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Abstract: Leveraging Twitter data for crisis management necessitates the accurate, fine-
grained geolocation of tweets, which unfortunately is often lacking, with only 1–3% of
tweets being geolocated. This work addresses the understudied problem of fine-grained
geolocation prediction for Arabic tweets, focusing on the Kingdom of Saudi Arabia. The
goal is to accurately assign tweets to one of thirteen provinces. Existing approaches
for Arabic geolocation are limited in accuracy and often rely on basic machine learning
techniques. Additionally, advancements in tweet geolocation for other languages often
rely on distinct datasets, hindering direct comparisons and assessments of their relative
performance on Arabic datasets. To bridge this gap, we investigate eight advanced deep
learning techniques, including two Arabic pretrained language models (PLMs) on one
constructed dataset. Through a comprehensive analysis, we assess the strengths and
weaknesses of each technique for fine-grained Arabic tweet geolocation. Despite the success
of PLMs in various tasks, our results demonstrate that a combination of Convolution Neural
Network (CNN) and Long Short-Term Memory (LSTM) layers yields the best performance,
achieving a test accuracy of 93.85%.

Keywords: Twitter; geolocation; Arabic; deep learning; CNN; LSTM; attention; transformer;
PLM; BERT

1. Introduction
Social media platforms provide extensive data sources that enable a wide range of

applications. For Twitter, it is estimated that 500 million tweets are sent per day [1]. Properly
analyzing this vast volume of data can serve as a powerful tool for crisis management [2–5].

A study conducted by [6], involving experts from various countries, revealed that
for emergency responders, the most important feature of a software tool for effectively
utilizing social media is the ability to categorize social media posts on a map by geographical
location. Unfortunately, due to privacy concerns, most Twitter users do not attach location
information to their tweets, with only 1% to 3% [7,8] of tweets being geotagged.

The problem of tweet geolocation prediction can be addressed in two primary ways:
predicting a user’s home location or inferring the location where the tweet was posted.
In this study, we focus on the latter. Fine-grained geolocation prediction of tweets has
significant applications in various critical domains, including disaster management, epi-
demiology, outbreak tracking, and crime mapping. For instance, during an epidemic,
accurate fine-grained geolocation prediction can assist authorities in effectively managing
resources, such as optimizing the distribution of medical supplies and deploying healthcare
teams to hospitals. Additionally, it enables the implementation of tailored regulations for
specific cities or provinces based on localized infection rates.
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Several solutions have been proposed for the fine-grained geolocation prediction of
tweets that rely on extracting location information from fields like user-defined locations.
However, the accuracy of these solutions is limited, as they depend solely on user inputs,
which are not always accurate. More accurate solutions employ machine learning tech-
niques to geolocate tweets by extracting features from various fields, such as tweet text,
user name, user location, and so on. We adopt the latter approach in this work.

In this study, we focus on the Kingdom of Saudi Arabia (KSA) as our case study.
According to statistics published in April 2024 [9], KSA ranks ninth globally and first
among Arab countries in the number of Twitter users, with 16.28 million users, representing
43.44% of the population [10]. Arabic is the official language in KSA, so we consider only
Arabic tweets.

Geolocation extraction for low-resource languages like Arabic remains significantly
understudied [11]. Progress in Arabic text geolocation prediction, especially for informal
text such as tweets, is limited. State-of-the-art models achieve an F1 score of 88.1% at the
country level [12] and an accuracy of 67.41% at a 160 km error distance [13]. Additionally,
the application of deep learning models, particularly BERT-based models, to Arabic tweet
geolocation, especially at a fine-grained level, is still in its early stages. Furthermore,
advancements in tweet geolocation prediction for other languages, at both coarse-grained
and fine-grained levels, often rely on distinct datasets, making direct comparisons and
assessments of their relative performance on specific Arabic datasets challenging.

To address this gap, this work identifies and employs eight advanced deep learning
techniques, including two Arabic pretrained language models (PLMs), for the task of
fine-grained Arabic tweet geolocation prediction. To the best of our knowledge, Arabic
PLMs have not been previously applied to this task [14]. This study represents the first
systematic analysis of advanced deep learning techniques for fine-grained Arabic tweet
geolocation prediction, conducted through comprehensive experiments. Our approach
provides a fair assessment of the respective strengths and weaknesses of these techniques,
offering valuable insights and guidance for the research community. (For the remainder of
this article, the term ’tweet’ will be used interchangeably with ’post’ to refer to any message
or content shared on the social media platform).

It is noteworthy that while this study primarily focuses on solving tweet geolocation
prediction for Arabic tweets, we believe the proposed framework has broader applicability.
Specifically, it can potentially benefit geolocation prediction for other languages and extend
to other social media platforms, such as Instagram and Facebook.

Our contribution can be summarized as follows:

• Constructing a dataset containing tweets from the thirteen provinces of KSA,
ensuring an even distribution across the provinces (The dataset is available at
https://www.kaggle.com/datasets/marwaelteir/ksageolocatedtweets, accessed on 8
December 2024).

• Identifying and applying eight deep learning models, including two PLMs for fine-
grained geolocation prediction of Arabic tweets across the thirteen provinces of KSA
(To ensure the reproducibility of the research findings, the source code for the models
is publicly accessible at https://github.com/maelteir/Tweets-Geolocation-Using-
Deep-Learning/tree/main, accessed on 8 December 2024).

• Conducting an extensive set of experiments to assess the effectiveness and efficiency
of these deep learning models.

The remainder of this paper is organized as follows. Section 2 reviews related work
on Arabic tweet geolocation prediction. Section 3 details the methodology employed to
construct a balanced, geolocated tweet dataset and describes the architecture of the deep

https://www.kaggle.com/datasets/marwaelteir/ksageolocatedtweets
https://github.com/maelteir/Tweets-Geolocation-Using-Deep-Learning/tree/main
https://github.com/maelteir/Tweets-Geolocation-Using-Deep-Learning/tree/main
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learning models used. Section 4 presents the experimental setup and results. Finally,
Section 5 concludes the paper and outlines future research directions.

2. Related Work
Section 2.1 summarizes the work performed on Arabic Named Entity Recognition,

as advances in this area provide means to address the Arabic geolocation prediction
problem. Section 2.2 discusses the work performed on geolocation prediction, especially
for Arabic tweets.

2.1. Named Entity Recognition

The first Arabic Named Entity Recognition (NER) dataset, ANERCorp, was released
in 2007 by Benajiba et al. [15]. Since then, a lot of research efforts have been performed to
improve the NER performance on this dataset. Based on a recent survey [16] that studied
more than ninety research articles, the state-of-the-art technique for NER on ANERCorp
dataset is reported by El Moussaoui et al. [17]. This technique involves using CNN-based
character embeddings, BERT-based features, and FastText word embeddings for input
encoding, feed-forward neural networks as context layer, and biaffine classifier as the final
prediction/decoder layer. This technique achieves an F1 score of 95.77.

ANERCorp represents only Modern Standard Arabic (MSA). Therefore, the best per-
forming technique on this dataset is not performance portable on a Twitter dataset. In 2013,
Darwish et al. [18] showed that the performance in terms of F1 score of a Conditional
Random Field (CRF)-based NER model degrades from 79.9 on the ANERCorp dataset to
33.1 on a Twitter dataset. This dataset is composed of 1423 manually annotated tweets
spanning the period from 23 November 2011 to 27 November 2011. It will be hereafter
referred to as TWEETS.

In 2014, Darwish et al. [19] trained a CRF-based model using a manually annotated
Twitter dataset of 3646 tweets, in addition to ANERCorp. We will refer to this Twitter
dataset as TWEETS_TRAIN. To further improve the NER effectiveness, the authors built a
large Wikipedia gazetteer, applied the domain adaption technique, and performed semi-
supervised two-pass training. Using the TWEETS dataset [18] as the test dataset, they
reported F1 scores of 65.2 and 76.7 for general NER and location NER, respectively.

Khalifa et al. [20] proposed a deep learning model composed of CNN-based character
embeddings and pretrained word embeddings as the input layers, BiLSTM as the context
layer, and CRF as the output layer. The achieved F1 scores on the TWEETS dataset [18]
were 65.34 and 72 for general NER and location NER, respectively.

In 2019, Google released BERT (Bidirectional Encoder Representations from
Transformers) [21], a large language model (LLM) that significantly improves the per-
formance of various language understanding tasks. In 2020, Antoun et al. [22] released the
first Arabic large language model, AraBERT, that is based on the BERT architecture and
pretrained on a large corpus of MSA Arabic documents. Despite not being pretrained on
the Twitter dataset or dialectal Arabic, the AraBERT sentiment analysis performance on
three benchmark tweets datasets is significantly better than that of the previous state of the
art at the time of releasing AraBERT.

In 2021, Abdul-Mageed et al. [23] released MARBERT, another Arabic LLM based on
the BERT architecture and pretrained on a large corpus of Arabic Tweets. Its F1 score for a
general NER task on the TWEETS dataset [18] is 66.67.

In 2022, Benali et al. [24] compared the performance of MARBERT to several BERT-
based LLMs, including AraBERTv02 when these models are used as an embedding layer in
a BiLSTM CRF model. This is known as a feature extraction-based approach of employing
LLM rather than a fine-tuning approach. The NER results on the TWEETS dataset [18]
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show that MARBERT achieved new state-of-the-art results. Specifically, it achieved F1
scores of 67.4 and 77.9 for general NER and location NER, respectively.

In 2023, Suwaileh et al. [11] tackled the problem of location mention recognition (LMR)
in informal Arabic text, uniquely. They released a human-labeled dataset, IDRISI-RA (gold
version), of 4593 disaster tweets spanning diverse Arab countries. They also released a
silver version of the dataset containing 1.2M automatically labeled tweets. The labeling was
performed at the coarse- and fine-grained levels. Additionally, the authors benchmarked
the dataset using different machine learning models. The best performing model was
a MARBERT-based model [24], achieving F1 scores of 75 and 88 for the typeless and
type-based LMR, respectively.

Table 1 provides an overview of the major contributions to NER for informal Arabic
text. Due to the inherent complexity of informal Arabic, the current state-of-the-art location
NER technique on the TWEETS dataset achieves a limited F1 score of 77.9. Furthermore,
the existing literature lacks a definitive evaluation of the effectiveness of this approach in
developing a fine-grained geolocation solution for Arabic tweets [25]. To address this gap,
we frame the geolocation problem as a classification task. The related work on geolocation
prediction approached as a classification problem is discussed in the next section.

Table 1. Major NER contributions for informal Arabic text.

Work Year Model
Training F1 Score

Dataset NER Location NER

[18] 2013 Gazetteer-based CRF ANERCorp 39.90 47.90

[19] 2014 Gazetteer-based CRF ANERCorp and
TWEETS_TRAIN [19] 65.20 76.70

[20] 2019
CNN-based character embeddings,

pretrained word embeddings,
BiLSTM, and CRF

ANERCorp, Several news datasets,
and TWEETS_TRAIN [19] 65.34 72.00

[22] 2020 Fine-tuned AraBERT 24 GB of Arabic news articles 41.26 -

[23] 2021 Fine-tuned MARBERT a Large in-house dataset of 1B
Arabic tweets 66.67 -

[24] 2022 AraBERT, BiLSTM, and CRF TWEETS_TRAIN [19] 65.70 -

[24] 2022 MARBERT, BiLSTM, and CRF TWEETS_TRAIN [19] 67.40 77.90

[11] 2023 MARBERT, BiLSTM, and CRF IDIRIS-RA - 88.00
The test dataset is the TWEETS dataset [18], except for [11], where the test dataset involves tweets from IDRISI-
RA [11]. Bold text is the best.

2.2. Geolocation Prediction

Geolocating social media posts/users has been an active research area, especially
for the English language. Several studies address the tweet geolocation prediction
problem [8,26–31], while others focus on geolocating the users [32–37].

On the other side, the work performed to address this problem for Arabic tweets is
very limited. Geolocating Arabic tweets presents unique challenges due to the complexity
of the language and the diversity of the dialects. Mourad et al. [38] studied the influence
of the language on the geolocation accuracy and concluded that Arabic tweets are more
challenging to geolocate accurately compared to tweets in other languages.

In 2013, Khanwalkar et al. [39] proposed a solution to geolocate Twitter users using
only tweet content. Initially, a window of tweets for a specific user is collected. Then named
entity recognition technique is applied to recognize location toponym in the document.
Several gazetteers are then employed to obtain the corresponding location record. A scoring
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mechanism is proposed to rank the user locations, where the top-ranked location is chosen
as the geolocation of the user. The solution accepts both English and Arabic tweets; however,
the Arabic tweets are translated to English before processing. The best achieved accuracy
at 100 miles was 37.7%.

Izbicki et al. [29] proposed the content-only-based tweet geolocation prediction model,
Unicode-CNN, using convolution neural network. The model supports 100 languages,
including Arabic, by employing the Unicode of the characters as input features. Depending
on characters instead of words eliminates the need for a special tokenizer for each supported
language. One of their key contribution is revealing the exact GPS coordinates of the tweet,
taking into account the non-Euclidean nature of the Earth’s surface. The accuracy of
geolocating Arabic tweets at the country level was 56.2%. For geolocating the tweet at the
city level, they only reported the results for English tweets, and the best value was 13.3%.
The best accuracy at 100 km was for the huge version of Unicode-CNN, which was 26.7%

Mubarak et al. [12] developed the UL2C model, which maps Twitter Arabic user
location to countries. First, a manually annotated dataset is built that maps a user location
to a country. They trained a support vector machine model to automatically geolocate
the user location. Additionally, the authors explored using word n-gram and character
n-gram as input features. Their results show that the best model uses character n-gram and
achieves an F1 score of 88.1.

Recently, Alsaqer et al. [13] proposed a fine-grained tweets geolocating solution. They
collected a dataset of 35K unique geotagged tweets from KSA. These tweets belong to
30 cities. The dataset suffers from imbalance. They trained traditional machine learning
models, including linear regression, support vector machine, random forest, and Multino-
mial Naive Bayes. They employed three features—tweet text, user location, and named
entities—in the tweet text. The best accuracy was achieved from random forest, reaching
67.41% at 160 km distance.

The geolocation of Arabic text, particularly informal text-like tweets, remains a chal-
lenging task. Existing solutions are often not specifically designed for Arabic [29,39] or rely
on traditional machine learning techniques [12,13], leading to limited accuracy. Moreover,
existing Arabic text classification surveys [40–42] primarily focus on other downstream
tasks, such as sentiment analysis. To our knowledge, no standardized technique exists for
geolocating Arabic tweets.

In this study, we aim to address this gap by investigating the effectiveness and cost
of advanced machine learning techniques, including deep learning and pretrained large
language models, for the fine-grained geolocation prediction of Arabic tweets.

3. Materials and Methods
We conceptualize the tweet geolocation prediction problem as a classification task. For-

mally, given a set of tweets T = {t1, t2, t3, . . . , tn}, where each tweet ti comprises the tweet
text along with metadata, and their respective fine-grained geolocations L= {l1, l2, l3, . . . , ln},
where li ∈ {c1, c2, c3, . . . , cm} represent m classes corresponding to fine-grained geoloca-
tions, we aim to develop a classification model. This model will classify any unseen tweet
tj into the corresponding geolocation lj with an acceptable level of accuracy.

The granularity of geolocation prediction is determined by both the number of classes
and their geographical coverage. When the classes correspond to countries, the geolocation
prediction is coarse grained. Conversely, when the classes represent cities or small provinces
spanning tens of thousands of square kilometers, the prediction becomes fine grained.

Figure 1 represents the workflow of our study, including the dataset collection, text
preprocessing, feature extraction, and machine learning models building. The workflow is
applied to KSA as a case study. The following sections illustrate each step in detail.
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Figure 1. Study workflow.

3.1. Dataset Collection

We collected a dataset of Arabic geotagged tweets from the thirteen provinces of KSA
using Twitter’s v2 full-archive search endpoint. To access this endpoint, we employed the
searchtweets library [43] through an academic research account.

To ensure comprehensive data collection, we defined each province as a group of
non-overlapping circular regions. These regions were delineated using the Leaflet v1.0.3
plugin [44] and incorporated into our search queries. By utilizing the point_radius oper-
ator, we specified the radius of each circular region. Additionally, the lang operator was
employed to restrict the search to Arabic-language tweets. This methodology, inspired
by [45], allowed us to efficiently gather tweets from all thirteen provinces of KSA. By uti-
lizing only two operators in the search query, we were able to generate a diverse dataset
encompassing various dialects and topics (For a detailed description of this methodology,
please refer to [46]).

We collected the tweets over a two-month period, from 1 May 2022, to 30 June 2022.
Due to the non-uniform population distribution across provinces, the volume of retrieved
tweets was higher in more densely populated regions. Mourad et al. (2019) [38] demon-
strated that data imbalance has a more pronounced impact on model accuracy than geo-
graphical coverage. Similarly, Alruily et al. (2023) [47] reported that BERT-based classifiers
achieve significantly better performance on balanced datasets compared to imbalanced
ones. To mitigate the effects of data imbalance, we constructed a balanced dataset by limit-
ing the number of tweets per province to the first 5000 retrieved tweets. The characteristics
of the resulting dataset are summarized in Table 2.

Table 2. The characteristics of the retrieved dataset.

No. of
Unique Tweets

No. of
Unique Users Country Provinces Time Zone Time Period

64,833 12,085 KSA 13 One (GMT
+ 3:00)

1 May 2022 to
30 June 2022

3.2. Machine Learning Models

We based our selection of the studied machine learning models on techniques for
English tweet/user geolocation prediction as described in the existing literature.
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3.2.1. Basic Deep Learning Techniques

Deep Neural Networks (DNNs) [48] were among the first deep learning methods
applied to the tweet/user geolocation prediction problem. Liu et al. [49] pioneered a
DNN architecture comprising three hidden layers, each with 5000 neurons, for predict-
ing Twitter user locations. In a subsequent study, Lourentzou et al. [50] explored the
impact of various factors—such as activation functions, batch normalization, dropout,
and network architecture—on DNN performance for geolocation prediction. Their findings
indicated that the Rectified Linear Unit (ReLU) activation function outperforms others,
and they recommended using shallow, wide architectures over deep, compact ones for this
classification task.

Convolutional Neural Networks (CNNs) were first introduced for tweet geolocation
prediction by Huang et al. [26]. Their base CNN architecture, adapted from Kim [51] for
sentence classification, consists of a convolutional layer, a max pooling layer, and a fully
connected layer. Using tweet text and several metadata fields as input, they achieved
country-level and city-level prediction accuracies of 92.1% and 52.8%, respectively. A recent
study by Lu et al. [52] on medical text classification demonstrated that CNNs achieved
performance comparable to Transformer encoders and significantly outperformed BERT
for balanced datasets. While CNNs are a relatively simple architecture, their superior
performance in both country-level geolocation prediction and other text classification tasks
motivates their inclusion in our study.

We employed a fundamental CNN architecture consisting of a single convolutional
layer, as this design is commonly utilized in the literature for text classification [26,51,52].
Additionally, we explored various modifications of this architecture, which are summarized
in Table 3. We also considered a multi-channel architecture [51], wherein channels adopt
different kernel sizes to enable the model to capture a wide range of patterns and contexts.
Figure 2 illustrates this approach.

Figure 2. Multi-channel CNN architecture.
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Table 3. The CNN architecture.

Layers Details

Input Word embedding
Convolution ReLU activation with 64, 128, 256, 512, or 1024 filters

Dropout 0.2–0.5
Max pooling -

Flatten -
Dense Softmax activation

While CNNs are effective at extracting local patterns from text, particularly in shallow
architectures, Long Short-Term Memory (LSTM) networks and Bidirectional LSTMs (BiL-
STMs) excel at capturing long-range dependencies and global context. Thomas et al. [53]
introduced an LSTM-based model for geolocating tweets using both textual content and
metadata. Mahajan et al. [30] proposed a hybrid approach that combines CNN and BiL-
STM architectures to leverage the strengths of both models. Their method achieved an
impressive city-level tweet geolocation accuracy of 92.6%.

We included LSTM, BiLSTM, and combined CNN-LSTM models, shown in Figure 3,
in our study. The specific architecture of the LSTM-based model is illustrated in Table 4.
We also explored the use of multiple stacked LSTM and BiLSTM layers, as stacking can
significantly improve text classification accuracy.

Table 4. LSTM-based architectures.

Layers Details

Input Word embedding
Stacked LSTM or BiLSTM Sigmoid activation with 64, 128, 256, or 512 filters

Dropout 0.2–0.5
Dense Softmax activation

Figure 3. CNN-LSTM architecture.
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3.2.2. Attention-Based Techniques

The attention mechanism [54,55] is a revolutionary mechanism that combines the
benefits of CNN and LSTM. It assigns a score to each token in the text, indicating its
contribution to the classification, thus successfully capturing relationships between tokens
in long sequences. Huang et al. [56] proposed using the multi-head self-attention model [55]
for tweet geolocation along with subword features extracted using CNN and joint training.
They achieved state-of-the-art performance in the geolocation prediction shared task W-
NUT2016. Fornaciari et al. [28] investigated the effectiveness of integrating CNNs with
an attention mechanism to capture relationships between the local patterns extracted by
the CNN, rather than focusing directly on the tokens of the text. They proposed a multi-
channel CNN architecture, with its outputs processed through an attention mechanism.
Their results demonstrated that incorporating the attention mechanism into the architecture
improved geolocation accuracy by 10%.

We included the attention-based model in our study, with the architecture illustrated in
Table 5. Note that attention, global average pooling, and global max pooling layers operate
in parallel, and their outputs are concatenated before being fed to the softmax layer. We also
included a combined CNN and attention model in our study, though we employed a slightly
different architecture based on preliminary experiments as illustrated in Figures 4 and 5.

Yang et al. [57] proposed a classification model based solely on the attention mecha-
nism for document classification. Their approach incorporated the attention mechanism
introduced by Bahdanau et al. [54] to develop a hierarchical attention-based model op-
erating at both the word and sentence levels. Later, Vaswani et al. [55] introduced the
Transformer, a transduction model entirely reliant on attention mechanisms. The Trans-
former architecture employs stacked encoder and decoder layers for tasks such as machine
translation, while only the encoder is used for classification tasks. Given the demonstrated
success of the Transformer in fine-grained geolocation [58], we incorporated it into our
study. The details of the Transformer architecture used in this work are presented in Table 6.

Table 5. Attention-based architectures.

Layers Details

Input Word embedding
SpatialDropout1D 0.2–0.5

BiLSTM Sigmoid activation with 64, 128, 256, or 1024 filters
Attention * Bahdanau et al. [54]

GlobalAveragePooling1D * -
GlobalMaxPooling1D * -

concatenate -
Dense Softmax activation

* These layers run in parallel.

Table 6. Transformer-based architectures.

Layers Details

Input Token embedding and position embedding
Self-attention layer
Dropout layer (0.1)
Normalization layer (epsilon = 1 ×10−6)

TransformerBlock * Feed-forward layer
Dropout layer (0.1)
Normalization layer (epsilon = 1 ×10−6)

GlobalAveragePooling1D -
Dropout 0.1

Dense RelU activation
Dropout 0.1

Dense Softmax activation
* This block is repeated 1, 2, 4, or 6 times.
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Channel 1 Channel 2 Channel 3

Figure 4. CNN-Attention architecture (all channels have the same architecture; however, they adopt different kernel sizes).
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Figure 5. One channel of a CNN-attention architecture.
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3.2.3. BERT-Based Techniques

Following the success of the Transformer, Devlin et al. [21] introduced BERT, a pre-
trained English language representation model composed of a multi-layer bidirectional
Transformer encoder. It has achieved state-of-the-art results on various NLP tasks [59],
including geolocation prediction [37,58]. Several BERT-based models have been released for
Arabic language representation, including AraBERT [22], Arabic-BERT [60], MARBERT [23],
and ARBERT [23].

We included AraBERTv2 [61] and Arabic-BERT [62] in our study. AraBERT is the first
pretrained language model for Arabic and is widely utilized in the literature [14]. Arabic-
BERT, pretrained on large corpora of Modern Standard Arabic (MSA) and dialectical
Arabic, was included to assess the impact of increasing dataset size and diversity on
prediction performance. Although MARBERT is reported to be state of the art for Arabic
text understanding based on [23], we opted for AraBERT. For the most relevant downstream
tasks, namely NER and topic classification, AraBERT outperforms MARBERT in 7 out of
10 individual test datasets, and consistently outperforms MARBERT in all NER and topic
classification tests on the combined ARLUE dataset.

Based on the findings of [21,41], we adopted the fine-tuning approach rather than the
feature extraction approach, as it yields better performance, particularly for the NER task.

Each of the models discussed in Sections 3.2.1–3.2.3 demonstrates varying perfor-
mance due to their application on different datasets. In the absence of a standardized
baseline for comparison, we aim to evaluate all these models on one Arabic dataset. This
approach enables a fair assessment of their respective strengths and weaknesses for the
fine-grained tweet geolocation prediction task, offering valuable insights and guidance for
the research community.

3.3. Feature Extraction and Preprocessing

To enhance geolocation prediction accuracy, we leverage three features extracted
from tweets and their metadata: tweet text, user name, and user location (if available).
To maintain contextual information, these features are concatenated as outlined in Figure 6
after undergoing preprocessing steps.

The preprocessing pipeline involves the following steps:

• Tokenization: We tokenize the text data using the PyArabic library [63]. This step
breaks down the text into individual words or meaningful units.

• Text Cleaning: To improve model performance, we remove various elements from the
text, including emoji, Arabic stop words, special characters (e.g., ”, ’, or :), English
characters, spaces, underscores, punctuation, numbers, and repeated letters.

• Normalization and Stripping: We utilize the PyArabic library [63] to remove diacritical
marks and elongation symbols that may not be crucial for geolocation prediction.
Additionally, the library normalizes specific Arabic letters, such as hamza.

• Stemming: Finally, we employ the Farasa library [64] to perform stemming, which
reduces words to their root forms.

For models utilizing the Arabic pretrained BERT model, AraBERT [61] provides
dedicated preprocessing procedures that can be integrated into the overall pipeline to
ensure compatibility with the model.

أسمى  <User name> <Tweet text>  أنا فى   رأى  <User location>  أسكن   و

Figure 6. Three concatenated features: tweet text, user name, and user location.
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3.4. Word Embeddings

For all the aforementioned models, except for Transformer, AraBERT, and Arabic-
BERT, the input is represented using an embedding layer. This embedding layer represents
each word using a dense vector of user-defined length. We investigated initializing the
embedding matrix with two non-contextual word embeddings: the Arabic version of
Word2Vec [65] and FastText [66]. Additionally, we examined the performance when there
was no initialization. Furthermore, we explored two options for these embeddings: non-
trainable representations, where the embedding vectors remain constant during training,
and trainable representations where a new embedding matrix is learned during training.

4. Results
4.1. Experimental Setup

All machine learning models discussed in Section 3.2.1 were implemented in Python.
Specifically, we utilized the Keras library (version 2.10.0), the Transformers library (ver-
sion 4.25.1), and the TensorFlow framework (version 2.10.0). Preliminary experiments
were conducted on the Grid’5000 infrastructure [67], while the main experiments were
performed on the Intel Developer Cloud [68].

The Adam optimizer was employed, as preliminary experiments indicated it achieved
superior validation accuracy compared to root-mean-square propagation and stochastic
gradient descent. Furthermore, Adam is the standard optimizer for BERT-based models [21].
For the loss function, we adopted sparse categorical cross entropy, which is commonly
used in the deep learning literature.

Table 7 presents the range of hyperparameter values considered in this study. Given
the average size of our dataset, we selected batch sizes of 16, 32, 64, and 128. To accom-
modate potential divergence in the studied models, a wide range of learning rates from
1 ×10−2 to 5 ×10−5 was explored. The input sequence length was determined based on
the average and maximum numbers of words per input. After dropping unavailable
features, preprocessing, and concatenation, we found these values to be 22.09 and 72,
respectively. Consequently, we considered input lengths ranging from 20 to 80. Hyperpa-
rameters were tuned on the test set. The reported validation and test scores were averaged
over five random runs, utilizing the optimal hyperparameter configurations identified in
each experiment.

Table 7. Hyperparameters.

Hyperparameter Range

Batch size 16, 32, 64, and 128
Learning rate 1 ×10−2 to 5 ×10−5

Input sequence length 20 to 80

To control overfitting, we adopted the early stopping strategy. Specifically, we em-
ployed the patience approach, which monitors model performance on the validation set
during training. If the model’s validation loss does not improve for five consecutive epochs,
the training is halted.

We evaluated the performance of the models using the metrics of accuracy, preci-
sion, recall, and F1 score as suggested by [41] for evaluating text classification models.
The formulas used to calculate these metrics are described as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1Score = 2 × Precision × Recall
Precision + Recall

(4)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

For the specific task of Arabic text geolocation, we also measured the weighted average
as recommended by [38]. During testing, we compared the predicted location classes with
the ground truth labels to assess performance metrics.

4.2. Preliminary Experiments

Our initial investigations, shown in Table 8, were applied to a CNN model with a
single embedding layer and three channels. The initial experiment, conducted on the
entire dataset using only the tweet text as a feature, employed a trainable embedding
layer without initialization. This experiment yielded a poor validation accuracy of 10.86%.
Subsequent experiments incorporated proper shuffling and stratification of the dataset
to ensure balanced distribution of classes across training, validation, and test sets. This
resulted in a significant improvement in performance, with validation accuracy increasing
to 23.96%. Further enhancement was achieved by including user name and user location as
additional features, leading to a substantial boost in validation accuracy to 63.44%.

Removing noise from the dataset by excluding any records containing null features
improved the validation accuracy to 84.88%. All experiments used a vector representation
of length 50. Increasing the vector length to 300 further enhanced performance, achieving a
validation accuracy of 86.42%.

Table 8. Preliminary experiments using CNN architecture with one embedding layer.

Dataset Features
Number

Shuffle and
Stratify Preprocessed

Input
Vector
Length

Embedding Validation
Loss

Validation
Accuracy

W 1 No No 50 T—NI 2.5297 0.1086
W 1 Yes No 50 T—NI 2.3252 0.2396
W 1 Yes Yes 50 T—NI 2.2544 0.2318
W 3 Yes Yes 50 T—NI 1.2371 0.6344
W 3 Yes No 50 T—NI 0.8461 0.7760
D 3 Yes Yes 50 T—NI 0.5466 0.8488
D 3 Yes Yes 300 T—NI 0.5139 0.8642
D 3 Yes Yes 300 T—AraVec-sg 0.6070 0.8333
D 3 Yes Yes 300 NT—AraVec-sg 0.8568 0.7599
D 3 Yes Yes 300 T—AraVec-CBOW 0.8477 0.7859
D 3 Yes Yes 300 NT—AraVec-CBOW 0.9172 0.7577
D 3 Yes Yes 300 T—FastText 0.5731 0.8600
D 3 Yes Yes 300 NT—FastText 0.6902 0.8142

W: whole dataset, D: dataset with empty features dropped, T: trainable, NT: not trainable, and NI: not initialized.
All runs consider the default pre-padding and pre-truncation. Bold text is the best.

We examined the impact of initializing the embedding matrix with either AraVec2.0
or FastText embeddings. The results demonstrate that FastText outperforms both versions
of AraVec, primarily due to AraVec’s limited coverage. Specifically, the number of out-of-
vocabulary (OOV) tokens for AraVec is 7185 out of 25,750, whereas FastText has no OOV
tokens. Additionally, fine-tuning the weights of the embedding layer consistently yields
better performance than using static vector representations for all embeddings, including
AraVec, FastText, and uninitialized embeddings.
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The results also indicate that, for the clean dataset with null features removed, prepro-
cessing has minimal impact. We attribute this to the fact that the Keras tokenizer inherently
applies several cleaning and filtering processes to the text, which may mimic the effects of
explicit preprocessing. Moreover, the literature suggests that deep learning models exhibit
greater resilience to unpreprocessed text [40].

4.3. Models Performance

Table 9 presents the optimal performance achieved by each model. Building upon
the preliminary experiments detailed in Section 4.2, these results were obtained using a
dataset with the empty features removed, proper shuffling and stratification, three features,
a trainable uninitialized embedding layer, and preprocessed text. The specific configura-
tions and hyperparameters that yielded the best results for each model are provided in
the Appendix A.

Surprisingly, the best-performing model is not a large language model. The model
that achieves the highest performance across all test metrics is the CNN-LSTM, with a
test accuracy of 0.9385. In terms of validation loss and validation accuracy, the CNN-
Attention model outperforms the others, achieving a validation accuracy of 0.9482. These
models capture local features through the shallow CNN architecture, while long-range
dependencies and global context are effectively modeled using the LSTM and attention
architectures. The performance of CNN-LSTM per class is shown in Table 10, and the
confusion matrix is shown in Figure 7. The figure shows the number of correctly geolocated
tweets in the test dataset for each province. For example, for Riyadh, the number of
correctly geolocated tweets is 105 out of 122 tweets.

Figure 7. Confusion matrix of the CNN-LSTM architecture (the numbers in the diagonal represent
the correctly geolocated tweets; however, the other numbers represent the number of incorrectly
geolocated tweets).
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Table 9. Performance of the studied machine learning models.

Model
Validation Set Test Set

Loss Accuracy Accuracy Precision Weighted Precision F1 Score Weighted F1 Score Recall Weighted Recall

CNN 0.21382 0.94120 0.93428 0.93428 0.93520 0.93428 0.93429 0.93428 0.93428
LSTM 0.33636 0.92632 0.91388 0.91388 0.91499 0.91388 0.91399 0.91388 0.91387
CNN-LSTM 0.23176 0.93810 0.93852 0.93852 0.93929 0.93852 0.93843 0.93852 0.93852
Attention 0.27106 0.92900 0.92719 0.92719 0.92866 0.92719 0.92731 0.92719 0.92719
CNN-Attention 0.20144 0.94822 0.93722 0.93722 0.93724 0.93722 0.93705 0.93722 0.93722
Transformer 0.34336 0.92640 0.92036 0.92036 0.92131 0.92036 0.92014 0.92036 0.92036
AraBERT 0.28862 0.93230 0.93541 0.93541 0.93736 0.93541 0.93551 0.93541 0.93541
Arabic-BERT 0.32446 0.92208 0.92339 0.92339 0.92522 0.92339 0.92351 0.92339 0.92339

Bold text is the best.

Table 10. Performance metrics for each class for the best CNN-LSTM model. Support determines the total number of tweets per province.

Province Precision Recall F1 Score Support

Asir 0.89 0.89 0.89 155
EasternRegion 0.93 0.87 0.90 145
ElBaha 0.94 0.98 0.96 222
ElHaal 0.97 0.95 0.96 182
ElJawf 0.98 0.97 0.97 298
Jazan 0.89 0.99 0.94 117
Madenna 0.92 0.94 0.93 195
Makkah 0.90 0.87 0.88 144
Najran 0.94 0.94 0.94 186
NorthernBorders 0.99 0.97 0.98 241
Qaseem 0.95 0.93 0.94 152
Riyad 0.94 0.86 0.90 122
Tabuk 0.89 0.95 0.92 154
Macro avg 0.93 0.93 0.93 2313
Weighted avg 0.94 0.94 0.94 2313
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As shown in Table A1, the best performance for CNN is achieved using three embed-
ding layers, with an input sequence length of 20, post-truncation, and post-padding. This
CNN architecture achieves a test accuracy of 0.9342844, ranking fourth among the eight
studied models, even better than BERT-based models. This result is attributed to the short
length of input records, with the average and maximum numbers of words per input being
22.09 and 72, respectively. A shallow CNN architecture is effective for this input length [29].

Furthermore, as shown in Table A1, the optimal performance for the LSTM model
is achieved using a single layer of LSTM (not a BiLSTM), an input sequence length of 80,
and post-truncation and pre-padding. The LSTM-only architecture exhibits the lowest
performance, with a test accuracy of 0.9138782. This can be attributed to the relatively
short length of input records. The advantages of LSTM are typically realized for longer
sequences. A similar explanation applies to the Attention-only architecture.

CNN, LSTM, and Attention-based architectures are highly sensitive to the padding
and truncation techniques employed. The selection of optimal techniques can signifi-
cantly enhance performance, improving the CNN architecture from 0.79 to 0.93, the LSTM
architecture from 0.66 to 0.91, and the attention architecture from 0.78 to 0.92.

The transformer-based model shows the second lowest performance after the LSTM-
only architecture, achieving a test accuracy of 0.9203632. This is attributed to the complexity
of the architecture, which requires a large dataset to converge; otherwise, it may suffer
from overfitting. Additionally, since our dataset has an average input length of less than
100 characters, the complexity of the transformer architecture is unnecessary. Simpler archi-
tectures can effectively capture tweet semantics. Transformers demonstrate effectiveness
in handling large datasets consisting of hundreds of thousands of records [58], or long
inputs [52]. On the other hand, fine-tuning BERT-based models can be effective with
smaller datasets, in the range of tens of thousands of samples, which explains the better
performance of AraBERT and Arabic-BERT compared to the transformer architecture.

4.4. Ablation Study

This study aims to investigate the contribution of each feature to the performance
of the best-performing deep learning model, namely, CNN-LSTM. Table 11 demonstrates
that removing the user location reduces the validation accuracy from 93.81% to 87.64%.
Furthermore, removing both the user name and the user location significantly reduces the
validation accuracy from 87.64% to 33.98%, highlighting the importance of the user name
feature for the model’s performance.

Table 11. Ablation study.

Features Number Features Name Validation Loss Validation Accuracy

1 Tweet text 2.0386 0.3398
2 Tweet text and user name 0.4632 0.8764
3 Tweet text, user name, and user location 0.2318 0.9381

4.5. Effectiveness vs. Efficiency

Model effectiveness is evaluated based on performance metrics such as accuracy and
F1 score. Efficiency encompasses the resource consumption associated with model training,
including the training time and the memory footprint of the model parameters. These
factors directly influence the energy efficiency of the model deployment.

As shown in Table 12, in terms of space complexity, BERT-based models require the
largest number of parameters, approximately 110 million, nearly double that of the best-
performing model. This substantial parameter count suggests potential energy inefficiency
during inference [23].
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Regarding training time, BERT-based models also exhibit the second-longest training
duration, exceeding two hours, compared to just one hour for the top-performing model.

The CNN-LSTM and CNN-Attention architectures offer a favorable balance between
accuracy, space complexity, and training time, making them the first and second-best
models for the fine-grained tweet geolocation task.

Table 12. Space and time analysis of the studied machine learning models.

Model No. of Model
Parameters (Million)

Execution Time per
Epoch (s) Training Time (min)

CNN 61 438 115
LSTM 20 284 43

CNN-LSTM 70 563 64
Attention 34 2244 256

CNN-Attention 65 278 102
Transformer 24 262 38

AraBERT 110 1210 139
Arabic-BERT 110 1334 158

Bold text is the best.

5. Discussions and Conclusions
As discussed in the Related Work section (Section 2), there is limited research on

the geolocation prediction of Arabic tweets, particularly at a fine-grained level. Ref. [13]
presents work closely related to ours. They address the fine-grained geolocation problem
for Arabic tweets from Saudi Arabia but focus on geolocation at the city level. Additionally,
they only use traditional machine learning models, resulting in a geolocation accuracy of
67.41% at a 160 km distance. In contrast, we investigate the problem at the provincial level
and evaluate eight advanced deep learning techniques, including two pretrained language
models (PLMs). To the best of our knowledge, Arabic PLMs have not been previously
applied to the Arabic tweet geolocation task. The architecture of our best model combines
CNN and LSTM layers, achieving a test accuracy of 93.85%.

On the other hand, the English tweet geolocation problem has been addressed by
several studies [26,28,30,37,49,50,53,56,58]. However, these studies have been applied
to different datasets, making it challenging to determine the most effective technique,
particularly for fine-grained Arabic tweet geolocation. In the absence of a standardized
baseline for comparison, we aim to apply the best-performing machine learning techniques
from the English tweet geolocation problem to a single dataset of Arabic tweets. This
approach will provide a fair assessment of their respective strengths and weaknesses for
fine-grained Arabic tweet geolocation prediction, offering valuable insights and guidance
for the research community.

This study has a few limitations:

• Inherent Heterogeneity: There is inherent heterogeneity in the areas of the different
provinces studied. For instance, the Eastern Region province covers a vast area of
672,522 km2, making geolocating tweets to this province not very informative. As a
mitigation technique, we propose modifying the data collection phase by dividing
this province into four sub-provinces, north, south, east, and west, and apply the
classification problem to 16 classes instead of 13.

• Model Evaluation: The models’ performance is only evaluated on a test dataset. It is
preferable to assess the generalizability of the models on external datasets collected at
different timeframes.

• Privacy Concerns: Predicting the geolocation of tweets may be viewed as a violation
of user privacy. We emphasize that this work aims solely for social good during
crises by providing collective summaries about the situation at finer granularity,
without exposing individuals’ home locations. Additionally, only Tweet IDs are
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shared in the publicly released dataset. We also limit the dataset usage to research
purposes only, by releasing it under the CC BY 4.0 license.

Our future research will explore several avenues. First, we aim to investigate the
integration of complex machine learning pipelines that combine BERT-based features with
Transformer models as demonstrated by Li et al. [58]. Additionally, we intend to incorporate
recent Arabic PLMs such as the Twitter-specific AraBERTv02 [69] and MARBERTv2 [70]
into our framework.

Furthermore, we will evaluate the effectiveness of state-of-the-art Arabic location
mention recognition and ambiguity resolution models for this task, such as IDRISI-RA
proposed by Suwaileh et al. [11].

Finally, we will assess the generalizability of the proposed techniques by applying
them to datasets from other social media platforms, such as Instagram. This will provide
valuable insights into the efficacy of these techniques across different domains.
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Appendix A

Table A1. Best configurations/hyperparameters of the studied machine learning models.

Model Words per
Input

Padding
and

Truncation
Embedding

No. of Em-
bedding
Layers

Stacked
Layers

Input
Vector
Length

Dropout Filters Learning
Rate Batch Size

CNN 20 T1P1 T—NI 3 - 700 0.3 256 5 ×10−5 16
LSTM 80 T1P0 T—NI 1 1 700 0.6 256 5 ×10−4 64
CNN-LSTM 80 T1P1, T1P0 T—NI 4 1 700, 300 0.6 256, 256 5 ×10−4 32
Attention 80 T1P1 T—NI 1 - 700 0.4 1024 1 ×10−3 16
CNN-Attention 80 T1P1 T—NI 3 - 700 0.3 256 5 ×10−5 32
Transformer 80 T0P1 T—NI 1 2 512 0.1 2048 1 ×10−4 64
AraBERT 40 - T—NI 1 - - - - 2 ×10−5 32
Arabic-BERT 50 - T—NI 1 - - - - 5 ×10−5 32

All models run using the dataset after dropping empty features. T1P1: Truncating post and padding post, T1P0:
Truncating post and padding pre, T0P1: Truncating pre and padding post, T: trainable, NT: not trainable, and NI:
not initialized.

https://www.grid5000.fr
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