained a boosting tree model using our set of best hyperparameters on the
full dataset and predicted the time series on each point to annotate each time point with a
predicted workload state. Finally, we used a sliding window approach to aggregate these
predictions on 10 s intervals, yielding an assessment of continuous workload over a longer
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time period. The results of this approach are demonstrated on one exemplary participant
in Figure 4. An exploratory visual analysis of this exemplary participant indicates that
workload tends to be highest at the beginning of task blocks. After some time, habituation
seems to set in.
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4. Discussion
The aim of the presented study was to identify whether we can use changes in eye-

tracking-related, skin conductance, as well as cardiovascular indicators to predict variations
in mental workload via multivariate modeling. In order to do this, we collected self-
assessments, task performance measures, and data from a set of predefined indicators.
These collected data points were compared under various task conditions in a within-
subject design across a variety of remote operator task blocks, during which a secondary
workload-inducing task had to be solved. The results showed that, indeed, participants
reported elevated workload in conditions with a more difficult secondary task, and their
performance on both the secondary task and the remote assistance task decreased. Across
these conditions, we also found that there is a significant multivariate effect on our indicator
set, and we found significant differences for the tonic skin conductance level and the pupil
dilation. Using a multi-class classification model, we were able to predict workload levels
on unseen participants with an average accuracy of 58% with a 33% baseline.

By considering precision and recall for the three classes (low, medium, and high
workload) of our classification problem, we can gain further insights for the application of
the classifier in real workplaces. Practically speaking, we can interpret the results of the
classification task in the following way: If our classifier returns “high workload”, we have
a 57% certainty that the classification is accurate (as opposed to it actually being medium
workload or low workload). If we are only interested in detecting elevated workload versus
low workload (by combining medium and high workload predictions), the classification
certainty when elevated workload is detected rises to 83% (corresponding to a binary
accuracy of 77%). Depending on the required tolerance for a user-adaptive system using
this classifier as a detection system, the behavior of the classifier can be further tweaked
by adjusting the threshold on the classification probability for the active class, thereby
achieving a higher precision at the expense of the total number of detections. This, however,
has to be determined based on the exact purpose of the user interface adaptation and
should therefore be subject for future studies.
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As the focus of this work was to build a predictive model by using the most reliable in-
dicators, our approach was to use a large set of candidate features and then use hypothesis
testing while accounting for multiple comparison to reduce this feature set. With this re-
duced set of indicators, classification accuracy is robustly above chance level. Furthermore,
while no indicator associated with fatigue (blink rate and eyelid opening [21,22]) showed
significant differences across secondary task conditions, this could likely be explained by
the short duration of the experiment in comparison to total time an operator might be
exposed to elevated task load throughout a work day. In order to provide a more accurate
picture of fatigue effects on operator performance, future studies might focus on longer,
repeated experimental task blocks to elicit these more naturally.

The induction of mental workload in this study was accomplished using a very
controlled task, the well-established n-back task [30]. This has the advantage that our
experimental set-up had an experimentally controlled character. However, this comes at
the cost of ecological validity in task execution: Given the variety of tasks with different
tasks requirements foreseen for the remote assistance of automated vehicles [3,4], it is likely
that changes in the workload of the remote assistant will not solely result from changes in
working memory load. Considering reports on indicative features for mental workload
from other domains mentioned in the introduction [24–29], it appears necessary to validate
the revealed findings with workload changes coming from more naturalistic changes in
task demands. Therefore, future work needs to investigate how well the results from the
controlled setting here transfer to more ecologically valid variations of mental workload,
for instance, based on a stronger variety and complexity of tasks, decision points, and
distractors. In addition, it may be worth studying how the effects found here transfer to
other remote operation tasks, like remote driving (e.g., [38]).

For the current study, we employed a set of indicators that can be used with wearables
or remote cameras (installed in the workstation) without task inference for the remote
assistant. To improve the operator state assessment, it could be valuable to also include
functional near-infrared spectroscopy (fNIRS) or electroencephalography (EEG) as further
indicators for mental workload. Such technologies measure signals related to human
cortical activity. With cortical activation patterns, the mental workload can be recorded
directly where it arises, without having to determine it via physiology, which is of course
also subject to the influences of movement, as is the case with the methods used here.
Recent work has shown that EEG and fNIRS are promising for the assessment of mental
workload in different domains (e.g., [29,39–41]). With the development of easier-to-use
sensors for EEG and fNIRS [42–44], it will likely become more realistic that brain activity
may be assessed without disturbing operators in their work.

5. Conclusions
We herein present a study on the effects and assessment of mental workload during

remote assistance of HAVs. Our results indicated that pupil dilation as well as tonic skin
conductance level may provide a relatively lightweight approach to assess mental workload
during remote assistance. Based on such automated detection of mental workload, adaptive
user interfaces for the operator workstation could be realized. These may then adjust the
information management in the human–machine interface or the task allocation between
different operators or the human operator and an automation according to the optimal
operator workload. Future studies should investigate how the results transfer to changes
in mental workload due to more naturalistic task demands.
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