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Abstract: Industry 4.0, leveraging tools like AI and the massive generation of data, is
driving a paradigm shift in maintenance management. Specifically, in the realm of Arti-
ficial Intelligence (AI), traditionally “black box” models are now being unveiled through
explainable AI techniques, which provide insights into model decision-making processes.
This study addresses the underutilization of these techniques alongside On-Board Diag-
nostics data by maintenance management teams in urban bus fleets for addressing key
issues affecting vehicle reliability and maintenance needs. In the context of urban bus
fleets, diesel particulate filter regeneration processes frequently operate under suboptimal
conditions, accelerating engine oil degradation and increasing maintenance costs. Due
to limited documentation on the control system of the filter, the maintenance team faces
obstacles in proposing solutions based on a comprehensive understanding of the system’s
behavior and control logic. The objective of this study is to analyze and predict the various
states during the diesel particulate filter regeneration process using Machine Learning
and explainable artificial intelligence techniques. The insights obtained aim to provide the
maintenance team with a deeper understanding of the filter’s control logic, enabling them
to develop proposals grounded in a comprehensive understanding of the system. This
study employs a combination of traditional Machine Learning models, including XGBoost,
LightGBM, Random Forest, and Support Vector Machine. The target variable, representing
three possible regeneration states, was transformed using a one-vs-rest approach, result-
ing in three binary classification tasks where each target state was individually classified
against all other states. Additionally, explainable AI techniques such as Shapley Additive
Explanations, Partial Dependence Plots, and Individual Conditional Expectation were
applied to interpret and visualize the conditions influencing each regeneration state. The
results successfully associate two states with specific operating conditions and establish
operational thresholds for key variables, offering practical guidelines for optimizing the
regeneration process.

Keywords: explainable artificial intelligence; maintenance management; diesel particulate
filter; urban bus fleets; machine learning

1. Introduction
Maintenance management has experienced a paradigm shift with the advent of Indus-

try 4.0, bringing the integration of advanced tools such as Artificial Intelligence (AI), the
Internet of Things (IoT), Big Data, and Machine Learning. These developments enable the
capture, analysis, and processing of real-time data, transforming traditional maintenance
into a digitized, predictive, and proactive approach [1,2]. Unlike conventional approaches,
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which rely on scheduled preventive or corrective maintenance, digitized maintenance lever-
ages the analysis of large data volumes to predict failures and optimize asset lifecycles [3,4].
However, implementing these new technologies comes with challenges. Integrating data
from diverse sources can be complex. The maintenance team often lacks the technical
expertise required to leverage advanced tools, and the high initial costs associated with
adopting these technologies pose barriers to broader and more seamless implementation.

The use of advanced data analysis techniques, such as Machine Learning, as a way to
improve vehicle maintenance management has been previously explored in various studies.
For instance, one of the studies developed a remote diagnostic and maintenance system
leveraging least squares support vector machines (LS-SVM), demonstrating strong perfor-
mance with 93% accuracy. Despite notable advantages, such as enabling more proactive
maintenance by estimating the Remaining Useful Life (RUL), it faces challenges including
integration complexity and high initial costs [5]. Another study proposed an ensemble-
based classifier approach for detecting known and unknown faults in vehicles using multi-
variate road test data. By combining binary and one-class classifiers, the method achieved
an average F2 score of 77% and robustness of 85% under varying driving conditions and
fault types. Notably, this solution is ‘out-of-the-box,’ requiring no expert parameterization
and supporting predictive maintenance and condition monitoring. However, its limitation
lies in being restricted to offline analysis, precluding real-time application [6]. Another
significant contribution was the development of a Random Forest model to predict air
compressor failures in trucks using historical vehicle data and maintenance logs. By em-
ploying beam search for feature selection, the model achieved 77% accuracy and estimated
economic savings of 1.66 million euros. This approach proved effective for noisy and
imbalanced data typical of the automotive industry, but its use is constrained by the low
frequency of available data and its offline-only application [7]. The development of models
employing algorithms such as decision trees and support vector machines (SVM) has also
been studied to prevent failures in critical components, including transmissions, electrical
systems, and batteries. The results included specific metrics such as an 80% accuracy rate in
predicting critical events for fleets, alongside benefits like optimized maintenance schedules
and reduced downtime. Advantages included extending component life and integrating
IoT data for real-time analysis. However, limitations were identified in handling noisy and
missing data, as well as challenges in implementing interpretable models for production en-
vironments [8]. Another approach to enhance operation and maintenance management in
the automotive industry was developed using scrap crawlers to collect historical data and
ID3 decision tree algorithms to classify faults and prioritize maintenance actions. Results
indicated high accuracy in fault classification, emphasizing the scalability and practicality
of the approach. Advantages included task automation and reduced response time to
failures. However, limitations involved reliance on small datasets and the inability of the
ID3 algorithm to efficiently handle continuous variables [9]. In the agricultural domain,
a study applied supervised autonomous learning to manage the maintenance of tractor
engines. Using decision tree classification algorithms, the study simulated fuel injection
system failures and collected vibration data to diagnose engine conditions. The results
demonstrated 95% overall classification efficiency and up to 97.5% in individual training
sessions, validating its applicability for predictive diagnostics. Advantages included quick
fault identification and resource savings, while limitations centered on reliance on a limited
dataset and the need for manual intervention to characterize the data [10].

These studies have demonstrated how the application of AI models allows the de-
tection of patterns that can anticipate failures, thereby optimizing asset management and
consequently extending their useful life. In the context of urban transport fleets, where the
availability and reliability of vehicles are crucial to maintaining the quality of service pro-
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vided, digitized maintenance offers a unique opportunity to improve operational efficiency,
reduce downtime, and extend the lifespan of critical components. The ability to monitor
fleet health in real time and predict the need for intervention enables a much more dynamic
and personalized approach tailored to the specific usage conditions of each fleet [11,12].

Specifically addressing the use of Machine Learning as a way to improve maintenance
management in urban bus fleets, various studies have been conducted to demonstrate
its potential. The COSMO approach proposes a self-organized system model for fault
detection in urban buses, leveraging sensor data already available in the vehicle. This
method, validated with both simulated and real-world data, successfully detected all
cooling system failures in tests conducted on an urban bus. While it offers the advantage of
adapting to different vehicle configurations without the need for prior modeling, it faces
limitations in detection accuracy for critical systems or those with complex variability [13].
The ICOSMO is an improved version of the previous study, which introduces an IoT
architecture combined with semi-supervised Machine Learning to enhance sensor selection
for predictive maintenance in public bus fleets. Validated through a prototype implemented
at the Société de Transport de l’Outaouais (STO), this system processed 1 GB of J1939
data daily, enabling anomaly detection in critical sensors such as engine speed and fluid
temperatures. Although the initial implementation was limited to a single bus, the approach
demonstrated scalability potential for entire fleets, despite challenges related to costs and
infrastructure requirements [14]. Another study on anomaly detection in fleet monitoring
used unsupervised learning techniques, including K-means and hierarchical clustering, to
identify abnormal behavior in time series data collected via the Fleet Management System
(FMS) protocol. Parameters such as fuel consumption rate (liters per kilometer) were
analyzed using data from 214 buses over six months. The results highlighted the algorithms’
ability to detect outliers. However, challenges include incomplete data for some buses and
a limited number of available signals, hindering more robust implementation [15].

Additionally, more advanced techniques based on Deep Learning have been explored,
which utilize neural networks composed of multiple layers to extract complex patterns from
large datasets. A predictive maintenance system was developed using an IoT architecture
integrated with artificial intelligence, designed to monitor bus fleets. This system combines
a multilayer perceptron artificial neural network (MLP-ANN) to predict engine wear with
driver behavior analysis using the K-means clustering algorithm. The results indicate a
low mean squared error (MSE), confirming the model’s accuracy. The main limitations
include the restricted capacity to connect additional sensors to the integrated hardware [16].
Another study compares remaining useful life (RUL) prediction models for turbocharger
actuators in diesel engines, focusing on TabNet, RNN, and the Accelerated Weibull Failure
Time (AWFT) model. AWFT demonstrated superior performance, achieving a concordance
of 0.94 and approximately 15% lower error, making it suitable for defining fleet-specific
preventive maintenance intervals. A combination of reliability data, electronic module
records, and operational characteristics such as coolant temperature and average speed
was used. Limitations included data dispersion and the difficulty of capturing random
failures, which account for 10% of cases. Despite these challenges, the approach facilitates
proactive replacements, reducing unexpected failures and enhancing system reliability [17].

As part of Industry 4.0, these techniques represent an innovative approach to overcom-
ing the challenges of vehicle maintenance management. However, many of these models
are considered “black boxes”, meaning they produce predictions without offering a clear
explanation of how they were reached. To overcome this limitation, Explainable Artificial
Intelligence (XAI) has emerged as an evolving field with the primary goal of making AI
models more transparent and understandable to humans, thereby enabling better insight
into how and why certain decisions are made [18,19].



Information 2025, 16, 74 4 of 24

In the field of predictive maintenance, various studies have explored the use of XAI
to improve the interpretability of their models, employing a range of techniques such as
Shapley Additive Explanations (SHAP), Partial Dependence Plots (PDP), and Individual
Conditional Expectation (ICE), among others [20–23]. Specifically for buses, the application
of XAI in maintenance management has been examined in previous studies, albeit in a
more limited manner. One study relied on data obtained from maintenance records and
snapshots of the electronic control module during repair moments [24], while another
merely presented the results of applying one of these techniques [25]. Additionally, both
studies restricted their use to SHAP, without delving into other techniques that could
provide different perspectives.

As noted, despite various studies focused on the application of Machine Learning and
explainable artificial intelligence techniques in the field of maintenance management, their
application in urban bus fleets using On-Board Diagnostics (OBDII) data remains virtually
nonexistent. Furthermore, existing research tends to focus on a single technique, failing
to explore a broader range of methods, leaving a significant gap in the literature. Given
that modern buses are equipped with advanced technological infrastructure capable of
generating and transmitting real-time data for subsequent processing and analysis, it is
essential to present a comprehensive methodology that integrates Machine Learning with
multiple XAI techniques. This approach would offer maintenance managers more robust
tools to address fleet challenges, promoting more digitalized maintenance practices aligned
with the principles of Industry 4.0.

To demonstrate the potential of these techniques in modern urban bus fleets using
data from the OBDII, this study presents a use case focused on the regeneration process of
the diesel particulate filter (DPF). The operation of the DPF under urban service conditions
contributes to accelerated engine oil degradation, and the lack of documentation on the
control system limits the maintenance department’s ability to propose effective solutions.
This study combines Machine Learning with XAI techniques to analyze the three states
governing the DPF regeneration process, identifying the most influential variables from the
electronic control unit (ECU) and highlighting the value of XAI in optimizing maintenance
management. The article is structured as follows: Section 2 details the addressed problem
and the available infrastructure; Section 3 describes the methodology employed and the
tools used; Section 4 presents the results obtained and the proposed solutions; and finally,
Section 5 discusses the study’s conclusions.

2. Context of the Case Study
2.1. Accelerated Degradation in Engine Oil

Vehicles must comply with the European Emissions standard, which establishes,
among other limitations, a limit on the amount of soot they can generate. The soot is
captured in the diesel particulate filter (DPF), which is part of the exhaust after-treatment
system. When the DPF is filled, the ECU requests a cleaning through the process of
“regeneration” which involves increasing the exhaust gas temperature (from approximately
240 ◦C to 500 ◦C) to promote the burning of the particles trapped in the DPF (Figure 1). In
service, a complete regeneration usually takes around 30 min, but the vehicle must be able
to maintain such a temperature. To achieve this, high-demand operating conditions are
required. If the vehicle cannot maintain these conditions, the regeneration will be stopped
and postponed. These failed regeneration attempts negatively impact the engine oil, as the
engine is forced to operate in suboptimal conditions multiple times.
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Figure 1. Overview of the After-treatment System Used in the Studied Bus.

For buses in urban service, it is difficult to achieve such conditions, which reduces the
mileage between oil changes. Urban buses typically operate under demanding conditions
characterized by frequent stops, low average speeds, and prolonged idling times. Conse-
quently, maintenance—conducted in-house by the urban transport company—becomes sub-
stantially more costly, particularly given that this issue affects over 200 vehicles equipped
with the after-treatment system.

To address the problem and propose solutions, the first step is to fully understand
the states related to the regeneration process. From the ECU, it is possible to obtain the
variable “Regeneration Status”, a categorical variable that indicates the phase in which
the process is. Expert knowledge provides additional information for most of the states
(Table 1). However, detailed information on the operating conditions that trigger each state
is lacking. Therefore, the objective is to analyze and comprehend these varying operating
conditions to identify the specific triggers for each regeneration state.

Table 1. DPF regeneration status.

Status Name Information

2 Disabled No regeneration

4 Temperature control Change on engine operating conditions; only half
of the cylinders are working alternately

8 Fuel injection Seventh fuel injector enabled. Fuel is injected
directly into the exhaust gases

32 Enabled No information available

For this purpose, the study was conducted on a 12 m EURO VI-D diesel hybrid bus
(Table 2) that primarily operates on intercity routes. This bus was selected due to its
consistent operation on a single route, reducing variability and ensuring more reliable
data analysis. Data collected over a 7-month period were used and obtained through the
OBDII system.

Table 2. Engine Specifications of the EURO VI-D Diesel Hybrid Bus.

Maximum power [kW]@ 2200 rpm 220

Maximum torque [Nm] 1200

Bore Diameter [mm] 110

Displacement [cm3] 7700

Stroke [mm] 135

Number of cylinders 6

Engine position Vertical
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2.2. Technological Infrastructure and Data Collection

The ECU of the after-treatment system can provide 99 variables to explore, related not
only to the DPF but also to other components of the system, such as:

• Diesel oxidation catalyst (DOC): Converts pollutants like carbon monoxide and hydro-
carbons into carbon dioxide and water.

• Selective catalytic reduction (SCR): A system that uses urea to transform nitrogen
oxides (NOx) into nitrogen and water.

• Ammonia blocker: A filter designed to prevent the release of residual ammonia in the
SCR system, ensuring that only clean gases are emitted into the environment.

These variables include parameters such as temperatures and pressures in the exhaust
gases and NOx measurements, among others. Additionally, there are calculated variables
by electronics, such as the time since the last regeneration.

After reviewing the literature on the phenomenon and historical alarms presented
in the ECU, and with the support of expert knowledge, the relevant variables that could
provide insights into the different states of the process were selected. Initially, 12 variables
from the after-treatment system’s ECU were selected for this purpose (Table 3).

Table 3. Selected variables for the case study.

Variables Unit

SCR NOx outlet ppm

SCR NOx inlet ppm

DPF Backpressure inlet mbar

DPF Backpressure outlet mbar

DPF regen state -

Engine speed rpm

DOC inlet temp ◦C

DPF outlet temp ◦C

SCR outlet temp ◦C

DOC outlet temp ◦C

Speed km/h

Duration min

The available telematics and storage infrastructure, provided by a third-party company,
facilitated the downloading of data in CSV format for subsequent processing and analysis.
The data were analyzed using the Python programming language along with libraries such
as pandas, matplotlib, and scikit-learn. One of the most significant limitations encountered
during data analysis was the sampling frequency, which is set at 3 min.

3. Materials and Methods
In the field of Machine Learning, there are different approaches. In this study, the most

suitable methodology was selected based on the nature of the available data. For our case,
we have a dataset of variables (known as features) that includes operational parameters
extracted from the OBDII system, such as engine speed and vehicle speed, among others.
Additionally, we have an output variable or target, which, in this case, represents the
different regeneration states in the DPF. Given this context, a supervised learning approach
focused on classification was chosen, as it allows modeling the relationship between
the input variables and the system states during the regeneration process. Alternative
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approaches, such as unsupervised learning and regression, were also considered but found
unsuitable for this study. Unsupervised learning methods, while useful for exploratory
analysis and clustering, do not leverage the labeled target variable available in this dataset,
limiting their applicability in this context. Similarly, regression-based methods were not
appropriate because the target variable is categorical and represents nominal states of the
regeneration process, which are best addressed through classification techniques. The
choice of supervised classification ensures that the methodology aligns with the nature of
the data and the study’s objectives.

3.1. One vs. Rest

As previously mentioned, the study problem involves supervised classification, mean-
ing the model is trained on a labeled dataset where each instance is accompanied by a
known label or class. This implies that for specific values of variables such as speed and
engine regime, there is a particular regeneration process state associated. Additionally, the
target label is a nominal multiclass variable, which means the target variable can take on
different values, representing each state of the DPF regeneration process. These values do
not follow a hierarchical order; rather, each class is a unique and independent category.
An example of a nominal classification would be a vehicle’s fuel type (gasoline, diesel, or
hydrogen), where the categories have no intrinsic order.

Given that the objective is to understand the specific conditions that promote the
activation of each state, a One-vs-Rest (OvR) approach was chosen. This strategy transforms
a multiclass problem into several binary classification problems, allowing each class to be
individually compared to all others. In this case study, this involves generating three binary
models, each focused on distinguishing a specific DPF regeneration state from the other
possible states:

• Model 1: Classifies Regeneration State 4 against all other states.
• Model 2: Classifies Regeneration State 8 against all other states.
• Model 3: Classifies Regeneration State 32 against all other states.

The One-vs-Rest approach was selected to provide a comprehensive analysis of the
conditions that activate each specific state of the DPF regeneration process. As previously
mentioned, the OvR method breaks the problem into simpler binary classification tasks,
allowing each state to be analyzed independently against all others. This decomposition
offers several advantages: it improves interpretability by isolating the unique features and
operating conditions that influence the activation of each state, facilitates the identification
of patterns that might be obscured in a global multiclass approach, and enables customized
tuning for each binary classifier.

3.2. Exploration Data Analysis and Preprocessing

Once the target variable was defined, the first step involved an exploratory data analy-
sis (EDA), a critical phase in Machine Learning projects that often accounts for a significant
portion of the overall project timeline. This process helps identify and understand the most
relevant data characteristics and makes necessary adjustments to enhance the effectiveness
of the models being developed.

Initially, data points not directly related to the regeneration process, such as those
where regeneration was inactive (State 2), were discarded. This decision allows the anal-
ysis to focus on moments of interest—specifically, those when regeneration occurs—and
additionally helps avoid diluting relevant patterns with data from normal operating condi-
tions. Moreover, certain data points deemed anomalous, particularly those representing
regeneration events of unusually short durations, were removed, as they might indicate
errors in data collection or events that do not reflect regular DPF operation.



Information 2025, 16, 74 8 of 24

A feature engineering process was also carried out, which is a critical step in Machine
Learning that involves transforming raw data into meaningful features to enhance a model’s
predictive capacity. By leveraging domain expertise and empirical analysis, this process
aims to enrich the dataset by creating variables that effectively represent key system
dynamics, capturing underlying patterns and relationships that might otherwise remain
hidden. For instance, it facilitates the integration of temporal patterns or derived metrics,
adding valuable context to the system under analysis. While feature engineering often
results in significant performance improvements—such as increased model accuracy and
interpretability—it also presents challenges. Specifically, creating excessively derived
features can increase model complexity, thereby heightening the risk of overfitting and
reducing generalizability.

Finally, visualizations such as heatmaps were utilized to analyze potentially strong
correlations between variables using Pearson’s correlation coefficient. This tool was particu-
larly useful for evaluating the variables related to temperature in the after-treatment system,
where high correlations were expected due to the proximity and arrangement of the sensors.
This issue is relevant because strong interdependence between variables can impact the
model’s performance by introducing redundancy and potentially causing overfitting. For
this reason, the variable with the strongest correlation to the target was selected, ensuring
that the model worked with the most relevant features while reducing multicollinearity.

3.3. Classification Algorithms

To address the supervised classification problem in this study, several Machine Learn-
ing algorithms were implemented. These algorithms, which have been previously demon-
strated as effective tools for classification tasks in predictive maintenance [4,26–28], were
evaluated using different hyperparameter combinations through grid search, selecting the
most optimal configuration for each model. The algorithms tested included XGBoost (ver-
sion 2.1.2), LightGBM (version 4.5.0), Random Forest, and Support Vector Machine (Scikit
learn version 1.5.1). For each state, the algorithm demonstrating the best performance
was selected.

• XGBoost: Extreme Gradient Boosting is an advanced Machine Learning algorithm that
builds on decision tree models to achieve high predictive accuracy. It is known for
its efficiency and scalability, making it suitable for handling large datasets. XGBoost
introduces unique features like sparsity awareness, which improves performance on
datasets with missing values, and a weighted quantile sketch, allowing it to efficiently
manage weighted data. Its optimized design enables fast computations and parallel
processing, making it a popular choice for data scientists tackling complex classifica-
tion and regression tasks. For XGBoost, the key hyperparameters adjusted during the
tuning process were n_estimators, max_depth, and learning_rate.

• LightGBM: Light Gradient-Boosting Machine is a highly efficient Machine Learning
algorithm designed to handle large-scale data by using gradient boosting with decision
trees. Developed by Microsoft, it introduces methods like Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) to speed up training and
reduce computational demands without sacrificing accuracy. These techniques enable
LightGBM to work efficiently with large datasets and high-dimensional feature spaces,
making it a popular choice for tasks like classification. In the case of LightGBM, the
hyperparameters optimized included n_estimators, max_depth, and learning_rate.

• Random Forest: The Random Forest algorithm is a widely used ensemble method
that improves accuracy and robustness by combining the predictions of multiple
decision trees. Each tree is built using a randomly selected subset of the data and
features, reducing the risk of overfitting and enhancing the model’s resilience to
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noisy data. This method makes Random Forests particularly effective for handling
datasets with a high number of input variables, making them suitable for complex
classification and regression tasks. For Random Forest, the hyperparameters tested
included n_estimators, max_depth, and min_samples_split.

• SVM: Support Vector Machines are a classification method used to separate data
into distinct classes by finding an optimal boundary. This boundary is defined as a
hyperplane that maximizes the margin between different classes, allowing for better
separation and classification accuracy. SVMs can also handle complex, non-linear
data by mapping inputs into a higher-dimensional space through kernel functions,
enabling them to find the best-separating hyperplane even when classes overlap in
lower-dimensional spaces. For SVM, the primary hyperparameters tuned were C
and kernel.

To evaluate the performance of the classification algorithms, metrics such as confusion
matrix, precision, recall, and F1-score were employed, providing insights into the effective-
ness of the models’ predictions. Precision measures the proportion of correctly predicted
positive instances out of all predicted positives, while recall (or sensitivity) reflects the
model’s ability to correctly identify actual positive instances. The F1-score, a balanced
metric combining precision and recall, was used as the primary criterion to determine the
best-performing algorithm in each case.

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)

F1 Score = 2 × Precision × Recall
Precision + Recall

3.4. Explainability Techniques

Starting with SHAP (Shapley Additive Explanations), this explainability technique is
based on cooperative game theory and provides a robust framework for understanding
the contribution of each feature to the outcome of a prediction. This technique is highly
versatile and applicable to a wide range of models, including tree-based models, linear
regressions, and deep neural networks. SHAP enables the generation of local explanations
by calculating SHAP values for individual data instances. These values precisely quantify
how much each feature contributes to the outcome of a specific prediction. Furthermore,
by aggregating SHAP values from multiple instances, global explanations are obtained,
offering a comprehensive view of the model’s behavior while highlighting the relative
importance and average impact of each feature across the entire dataset [20,29,30]. Ap-
plied to the studied problem, SHAP analyzes the operational data of the bus, such as
vehicle speed, engine regime, and pressure at the DPF inlet, among other key variables.
Each of these features is evaluated to determine its influence on the model’s prediction.
This influence is quantified through SHAP values, which decompose the prediction into
contributions attributable to each feature. For instance, SHAP can identify that, for the
activation of a specific state, the DPF inlet pressure and engine regime are critical factors.
Additionally, SHAP not only measures the direct impact of each feature but also considers
the effect of its absence, enabling the evaluation of its relative importance in the context of
the other variables.

Other relevant techniques include Partial Dependence Plots (PDP) and Individual
Conditional Expectation (ICE) plots, which are data visualization and statistical analysis
tools used to understand how a specific feature affects the predicted outcome of a model
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while keeping the other features constant. PDPs show the average effect of a feature on the
target variable, allowing for a general analysis of the relationship between the feature and
the model’s predictions. In contrast, ICE plots provide a more detailed and granular view
by displaying multiple curves, each representing the feature’s impact on the outcome for
individual data instances. ICE plots enable the observation of individual variations and
potential non-linear effects or interactions, while PDPs summarize the general behavior of
the model concerning a particular feature [20,29,30]. For the case study, these techniques
evaluate a specific parameter, such as bus speed, by varying it while keeping other variables
like engine regime and temperature constant. PDPs would then show how changes in
speed affect, on average, the probability of activating the specific state in that model, while
ICE plots would allow for the analysis of whether these relationships are consistent across
different observations or significantly vary depending on the context.

4. Results
4.1. Exploration Data Analysis

As previously mentioned, the first phase of the analysis focused on data cleaning to
ensure that the information used was both relevant and representative of the phenomenon
under study. To achieve this, data points corresponding to State 2 of the regeneration
process, which is associated with the inactive condition, were removed (Table 4). This state
does not provide significant information about the active conditions of the process and,
therefore, is not relevant to the objective of the study.

Table 4. Data Distribution by Percentage for Each Regeneration State.

DPF Regeneration State DPF State Data Distribution (%)

2 96.49
8 2.56
4 0.79
32 0.17

Subsequently, anomalous data points (outliers) were identified and removed. In this
case, outliers were defined as records where the regeneration process was activated and
deactivated within a 3-min interval. This behavior does not reflect the normal functioning
of the system, which typically takes approximately 20 to 40 min, and could result from
data collection errors or atypical, non-representative conditions. This cleaning process led
to the removal of 16 points, ensuring that subsequent analyses focused solely on normal
operating conditions.

The next step involved analyzing correlations among key system variables. The
after-treatment system includes multiple temperature sensors distributed throughout the
mechanism. Due to the physical proximity of these sensors and the thermal nature of
the phenomenon, high correlations among these variables were expected. This was con-
firmed in Figure 2, which shows a considerable correlation between the various recorded
temperature variables.

In Machine Learning, high correlation between variables can lead to redundancies and
negatively impact the stability of predictive models. For this reason, only one temperature
variable was selected for inclusion in the study. The selection criterion was the correlation
with the target variable, which, in this case, represents the DPF regeneration state. This
target variable had already been transformed into three binary variables using the one-vs-
rest approach, representing the different regeneration states.
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Figure 2. Correlation analysis for the temperatures in the after-treatment system.

After analysis, it was determined that the temperature recorded at the outlet of
the diesel oxidation catalyst (DOC) exhibited the highest correlation with the regener-
ation states (Figure 3). Therefore, this variable was included in the final dataset for
subsequent analyses.
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The final step involved feature engineering, which consists of creating new variables
to better capture the relationships between existing variables and their influence on the
regeneration process. Specifically, it was considered that temperature increases might have
a significant impact on system behavior and the activation of regeneration states. To reflect
this phenomenon, a new variable was created to measure the rate of temperature change
over time for each recorded instance. This variable was calculated as follows:

Temp Change Rate =
∆TempDOC
∆Duration
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where ∆TempDOC represents the temperature difference between two consecutive instances
and ∆Duration is the corresponding time interval. This new feature allows for a more precise
analysis of the system’s thermal dynamics and their influence on the regeneration states.

Additional variables were calculated to better capture the system’s dynamics. These
include the pressure delta in the DPF and the NOx delta in the SCR. The pressure delta in
the DPF provides critical information about the resistance to gas flow through the filter,
serving as a key indicator for estimating DPF clogging. Meanwhile, the NOx delta in the
SCR assesses the efficiency of the selective catalytic reduction system, offering a precise
measure of the change in NOx concentration before and after the catalyst.

4.2. Model Development

The results from applying the aforementioned algorithms are presented in Figures 3–5
and Table 5, with the optimal hyperparameters detailed in Table 6. As observed, the models
generally perform better when predicting classes where State 8 has greater representation,
directly influenced by the data imbalance. For this reason, the F1-score for the minority
class was prioritized as the key metric, as it provides a more precise evaluation of the
model’s performance in underrepresented cases. The specific results for each state are
as follows:

• State 4: The LightGBM model demonstrated slightly better performance than XGBoost
in terms of F1-score for predicting the minority class (Class 1).

• State 8: For this state, the LightGBM model also demonstrated the best results in terms
of F1-score for the minority class (class 0).

• State 32: For this state, the metrics for the minority class (Class 1) were significantly
impacted by the data imbalance. However, the results obtained with the LightGBM
model, which achieved the best metrics among the evaluated models, remain valu-
able. These results can help identify preliminary patterns in the regeneration process
associated with this state through XAI.

Table 5. Performance Metrics for Each Model across DPF Status.

State Model Name Class 0
Precision

Class 0
Recall

Class 0
F1-Score

Class 1
Precision

Class 1
Recall

Class 1
F1-Score

4

Random Forest 0.9703 0.9820 0.9761 0.9155 0.8667 0.8904
LightGBM 0.9850 0.9850 0.9850 0.9333 0.9333 0.9333
XGBoost 0.9848 0.9730 0.9789 0.8861 0.9333 0.9091

SVM 0.9788 0.9700 0.9744 0.8718 0.9067 0.8889

8

Random Forest 0.9259 0.7979 0.8571 0.9419 0.9809 0.9610
LightGBM 0.9130 0.8936 0.9032 0.9684 0.9745 0.9714
XGBoost 0.9419 0.8617 0.9000 0.9596 0.9841 0.9717

SVM 0.7596 0.8404 0.7980 0.9507 0.9204 0.9353

32

Random Forest 0.9792 0.9666 0.9728 0.4583 0.5789 0.5116
LightGBM 0.9818 0.9717 0.9767 0.5217 0.6316 0.5714
XGBoost 0.9794 0.9769 0.9781 0.5500 0.5789 0.5641

SVM 0.9831 0.8946 0.9367 0.2407 0.6842 0.3562
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Table 6. Hyperparameter Tuning Results for Each Model and Status.

State Model Name Best Params

4

Random Forest {‘max_depth’: 10, ‘min_samples_split’: 4, ‘n_estimators’: 140}
LightGBM {‘learning_rate’: 0.1, ‘max_depth’: 10, ‘n_estimators’: 120}
XGBoost {‘learning_rate’: 0.1, ‘max_depth’: 6, ‘n_estimators’: 130, ‘scale_pos_weight’: 10}

SVM {‘C’: 10, ‘kernel’: ‘rbf’}

8

Random Forest {‘max_depth’: 10, ‘min_samples_split’: 2, ‘n_estimators’: 120}
LightGBM {‘learning_rate’: 0.1, ‘max_depth’: 12, ‘n_estimators’: 110}
XGBoost {‘learning_rate’: 0.1, ‘max_depth’: 7, ‘n_estimators’: 120, ‘scale_pos_weight’: 10}

SVM {‘C’: 1, ‘kernel’: ‘rbf’}

32

Random Forest {‘max_depth’: 10, ‘min_samples_split’: 4, ‘n_estimators’: 120}
LightGBM {‘learning_rate’: 0.01, ‘max_depth’: 10, ‘n_estimators’: 150}
XGBoost {‘learning_rate’: 0.1, ‘max_depth’: 6, ‘n_estimators’: 100, ‘scale_pos_weight’: 10}

SVM {‘C’: 1, ‘kernel’: ‘rbf’}

4.3. Results from XAI Techniques
4.3.1. SHAP

SHAP offers a versatile range of tools to decompose and quantify the impact of
each variable on the model’s predictions, thus facilitating the understanding of complex
decisions. In this study, two key representations have been utilized:
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• Beeswarm Plot: This tool visualizes the impact of all variables on the predictions
in an aggregated manner. Each point in the plot represents an instance, with colors
reflecting the magnitude of the variables (ranging from low to high). Additionally,
variables are sorted from the highest to lowest influence on the model, making it easier
to identify which factors have the most significant impact on predictions.

• Dependence Plot: This SHAP tool provides an in-depth analysis of how a specific
variable affects the model’s predictions, also considering its interaction with other
variables. To enhance the interpretability of the presented plots, the scaling applied
during model generation was reversed. However, it is essential to note that the SHAP
values were generated using scaled data.

Figures 6 and 7 show the Beeswarm Plots for the models predicting States 4 and 8. In
both cases, the temperature at the DOC emerges as the most influential factor in predicting
these states. For State 8, high-temperature values are associated with its activation, whereas
for State 4, the activation occurs at lower temperature values.
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For State 4, low values of speed and DPF pressure delta significantly contribute to
the activation of this state. Conversely, State 8 displays the opposite behavior, with higher
values of speed and engine regime associated with its activation. Another variable with a
defined behavior for this state is duration, where higher values tend to favor its activation.
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NOx in the SCR inlet is the second most influential variable for States 4 and 8. However,
its behavior is peculiar, as it seems to exhibit low values throughout the range, with a
cluster of high points. To examine this behavior in more detail, Figures 8 and 9 present the
SHAP dependence plots for this variable, where the interaction with the DPF pressure delta
is also highlighted. The cluster of high points is associated with elevated DPF pressure
delta values, which makes physical sense considering that a higher-pressure delta implies
a greater gas flow and, consequently, a higher NOx reading. A significant insight is that
during these high-demand moments, likely linked to acceleration events, the influence of
the variable (as represented by SHAP values) tends to approach zero. This suggests that
under such conditions, the model no longer considers NOx at the SCR inlet as a key factor
in predicting the states.
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this state. By combining these two variables, it becomes evident that State 32 is influenced 
by these initial moments where significantly negative NOx delta values are recorded. 

Figure 9. SHAP Dependence Plot for NOx inlet in the SCR with DPF Pressure Delta (State 8).

Regarding State 32, the DOC outlet temperature also emerged as the most influential
variable (Figure 10). However, its impact on the prediction is less straightforward compared
to States 4 and 8. In this case, both the activation and non-activation of the state are
associated with high and low-temperature values, reflecting a more complex behavior.
Additionally, variables related to duration and the NOx delta also have a significant
influence on the prediction. Higher values of both variables are predominantly associated
with the non-activation of State 32.
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Figure 10. Feature Contribution Analysis Using Beeswarm Plot (State 32).

The dependence plot for the NOx delta (Figure 11) reveals interesting behavior. Multi-
ple data points exhibit negative NOx delta values, which lack physical plausibility, as this
metric should represent a decrease or, at worst, remain constant. However, these negative
values appear to be associated with the activation of State 32, showing a clear trend: more
pronounced negative values are linked to positive SHAP values. Additionally, the analysis
incorporates duration as a secondary variable (color axis), corroborating the findings from
the Beeswarm plot: low duration values are associated with the activation of this state.
By combining these two variables, it becomes evident that State 32 is influenced by these
initial moments where significantly negative NOx delta values are recorded.
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Figure 11. SHAP Dependence Plot for NOx Delta in the SCR with Duration (State 32).

Regarding DOC temperature, SHAP values show two notable peaks: one around
350 ◦C and another above 500 ◦C, followed by a cluster of points driving the prediction
towards non-activation within the 550–600 ◦C range (Figure 12). These activation peaks
appear to be linked to the previously observed low NOx delta values. Despite the analysis
conducted using several dependence plots, this behavior in temperature could not be
conclusively explained. It is important to consider that, as mentioned earlier, the model’s
performance shows room for improvement, with metrics that have yet to reach optimal
levels. This limited performance may hinder the model’s ability to identify clear and
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consistent patterns, resulting in predictions that are not entirely interpretable. Consequently,
these atypical behaviors could largely stem from the lack of representativeness in the
training data for the minority class (activation of this state).
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(State 32).

Given that State 8 is clearly associated with high temperatures in the system—conditions
that are ideal for regeneration—the goal is to identify controllable variables that can promote
its activation. These variables include vehicle speed, engine regime, and torque, the
latter being indirectly represented by the pressure delta in the DPF. From the Beeswarm
analysis, it has been shown that both speed and regime have a considerable impact on
state activation.

Figures 13 and 14 present the Partial Dependence Plots for these variables. For speed,
it is observed that its influence remains minimal up to 30 km/h; however, beyond this
threshold, its impact becomes significant, promoting state activation. Regarding the engine
regime, parabolic behavior is detected after idling values (~600 rpm). There is a decrease
in influence around 800 rpm, followed by a notable increase in impact between 1000 and
1200 rpm.

Information 2025, 16, 74 18 of 24 
 

 

Beeswarm analysis, it has been shown that both speed and regime have a considerable 
impact on state activation. 

Figures 13 and 14 present the Partial Dependence Plots for these variables. For speed, 
it is observed that its influence remains minimal up to 30 km/h; however, beyond this 
threshold, its impact becomes significant, promoting state activation. Regarding the en-
gine regime, parabolic behavior is detected after idling values (~600 rpm). There is a de-
crease in influence around 800 rpm, followed by a notable increase in impact between 
1000 and 1200 rpm. 

 

Figure 13. SHAP Dependence Plot for Speed with Engine Speed (State 8). 

 

Figure 14. SHAP Dependence Plot for Engine Speed with DPF Pressure Delta (State 8). 

4.3.2. PDP/ICE 

Figures 15–18 present the univariate plots obtained by applying Partial Dependence 
Plot (PDP), represented by the orange line (average), and Individual Conditional Expec-
tation (ICE), represented by the blue lines, for DOC temperature and DPF pressure delta 
for States 4 and 8. Previous analyses using SHAP identified DOC temperature as a key 
factor in predicting these states. This behavior is reaffirmed in the presented plots, where 
the partial dependence plot of DOC temperature ranges from values close to 1 to approx-
imately 0, being the only variable that displays such a wide range in terms of average 
impact. It is important to note that the temperature values correspond to the scaled data 
used during model generation. Regarding the pressure delta and the rest of the variables, 
a common behavior is observed, stemming from the inherent limitation of these tech-
niques (results are obtained by modifying only the variable of interest while keeping the 

Figure 13. SHAP Dependence Plot for Speed with Engine Speed (State 8).



Information 2025, 16, 74 18 of 24

Information 2025, 16, 74 18 of 24 
 

 

Beeswarm analysis, it has been shown that both speed and regime have a considerable 
impact on state activation. 

Figures 13 and 14 present the Partial Dependence Plots for these variables. For speed, 
it is observed that its influence remains minimal up to 30 km/h; however, beyond this 
threshold, its impact becomes significant, promoting state activation. Regarding the en-
gine regime, parabolic behavior is detected after idling values (~600 rpm). There is a de-
crease in influence around 800 rpm, followed by a notable increase in impact between 
1000 and 1200 rpm. 

 

Figure 13. SHAP Dependence Plot for Speed with Engine Speed (State 8). 

 

Figure 14. SHAP Dependence Plot for Engine Speed with DPF Pressure Delta (State 8). 

4.3.2. PDP/ICE 

Figures 15–18 present the univariate plots obtained by applying Partial Dependence 
Plot (PDP), represented by the orange line (average), and Individual Conditional Expec-
tation (ICE), represented by the blue lines, for DOC temperature and DPF pressure delta 
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4.3.2. PDP/ICE

Figures 15–18 present the univariate plots obtained by applying Partial Dependence
Plot (PDP), represented by the orange line (average), and Individual Conditional Expecta-
tion (ICE), represented by the blue lines, for DOC temperature and DPF pressure delta for
States 4 and 8. Previous analyses using SHAP identified DOC temperature as a key factor in
predicting these states. This behavior is reaffirmed in the presented plots, where the partial
dependence plot of DOC temperature ranges from values close to 1 to approximately 0,
being the only variable that displays such a wide range in terms of average impact. It is
important to note that the temperature values correspond to the scaled data used during
model generation. Regarding the pressure delta and the rest of the variables, a common
behavior is observed, stemming from the inherent limitation of these techniques (results are
obtained by modifying only the variable of interest while keeping the rest constant). PDP
assumes a premise of independence between variables, which does not always hold true for
the analyzed data. This limitation is evident in the ICE lines, which exhibit varied behaviors
and divergent trajectories depending on individual instances. When these trajectories are
averaged to generate the PDP, the variable’s impact may appear diminished or smoothed,
making it more challenging to assess its isolated influence.
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Figures 19 and 20 present the bivariate plots of this technique, which allow for the
analysis of interactions between the two variables. This approach partially overcomes
one of the previously mentioned limitations related to the lack of independence among
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variables. The presented plots show the combination of DOC temperature with vehicle
speed for States 4 and 8. In both cases, a region is identified where speed does not appear to
significantly influence the probability of state activation. This finding aligns with previous
analyses conducted using SHAP and univariate PDP, which highlighted temperature as
the most determining factor in predicting these states. However, in the intermediate zones
of the plots, distinct patterns in the form of steps begin to emerge, confirming that speed
plays a more significant role in activation. Table 7 serves as a reference for interpreting the
scale of the variables used in the plots. Specifically, in the plot corresponding to State 8, it
is identified that for speeds around 26 km/h, the impact of this variable starts to have a
greater influence on the prediction of the state. This effect becomes more pronounced as
speed reaches values close to 40 km/h, where its influence on the prediction becomes even
more significant.
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Table 7. Original and Scaled Values for DOC Outlet Temperature and Speed.

Percentile
DOC Outlet
Temp (◦C)

Scaled

DOC Outlet
Temp (◦C)
Original

Speed (km/h)
Scaled

Speed (km/h)
Original

10% −2.5207 288 −0.3268 0

15% −1.9217 343 −0.3268 0

20% −1.2413 406 −0.3268 0

25% −0.6875 457 −0.3268 0

30% −0.4989 474 −0.3268 0

35% −0.3212 490 −0.3268 0

40% −0.2196 500 −0.3268 0

45% −0.0745 513 −0.2615 2

50% 0.0543 525 −0.1095 7

55% 0.1087 530 0.0062 10

60% 0.2065 539 0.156 15

65% 0.2886 547 0.3748 22

70% 0.3370 551 0.4818 25

75% 0.3804 555 0.6443 30

80% 0.4348 560 0.7662 34

85% 0.4886 565 0.9475 39

90% 0.5109 567 1.1576 46

4.4. Improvement Proposal

Given that State 8 can be facilitated by controllable variables such as vehicle speed
and engine regime, a strategic improvement plan is proposed to optimize the conditions
for regeneration within the system:

• Rotation between service routes: For urban transport operators with routes that
have varying average speeds, it is recommended to implement a strategic rotation
of buses across these routes. This would ensure that vehicles regularly have the
opportunity to achieve the necessary conditions for proper regeneration processes
with greater frequency.

• Adjustment of the gearbox configuration: Vehicle gearboxes come with different oper-
ating configurations, which dictate the revolutions at which the vehicle shifts up or
down. Currently, the buses operate in an economy mode, causing gear changes at rela-
tively low revolutions (around 900 rpm). To promote higher demand for the vehicle,
the proposal involves modifying the gear shift strategy in the buses, allowing them to
reach higher revolutions and, consequently, the ideal range to facilitate regeneration.

Both approaches have the potential to significantly enhance regeneration conditions,
although they present certain challenges that must be addressed prior to implementation. In
the case of route rotation, it is critical that cities have a sufficient number of routes with high
average speeds to effectively alternate buses. On the other hand, with modifying gearbox
configuration, a detailed analysis is needed to assess whether the reduction in engine oil
degradation outweighs the additional fuel consumption that this strategy might entail.
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5. Conclusions and Future Work
Maintenance management in urban bus fleets has significant potential to benefit from

the integration of advanced data analytics and explainable artificial intelligence (XAI).
By leveraging Machine Learning and interpretability techniques, this study provided a
framework for extracting valuable insights from OBDII data, enabling the identification of
key factors that influence the activation of critical states in diesel particulate filter (DPF)
regeneration processes. The results emphasize the dominant role of DOC outlet temperature
in predicting DPF States 4 and 8, as demonstrated through SHAP, PDP, and ICE analyses.
Notably, State 8 was found to strongly correlate with high temperatures—ideal conditions
for effective regeneration. Additionally, the study identified actionable thresholds for
operational variables, such as vehicle speed (e.g., above 30 km/h) and engine regime
(e.g., 1000–1200 rpm), which align with the conditions favorable for State 8 activations.
Two key strategies were proposed to improve regeneration outcomes: (1) the strategic
rotation of buses between routes with varying speed profiles, which would only require
coordinating the required distribution with the responsible department, and (2) modifying
the operating mode of the automatic gearbox to enable the vehicle to reach higher engine
speeds before shifting to the next gear. However, these strategies are not without challenges.
Route rotation requires an adequate distribution of high-speed routes, while changes to the
gearbox configuration demand careful consideration of fuel consumption impacts versus
potential reductions in engine oil degradation.

This study highlights the value of integrating XAI techniques with operational data to
derive actionable insights, even in the presence of data imbalances—a common challenge
in data-driven approaches. Considering that the tools used to apply these techniques are
open source, their applicability is primarily constrained by the requirement for specialized
technical expertise in data analysis. Future efforts should prioritize real-world validation
of these findings and focus on expanding the dataset to better explore State 32, where the
current results indicate room for improvement. By adopting these tools and strategies,
maintenance management of urban bus fleets can advance toward more efficient, reliable,
and sustainable maintenance practices.
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