
Academic Editor: Nelly Leligou

Received: 23 December 2024

Revised: 14 January 2025

Accepted: 20 January 2025

Published: 23 January 2025

Citation: Chen, R.; Li, C.; Dai, B.;

Zhang, S. A Modifiable Blockchain

Based on the RE-TNG Node Selection

Method. Information 2025, 16, 83.

https://doi.org/10.3390/

info16020083

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Modifiable Blockchain Based on the RE-TNG Node
Selection Method
Rongtao Chen 1, Chao Li 2,*, Bingrong Dai 2 and Shaohua Zhang 3

1 Faculty of Information, Shanghai Ocean University, Shanghai 201306, China; brett_chen1628@163.com
2 Shanghai Development Center of Computer Software Technology, Shanghai 201112, China;

dbr@sscenter.sh.cn
3 Shanghai Business School, Shanghai 200235, China; zhangsh@sbs.edu.cn
* Correspondence: lc@sscenter.sh.cn

Abstract: Blockchain technology, characterized by its immutability and decentralization,
enables the creation of permanent and tamper-resistant records once data are uploaded,
making it widely applicable in scenarios requiring data authenticity and reliability. How-
ever, the immutability of on-chain data poses significant security risks, as erroneous or
illegal data become difficult to correct or remove once recorded. Editable blockchain tech-
nology offers a potential solution for on-chain data modification. Nevertheless, existing
approaches face several challenges, including the impact of malicious nodes on the security
and efficiency of data modification, excessive centralization in the management of modifica-
tion rights and trapdoor keys, and cumulative issues in reputation-based traditional node
grouping methods. To address these challenges, this study proposes an RE-TNG (Reputa-
tion Evaluation-Twice Node Grouping) node selection method and an editable blockchain
scheme based on it. The RE-TNG method employs a two-stage grouping process following
reputation-based node ranking. The first grouping stage uses a Fibonacci sequence-based
rule to mitigate the issue of cumulative reputation values over time. The second group-
ing stage selects high-reputation nodes within groups to ensure the trustworthiness of
selected nodes. Trapdoor keys are collaboratively generated by the high-reputation node
group, achieving decentralized trapdoor management. Modification nodes are randomly
chosen from the high-reputation group, ensuring both integrity and decentralization in
modification authority. Comparative analyses and experimental evaluations against tra-
ditional random node selection and grouping methods demonstrate the feasibility of the
proposed scheme, showcasing a superior performance in terms of security and modification
efficiency.

Keywords: editable blockchain; chameleon hash function; verifiable secret sharing;
group selection

1. Introduction
Blockchain is a decentralized distributed ledger technology that stores data in blocks

and connects them in a chain-like structure, providing a transparent, trustworthy, and
secure method of data storage and transmission. Each block contains a set of transaction
records and the hash value of the previous block, ensuring the integrity and coherence of
the entire chain. Data security is the fundamental goal of blockchain. As a decentralized
storage system, blockchain stores vast amounts of critical data, including transactions, user
information, smart contract code, and intermediate states of execution. These data are vital
and form the primary target for blockchain security [1–3].

Information 2025, 16, 83 https://doi.org/10.3390/info16020083

https://doi.org/10.3390/info16020083
https://doi.org/10.3390/info16020083
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-9289-3827
https://doi.org/10.3390/info16020083
https://www.mdpi.com/article/10.3390/info16020083?type=check_update&version=1

Information 2025, 16, 83 2 of 25

Decentralization and immutability have long been regarded as the unshakable foun-
dational characteristics of blockchain. However, the concept of editable blockchain has
emerged as a controversial research topic in recent years [4]. The “editable” feature intro-
duces a centralized editing authority alongside the decentralized ledger system, potentially
creating a “loophole” where data, even after consensus and being added to the chain, could
face centralization or malicious tampering. While this concern is valid, practical blockchain
applications reveal pressing demands for data editing in areas such as information regula-
tion, privacy protection, data updates, and scalability. Addressing the security challenges
introduced by the centralized editing authority is thus a critical focus for current editable
blockchain solutions [5].

Most existing editable blockchain schemes utilize chameleon hash functions, a concept
introduced by Krawczyk et al. in 1998 [6]. The defining feature of chameleon hash functions
is that, with the possession of trapdoor information, one can modify the hash input without
altering the hash output. In 2017, Ateniese et al. [7] proposed a research scheme for editable
blockchain based on chameleon hash functions. The core idea was to replace the internal
hash function of the blockchain with a chameleon hash function, breaking the second
pre-image resistance of standard hashes. By using the trapdoor information, arbitrary
modifications to the block data can be achieved without changing the hash output. In
recent years, research on achieving editability while ensuring security and data reliability
has made further progress. Li Peili et al. [8] improved upon the work in [7] by incorporating
secret sharing techniques. They distributed the trapdoor information of each node to other
nodes and enabled block ledger modifications only after a modifier node was selected
via consensus voting to recover the trapdoor. Since the modifier node is selected using
a random function, direct interactions between nodes are avoided, improving both the
efficiency of corrections and the degree of decentralization. However, both [7] and [8] rely
on a single node for trapdoor key generation and distribution, which leads to excessive
centralization and compromises system security, running counter to the decentralized
nature of blockchain. Furthermore, if non-trustworthy nodes are present among the
modifier nodes, system security is at risk. Ashritha et al. [9] replaced the secret sharing
techniques used in [7] and [10] with non-linear secret sharing functions, further enhancing
security. In 2021, Gao Wei et al. [11] proposed the concept of a one-time chameleon hash
function, which enables a revisable blockchain where each block is allowed to be modified
at most once. Any subsequent modification to a block would result in a penalty leading
to the collapse of the blockchain. However, these approaches still depends on a single
trusted node. Gu Kang et al. [12] introduced a supervisor group and a reputation-based
evaluation mechanism to determine modifier nodes based on reputation scores. However,
as the number of modification requests increases, reputation accumulation can lead to
the concentration of editing authority in a few nodes, thus continuing to face the issue of
excessive centralization.

In summary, existing editable blockchain solutions based on chameleon hash functions
rely on modifier nodes obtaining trapdoor keys to modify on-chain data. The security of
these schemes depends on the trustworthiness of both the modifier nodes and the nodes
responsible for generating and distributing the trapdoor keys. This reliance results in a
high degree of centralization, contradicting the foundational principle of decentralization
in blockchain systems [13]. Moreover, due to the presence of dishonest or inactive nodes,
there is considerable room for improvement in both modification efficiency and system
security. Current reputation-based node selection methods further exacerbate the issue
by allowing reputation values to accumulate disproportionately over time, leading to a
concentration of authority in a few nodes. This trend toward centralization undermines the
decentralized nature of blockchain.

Information 2025, 16, 83 3 of 25

Therefore, this paper addresses the issues in existing modifiable blockchain schemes,
including the impact of malicious nodes on modification security and the excessive cen-
tralization in node selection and trapdoor management. To tackle these challenges, we
propose a Reputation Evaluation-Twice Node Grouping (RE-TNG) node selection method
and design an improved blockchain modification scheme based on this approach. The
main contributions of this paper are as follows:

Designing a Reputation Evaluation Reward-Penalty Model: This model aims to en-
hance the active participation of nodes in the modification process while increasing the cost
of malicious behavior for dishonest nodes. By doing so, it reduces the negative impact of
both malicious and inactive nodes on modification efficiency and overall system security.

1. Proposing the RE-TNG Node Selection Method: This method involves a two-stage
grouping process based on reputation values. Initially, nodes are ranked by their
reputation values, and the Fibonacci function is applied to perform the first grouping.
Within each group, nodes are further sorted in descending order of reputation. Subse-
quently, a second grouping is conducted to select candidate nodes for modification
and trapdoor management from the initial groups.

2. The Fibonacci-based first grouping addresses the issue of reputation value accumu-
lation prevalent in traditional reputation-based algorithms. The second grouping
resolves the problem of randomly selecting modifier nodes, which often fails to ensure
trustworthiness. Additionally, this method improves upon conventional modifiable
blockchain schemes by limiting the voting and verification processes to nodes with
high reputation scores. This reduces the influence of malicious and inactive nodes on
modification security and efficiency.

3. Enhancing Trapdoor Key Management with Multi-Party Collaboration: The proposed
approach replaces the reliance on a single node for generating trapdoor keys in existing
schemes with a multi-party collaborative key generation mechanism. Furthermore,
the trapdoor recovery and redistribution processes are facilitated through secret
resharing techniques. This improvement addresses the centralization issue inherent
in traditional secret sharing methods that depend on authoritative nodes for trapdoor
key generation and distribution.

2. Related Knowledge
2.1. Chameleon Hash

Hash Functions: The hash chain generated by hash functions provides blockchain
systems with tamper-resistance properties. A hash function is a mathematical function that
maps input data of arbitrary size to a fixed-length output string. Its general formula can be
expressed as follows: h = H(m), where h is the output of the hash function, also known as
the hash value; H represents the hash function; and m is the input message or data.

Hash functions have the following two properties:

• Collision Resistance: It is computationally infeasible to find two distinct inputs m1

and m2 such that H(m1) = H(m2).
• High Sensitivity: Even a small modification in the input data m, such as a single bit

change, will cause a significant change in the output H(m), resulting in a drastically
different hash value.

The above two properties are key reasons for the tamper-resistance of blockchain
systems. The chameleon hash function, proposed by Krawczyk et al. [14] as part of a
new digital signature scheme called “chameleon signatures”, differs from traditional hash
functions. In addition to possessing the collision resistance and high-sensitivity properties
of traditional hash functions, it introduces the concept of a “trapdoor key.” The trapdoor

Information 2025, 16, 83 4 of 25

key can be artificially set, and anyone who possesses it can easily find a collision, allowing
them to modify the input data arbitrarily without changing the hash output. For users
without the trapdoor key, the chameleon hash function still maintains collision resistance.

Formally, a chameleon hash function can be defined as follows: Given a trapdoor key
tk, for any given data and arbitrary parameter pair, it is possible to ensure that CH(x′, r′) =
CH(x, r), where x represents the original data on the blockchain, and x′ represents the
modified data, with x ̸= x′.

Formally, a chameleon hash function consists of four algorithms, as shown in Equation
(1):

CH = {GenKey, CHash, CHVeri f y, CHCol} (1)

(1) GenKey : GenKey(1k)→ (hk, tk), k ∈ N . The key generation algorithm for chameleon
hash functions: Given a security parameter k ∈ N, it outputs a public key hk and a
private key tk (where tk is typically referred to as the trapdoor).

(2) CHash : CHash(hk, x, r)→ h . The chameleon hash generation algorithm: Given the
chameleon hash public key hk, arbitrary data x, and a random value r, the output is
the hash value h.

(3) CHVeri f y(hk, x, h) = D. The chameleon hash verification algorithm: Given the public
key hk, arbitrary data x, and the hash value h, it outputs a verification result D. If the
hash value h is correct, D = 1 otherwise, D = 0.

(4) CHCol : CHCol(tk, (x, r), x′)→ r′ . The hash collision discovery algorithm: Given the
trapdoor tk, the tuple (x, r) consisting of the original data x and the random value r,
along with the modified data x′, it outputs a new random value r′. To ensure that:

h = CHash(hk, x, r) = CHash(hk, x′, r′)

The value of h satisfies:

CHVeri f y(hk, x, h) = CHVeri f y(hk, x′, h) = 1

In summary, as long as the trapdoor key tk is available, one can modify the data on the
blockchain such that CH(x′, r′) = CH(x, r). In other words, possessing the trapdoor key
means having the authority to modify the blockchain system. Therefore, the management
of the trapdoor key becomes even more crucial.

2.2. Verifiable Secret Sharing (VSS)

Secret sharing is a cryptographic protocol proposed by Shamir et al. [15], which allows
a secret to be divided into several shares and jointly held by multiple participants. Each
participant only obtains a portion of the secret information and cannot independently
access the complete secret. That is, the information held by each individual member does
not reveal any part of the complete secret. Only when specific conditions are met can the
participants reconstruct the original secret information.

In reference [15], the secret is divided into n shares, and at least c shares (where c > n
2)

are required to reconstruct the complete secret. Chor et al. [16] proposed verifiable secret
sharing (VSS) technology based on secret sharing. VSS introduces a verification algorithm,
allowing participants to verify whether the secret shares they hold are correct and complete.
This ensures that participants are not deceived by dishonest members providing false
shares, which could otherwise prevent the successful reconstruction of the original secret.

The verifiable secret sharing (VSS) scheme satisfies two key properties: verifiability
and unpredictability. VSS consists of three components: the secret sharing algorithm;
the share verification algorithm, Veri f y; and the secret reconstruction algorithm, Recover.
These are defined as follows:

Information 2025, 16, 83 5 of 25

Given a secret s and a set of participants p = {p1, p2, . . . , pn} involved in the sharing
process, the scheme proceeds as follows:

(1) Share. Secret Sharing Algorithm: The secret s is divided into n shares si, with each
share distributed to a participant pi through a secure channel. The secret information
is split into the coefficients of multiple polynomials, and participants can also compute
the commitment values of their respective shares si and make them public within the
system.

(1) Veri f y. Share Verification Algorithm: When there is a need to verify the consistency of
the shares, participants pi can exchange shares or information with each other. Using
a verification algorithm (such as digital signatures or zero-knowledge proofs), the
received shares are validated to ensure their correctness. Participants pi verify each
other’s shares and ensure that they have not been tampered with or forged.

(3) Recover. Secret Reconstruction Algorithm: To recover the complete secret information,
a threshold number of correct c secret shares must be collected. After each participant
p1, p2, . . . , pc involved in the cooperative secret recovery validates the secret’s validity
using the share verification algorithm, the secret can be reconstructed using a secret
reconstruction method.

2.3. Verifiable Random Functions (VRFs)

The verifiable random function (VRF) is a cryptographic function proposed by Micali
et al. It is a random number generator that produces unpredictable random numbers.
Anyone can verify the validity of the random number generated by the VRF by checking
the proof and verifying whether the hash computation is correct. Performing the hash
operation requires the VRF private key, but anyone with the public key can verify the result
of the hash computation. VRF has two main properties: verifiability and randomness. The
VRF includes four algorithms:

(1) Key generation algorithm, VRFGen.
(2) Random number generation algorithm, VRFval .
(3) Proof generation algorithm, VRFProo f .
(4) Random number verification algorithm, VRFVeri f y.

3. RE-TNG Node Selection Method
The scheme proposed in [7] involves all nodes in the modification process, lead-

ing to excessive communication resource consumption, low modification efficiency, and
significant efficiency degradation when there are numerous inactive or dishonest nodes.
However, the research in [12,17–19] reveals that simple node selection methods result in
higher-reputation nodes being more likely to be chosen over time. This feedback loop
further increases their reputation, ultimately concentrating reputation values within a few
top nodes in the system. Consequently, traditional reputation-based grouping schemes
suffer from reputation value accumulation, leading to severe centralization issues in the
later stages of the system.

To address this, drawing on the concept of consensus node selection from [17], this
paper proposes an improvement by designing the RE-TNG node selection method, which
integrates the proposed node reputation reward and penalty model. It introduces the
concepts of modification node candidate groups and trapdoor management node groups.
This approach mitigates the reputation value accumulation issue, ensuring long-term
system stability and decentralization. Additionally, the method guarantees the integrity of
the selected nodes, thereby safeguarding the security of trapdoor generation management
and the assignment of modification rights.

Information 2025, 16, 83 6 of 25

3.1. Node Reputation Reward and Penalty Model

To reduce the impact of dishonest and inactive nodes on the modification process
while encouraging greater participation in the final election of modification nodes, a node
reputation reward and penalty model is proposed. The core principle of this model is to
quantitatively assess node behavior and apply corresponding rewards or penalties based
on the reputation score. This approach motivates nodes to engage more actively in the
blockchain modification process while effectively curbing malicious actions by dishonest
nodes. Most reputation evaluation models in existing blockchain systems rate nodes
based on their behavior during the consensus process [20]. This method builds upon the
reputation reward and penalty mechanism described in [17] and the dynamic reputation
evaluation model outlined in [21]. Specifically, it adapts the dynamic reputation evaluation
model from [21], which assesses consensus nodes based on their roles and behaviors during
the consensus process, to evaluate nodes’ roles and actions in the modification process. By
integrating the reward and penalty mechanism from [17], the model establishes a reputation
evaluation and reward system tailored to the proposed approach. Reputation thresholds
are defined to categorize nodes into different states, with varying degrees of rewards and
penalties applied based on their state. This enables more timely evaluation and feedback
on node behavior throughout the modification process. The detailed content of the node
reputation reward and penalty model employed in this method is presented below.

After initializing the blockchain system, the initial reputation score for each node is set
to 60, with the maximum reputation score capped at 100. Once a node’s reputation score
reaches 100, it will no longer increase. Five reputation levels are defined, as outlined in
Table 1.

Table 1. Credit value level table.

Level Symbols Level Scores Evaluation

Rgood 90 Excellent Reputation Score
Rbetter 80 High Reputation Score
Rnormal 70 Normal Reputation Score

Rinit 60 Initial Reputation Score
Rmin 50 Low Reputation Score

If the reputation score of a node Ri < Rmin, that node will no longer be allowed to
participate in the blockchain modification process. The node’s reputation score directly
influences its permissions and status within the blockchain system.

Based on the different reputation levels, roles, and whether a node engages in mali-
cious behavior during the modification process, reputation rewards and penalties are
applied. If a node does not engage in malicious behavior or show passive conduct
during the modification process, its reputation score will be rewarded according to
Formula (2); conversely, if a node engages in malicious behavior or exhibits passive conduct,
its reputation score will be penalized according to Formula (3).

Reputation Reward Formula:

Ri =

Rp
i + 0.1× C, Rp

i ≥ Rgood

Rp
i + 0.3× C, Rbetter ≤ Rp

i < Rgood

Rp
i + 0.5× C, Rnormal ≤ Rp

i < Rbetter

Rp
i + 0.7× C, Rinit ≤ Rp

i < Rnormal

Rp
i + 0.9× C, Rmin ≤ Rp

i < Rinit

0, Rp
i < Rmin

(2)

Information 2025, 16, 83 7 of 25

Penalty Formula for Reputation Value:

Ri =

Rp

i −V1 × C, Rp
i ≥ Rgood

Rp
i −V2 × C, Rinit ≤ Rp

i < Rgood

Rp
i + (1 + t

T)× C× v, Rmin ≤ Rp
i < Rinit

0, Rp
i < Rmin

(3)

In Equations (2) and (3) mentioned above, Ri represents the reputation value of a node
after the current reward or penalty process. Rp

i denotes the reputation value of the node
from its last participation in the modification process. The system evaluates the node’s
behavior during the modification process to determine whether it acted positively or with
integrity (the evaluation method is detailed in Section 4.1.4. Based on the assessment, the
reputation value of the node is adjusted using Equation (2) or Equation (3).

V1 and V2 denote the penalty intensity coefficients, which are configured according
to different system environments. In this model, V1 = 15 and V2 = 10. For nodes with
reputation values within the (Rmin, Rinit) range, participation in the modification process is
restricted for a specific period, as expressed in Equation (3). Here, t represents the number
of days, starting at an initial value of 1 and increasing progressively with time. T is a fixed
constant that indicates the restriction period in days. v denotes the growth rate, and both
v and T can be adjusted based on different application scenarios. In this model, T = 10
and v = 1. Nodes with reputation values below Rmin are prohibited from participating
in blockchain modifications. C is the identity coefficient, which takes different values
depending on the identity status of the node during its last modification process. The
specific values for Ri are provided in Tables 2 and 3.

Table 2. The value of c in the reward formula: Formula (2).

Identity in the Previous Modification Process Values

Nodes Not Selected for the Trapdoor Management Group
and Modifier Candidate Group 1

Members of the Trapdoor Management Group 1.1
Members of the Modifier Candidate Group 1.2

Final Editors 1.3

Table 3. The value of c in the penalty formula: Formula (3).

Identity in the Previous Modification Process Values

Inactive Nodes (Passive Nodes) 0.9
Dishonest Nodes 1.3

By introducing a reputation model, the identity and behavior of nodes are linked to
their reputation, thereby increasing their motivation to participate in the modification pro-
cess. This model encourages nodes to engage in more positive behaviors, raises the cost for
dishonest nodes to engage in malicious activities, and penalizes inactive or passive nodes.
As a result, the system motivates nodes to actively participate in the modification process,
improving modification efficiency. Overall, this approach reduces the negative impact of
inactive and dishonest nodes on modification efficiency. Additionally, by rewarding nodes
with reputation value based on different reputation levels using specific reward formulas,
the reputation growth of nodes is effectively stabilized. Specifically, high-reputation nodes
receive relatively smaller rewards, while low-reputation nodes receive greater rewards.
This design incentivizes low-reputation nodes to participate more actively in the modifi-
cation process and demonstrate positive behaviors in order to earn reputation rewards.

Information 2025, 16, 83 8 of 25

Consequently, even in the later stages of the system, reputation values are not concentrated
in a few nodes, ensuring a more decentralized maintenance of reputation values across the
entire system.

3.2. RE-TNG Node Selection Method Design

In the RE-TNG node selection method, let the total number of nodes participating
in the modification process be N(N ≥ 5), and the number of nodes with a reputation
value greater than or equal to Rinit be Nr(Nr ≥ 5). The nodes are grouped according to
the Fibonacci function rule, where Nodei ∈ {Group1, Group2, . . . , Groupk} represents the
group to which a certain node is assigned, and Groupk represents the last group. This
grouping rule satisfies the recursive nature of the Fibonacci function (n ≥ 3, n ∈ N∗), as
shown in Equation (4): {

S(1) = S(2) = 1
S(n) = S(n− 1) + S(n− 2)

(4)

All nodes with a reputation value greater than or equal to Rinit that participate in the
modification process are grouped into k groups based on the Fibonacci function rule. The
group Groupk−1 contains S(k− 1) nodes, where Nodeij represents the number of nodes in
the group Groupi, and j indexes the nodes within the group. Within the group Groupk, the

number of nodes is Nr −
k−1
∑

a=1
S(a) when i = k nodes are selected. The node hierarchy is

illustrated in Figure 1. Figure 1 illustrates that the nodes are divided into k groups. The first
and second groups each contain only one node, while the third group consists of two nodes.
The number of nodes in the subsequent groups is allocated according to the Fibonacci
function rule.

Information 2025, 16, x FOR PEER REVIEW 9 of 26

Figure 1. A hierarchical diagram of node grouping based on the Fibonacci sequence.

After grouping according to the Fibonacci sequence rule, the nodes within each
group remain sorted in descending order of reputation due to sequential selection. The
first node in each group, such as 1iNode in iGroup , is the node with the highest repu-

tation in that group. 1iNode is then added to the modifier node candidate group, mean-

ing the top-reputation node in each group is defined as a member of the modifier candi-
date group.

For groups other than the first two (i.e., 1Group and 2Group), the second node in

each group, such as 2iNode in 2Group , is the node with the second-highest reputation

in that group. 2iNode is added to the trapdoor management node group, meaning the

second-reputation node in each group, except for the first two groups, is defined as a
member of the trapdoor management group.

The grouping rules are illustrated in Figure 2. The specific roles of the modifier can-
didate group and the trapdoor management node group will be detailed in Section 4.1.

Figure 2. Selection rules for modification node management group and trapdoor management node
group.

According to the above rules, nodes participating in the modification process with a
reputation value greater than or equal to initR are ranked based on their reputation val-

ues. These nodes are then grouped in the first grouping phase according to the Fibonacci

Figure 1. A hierarchical diagram of node grouping based on the Fibonacci sequence.

After grouping according to the Fibonacci sequence rule, the nodes within each group
remain sorted in descending order of reputation due to sequential selection. The first
node in each group, such as Nodei1 in Groupi, is the node with the highest reputation
in that group. Nodei1 is then added to the modifier node candidate group, meaning the
top-reputation node in each group is defined as a member of the modifier candidate group.

For groups other than the first two (i.e., Group1 and Group2), the second node in each
group, such as Nodei2 in Group2, is the node with the second-highest reputation in that
group. Nodei2 is added to the trapdoor management node group, meaning the second-
reputation node in each group, except for the first two groups, is defined as a member of
the trapdoor management group.

Information 2025, 16, 83 9 of 25

The grouping rules are illustrated in Figure 2. The specific roles of the modifier
candidate group and the trapdoor management node group will be detailed in Section 4.1.

Information 2025, 16, x FOR PEER REVIEW 9 of 26

Figure 1. A hierarchical diagram of node grouping based on the Fibonacci sequence.

After grouping according to the Fibonacci sequence rule, the nodes within each
group remain sorted in descending order of reputation due to sequential selection. The
first node in each group, such as 1iNode in iGroup , is the node with the highest repu-

tation in that group. 1iNode is then added to the modifier node candidate group, mean-

ing the top-reputation node in each group is defined as a member of the modifier candi-
date group.

For groups other than the first two (i.e., 1Group and 2Group), the second node in

each group, such as 2iNode in 2Group , is the node with the second-highest reputation

in that group. 2iNode is added to the trapdoor management node group, meaning the

second-reputation node in each group, except for the first two groups, is defined as a
member of the trapdoor management group.

The grouping rules are illustrated in Figure 2. The specific roles of the modifier can-
didate group and the trapdoor management node group will be detailed in Section 4.1.

Figure 2. Selection rules for modification node management group and trapdoor management node
group.

According to the above rules, nodes participating in the modification process with a
reputation value greater than or equal to initR are ranked based on their reputation val-

ues. These nodes are then grouped in the first grouping phase according to the Fibonacci

Figure 2. Selection rules for modification node management group and trapdoor management node
group.

According to the above rules, nodes participating in the modification process with a
reputation value greater than or equal to Rinit are ranked based on their reputation values.
These nodes are then grouped in the first grouping phase according to the Fibonacci function
rule, sequentially filling each group. From these groups, members of the modification node
candidate group and trapdoor management node group are selected. Since the reputation
values of nodes within each group are relatively similar, and nodes from both high-average-
reputation groups and low-average-reputation groups are included in the modification
node candidate group, the probability of becoming a final modification node is equal
for all.

Compared with the traditional reputation-based grouping and selection algorithms
used in [12,17,18], this method addresses the issue of reputation value accumulation, thus
avoiding system centralization in later stages and increasing the incentive for nodes to
participate in the modification process. Furthermore, the second grouping phase allows
only a subset of nodes to participate in the final selection of modification nodes, reducing
the excessive communication resource consumption and low modification efficiency caused
by the full participation of all nodes in traditional schemes.

4. Design of a Modifiable Blockchain Scheme Based on the RE-TNG
Node Selection Method
4.1. Scheme Definition

To address the issues in current modifiable blockchain schemes—where dishonest
and inactive nodes negatively impact modification efficiency, and the excessive central-
ization of modification authority and trapdoor management undermines the system—a
modifiable blockchain scheme based on the RE-TNG node selection method is proposed.
This scheme leverages reputation-based grouping and decentralized decision-making to
enhance efficiency and fairness in the modification process. The structure and workflow of
the proposed scheme are illustrated in Figure 3.

Information 2025, 16, 83 10 of 25

Information 2025, 16, x FOR PEER REVIEW 10 of 26

function rule, sequentially filling each group. From these groups, members of the modifi-
cation node candidate group and trapdoor management node group are selected. Since
the reputation values of nodes within each group are relatively similar, and nodes from
both high-average-reputation groups and low-average-reputation groups are included in
the modification node candidate group, the probability of becoming a final modification
node is equal for all.

Compared with the traditional reputation-based grouping and selection algorithms
used in [12,17,18], this method addresses the issue of reputation value accumulation, thus
avoiding system centralization in later stages and increasing the incentive for nodes to
participate in the modification process. Furthermore, the second grouping phase allows
only a subset of nodes to participate in the final selection of modification nodes, reducing
the excessive communication resource consumption and low modification efficiency
caused by the full participation of all nodes in traditional schemes.

4. Design of a Modifiable Blockchain Scheme Based on the RE-TNG
Node Selection Method
4.1. Scheme Definition

To address the issues in current modifiable blockchain schemes—where dishonest
and inactive nodes negatively impact modification efficiency, and the excessive centrali-
zation of modification authority and trapdoor management undermines the system—a
modifiable blockchain scheme based on the RE-TNG node selection method is proposed.
This scheme leverages reputation-based grouping and decentralized decision-making to
enhance efficiency and fairness in the modification process. The structure and workflow
of the proposed scheme are illustrated in Figure 3.

Figure 3. The editable blockchain model based on the RE-TNG node selection method.

The modifiable blockchain scheme based on the RE-TNG node selection method con-
sists of six stages: initialization stage; RE-TNG node selection method—selection stage;
final modifier node selection stage; voting stage; trapdoor generation stage; data

Figure 3. The editable blockchain model based on the RE-TNG node selection method.

The modifiable blockchain scheme based on the RE-TNG node selection method
consists of six stages: initialization stage; RE-TNG node selection method—selection
stage; final modifier node selection stage; voting stage; trapdoor generation stage; data
modification and verification stage (the following process needs to be read and understood
in conjunction with Figure 3, which is a modifiable blockchain model based on the RE-TNG
node selection method). The following will provide a detailed description of the six stages
of the process, with the variables and definitions provided in Table 4. The roles involved in
this scheme are as follows:

1. Modifier Node Candidate Group: In the blockchain modification process, the nodes
participating in the modification are first sorted based on their reputation scores. After
sorting, they are grouped according to the Fibonacci function rule. The first node
in each group is selected to join the modifier node candidate group. Then, the final
modifier nodes are chosen through a verifiable random function (VRF), ensuring
the selection process is both random and verifiable. This method ensures fairness,
transparency, and prevents any manipulation in the selection of the nodes that will
execute the blockchain modifications.

2. Trapdoor Management Node Group: After the nodes participating in the modification
process are sorted based on their reputation scores, they are grouped using the
Fibonacci function rule. The second node in each group is selected to join the trapdoor
management node group. This group is responsible for two main tasks: collaborative
trapdoor generation and voting on the final modifier node selection.

Information 2025, 16, 83 11 of 25

Table 4. Variable symbols and definitions.

Variable Symbols Definitions

Nstart Modification Request Initiator Node
ADstart User Address of the Modification Request Initiator Node

ADupdate User Address of the Final Modifier Node
Nupdate Final Modifier Node

Ni A Node Participating in the Process
Nc Modifier Node Candidate Group Members
Ntk Trapdoor Management Node Group Members

Listinit Initial Request List
Listvote Voting Request List

Groupinit Nodes Group Sorted by Reputation in Descending Order
λ VRFval Random Number Generated by VRFval Algorithm
b Voting Opinion

poll Number of Agreeing Votes
Nodei1 First Node of the i-th Group
Nodei2 Second Node of the i-th Group
Proo f VRFProof Proof Generated by the VRFProo f Algorithm
result VRFVerify Result Set Generated by the VRFVeri f y Algorithm
PKVRF VRF Public Key Generated by the VRFGen Algorithm
SKVRF VRF Private Key Generated by the VRFGen Algorithm

4.1.1. Initialization Stage

At a certain moment, Nstart, a particular node in the blockchain system requests to
modify the transaction data in a specific block, changing x to x′. The node Nstart will
create an initial request list, Listinit, consisting of the original data x, the target data to be
modified x′, a random number r, and its own account address ADstart, forming a tuple
(x, x′, r′, ADstart). This request list will be broadcast to the other nodes in the blockchain
system. After receiving the request list, the other nodes will decide whether to participate
in the modification process. Once the participating nodes are determined, they are sorted
in descending order by their reputation, forming a group Groupinit.

4.1.2. RE-TNG Node Selection Method—Selection Stage

For all nodes in Groupinit with a reputation value greater than or equal to Rinit, the nodes
are grouped according to the Fibonacci function rule, resulting in {Group1, Group2, . . . , Groupk}.
All Nodei1 nodes in {Group1, Group2, . . . , Groupk} are selected as members of the modifica-
tion node candidate group Nc, and all Nodei2 nodes are selected as members of the trapdoor
management node group Ntk. A detailed explanation of the RE-TNG node selection method
is provided in Section 3.2.

4.1.3. Final Modifier Node Selection Stage

The final modification node Nupdate is selected from the modification node candi-
date group members Nc. To ensure the security of the method, the node responsible for
modifying blockchain data must be unpredictable and possess a degree of randomness.
Therefore, this paper employs a verifiable random function (VRF). By determining the
number of members in the modification node candidate group, a range is assigned to
each node. The VRF is then used to generate the required PKVRF (public key) and SKVRF

(private key) for the next step [22]. Using the VRF random number generation algorithm
VRFval(SKVRF, x′)→ λ , the private key SKVRF and the target data to be modified, x′, are
input to produce a random number λ. The generated random number λ is mapped to the
range assigned to the members of the modification node candidate group. Based on this
mapping, the member node corresponding to the interval is selected, thereby achieving

Information 2025, 16, 83 12 of 25

randomness in node selection. The selected final modification node Nupdate must then
compute a zero-knowledge proof (PROOF): VRFProo f (SKVRF, x′)→ Proo f . The computed
proof is broadcast to all nodes in the blockchain for later validation and accountability.

4.1.4. Voting Stage

The selected final modification node Nupdate combines the original data x to be mod-
ified, the modified data x′, and the user address ADupdate of the final modification node
Nupdate into a triplet voting request list Listvote → (x, x′, ADupdate) , which is then broadcast
to all members of the trapdoor management node group. Upon receiving the voting request
list, all Ntk members vote on whether to approve Nupdate modifying data x to x′. This stage
includes one algorithm:

Voting Algorithm: Vote
((

x, x′, ADupdate

)
, (b0, b1, . . . , bn)

)
→ poll . Input: Voting re-

quest list Listvote. Voting opinions b from all Ntk members, where b = 1: Agree; b = 2:
Disagree; b = 0: Abstain. Output: The number of agreeing votes.

If the number of agreeing votes poll > w
2 (where w is the number of participating

trapdoor management node group members, Ntk), then Nupdate is confirmed as the final
modification node authorized to modify the blockchain data. If the number of agreeing
votes poll < w

2 , the final modifier node selection phase is repeated to select another Nupdate,
and the voting phase is conducted again. After the voting phase, any Ntk members who did
not participate or abstained from voting will be classified as inactive nodes. These nodes
will have their reputation values reduced during the post-modification reputation evalua-
tion and reward–punishment phase. The detailed reward and punishment mechanism has
been elaborated in Section 3.1 of this paper.

4.1.5. Trapdoor Generation Stage

This phase is primarily carried out by the trapdoor management node group members
Ntk, who are responsible for generating public parameters, digital signatures, and the key
pairs (public and private) for the chameleon hash function. In this scheme, the method for
generating the trapdoor tk for the chameleon hash is improved from single-node generation
to a multi-node collaborative trapdoor generation algorithm adapted to this scheme.

Assuming the current number of trapdoor management node group members is
n(n ≥ 5), this stage includes three algorithms (Algorithms 1–3).

Algorithm 1: Initialization algorithm

DH_PGen(ξ)→ Pp

Input: Secure random parameter ξ.
Output: A public parameter Pp.
Step 1: Generate a secure random parameter ξ.
Step 2: Use λ to compute the public parameter Pp according to the predefined
cryptographic function.
Step 3: Output Pp.

Algorithm 2: Chameleon hash public and private key collaborative generation
algorithm

DS_Gen(Pp)→ (hk, tk0, tk1, . . . , tkn−1)

Input: Public parameter Pp.
Output: Public key hk. Private key (trapdoor) (tk0, tk1, . . . , tkn−1), collaboratively
managed by n trapdoor management node group members Ntk.

Information 2025, 16, 83 13 of 25

Step 1: Public key generation.

1. The public key hk is generated using the public parameter Pp. This key is shared
among all nodes and is the same for the entire system, meaning there is only one hk
for the whole system.

Step 2: Private key (trapdoor) generation.

1. Each member of the trapdoor management node group Ntk generates a partial
private key tki using the public parameter Pp. These partial private keys are then
sec urely combined through a multi− party computation protocol to form the
complete trapdoor tk.

Step 3: Public key disclosure.

1. The final public key hk is publicly disclosed in the blockchain system, available for
use in chameleon hashing operations.

Step 4: Trapdoor Management.

1. The private key (trapdoor) tk is securely distributed and collaboratively managed
by the n members of the trapdoor management node group Ntk. Each member
holds a share of the private key, and it requires cooperation from multiple members
to access the complete trapdoor tk.

Step 5: Output

1. hk: Publicly disclosed and available for use in the blockchain system.
2. tk: Trapdoor private key, distributed among the n members of the trapdoor

management node group. Each member holds a share of the private key.

Algorithm 3: Trapdoor re-sharing algorithm

ReShare(tk0, tk1, . . . , tkn−1)→ (tk0, tk1, . . . , tkt−1)

Input:

1. n trapdoor shares : (tk0, tk1, . . . , tkn−1).
2. Threshold value t.

Output: t trapdoor shares that can be distributed to trapdoor management node group
members Ntk.
Step 1: Secret sharing.

1. The n trapdoor shares are distributed to the n trapdoor management node group
members Ntk. The system uses a verifiable secret sharing technique to ensure
that each member holds a share of the trapdoor private key tk.

Step 2: Threshold.

1. The threshold t is set such that at least t trapdoor shares are required
to reconstruct the complete trapdoor tk. In this scheme, t = w

2 , where w is
the total number of members in the trapdoor management node group.

Step 3: Trapdoor reconstruction.

1. To recover the full trapdoor tk, more than t shares must be obtained. This is
ensured by the condition that the number of votes agreeing with the modification,
poll, must exceed w

2 , meaning the number of agreeing votes (trapdoor shares) is
greater than the threshold t.

Information 2025, 16, 83 14 of 25

Step 4: Share transfer.

1. After the voting process, the trapdoor shares from the agreeing Ntk nodes
are sent to the final modification node Nupdate.

Step 5: Output.

1. The final trapdoor tk is reconstructed when t shares are aggregated, and the
resulting trapdoor tk is accessible to the authorized nodes.

2. The agreeing Ntk nodes send their respective trapdoor shares to the final
modification node Nupdate.

4.1.6. Data Modification Stage

Nupdate, having received the trapdoor key shares (tk0, tk1, . . . , tkn−1) from n members
Ntk and the initial request Listinit(x, x′, r′, ADstart), performs modification operations on
the block where the data x in the Listinit is located. This phase consists of two algorithms
(Algorithms 4 and 5).

Algorithm 4: Hash collision detection algorithm

DH_Adpt((x, r), x′, hk, (tk0, tk1, . . . , tkn−1))→ r′

Input:

1. n trapdoor key shares (tk0, tk1, . . . , tkn−1).
2. Public key hk.
3. The original data and random number pair (x, r).
4. The modified data x′.

Output: A new random number r′.
Step 1: Compute the random number shares r′i = ge·g(x−x′)·tki (i ∈ (1, 2, . . . , n)) using
the trapdoor shares (tk0, tk1, . . . , tkn−1) through collaborative calculation ξ.

Step 2: Nupdate collects the random number shares r′ =
t

∏
i−1

r′i(i ∈ (1, 2, . . . , n))

to reconstruct r′.
Step 3: Ensure that DH_Hash(x, r, hk) =
DH_Hash(x′, r′, hk) holds, where the new random number r′ guarantees that the hash
values before and after the modification remain consistent.

Algorithm 5: Chameleon hash verification algorithm

CHVeri f y(hk, x, h) = CHVeri f y(hk, x′, h) = D = 1
Input:

1. Modified data x′.
2. New random number r′.

Verification: Check whether the modified data x′ satisfies
CHVeri f y(hk, x, h) = CHVeri f y(hk, x′, h) = D = 1.

After the modification is completed, the reputation value evaluation and reward–
punishment mechanisms are applied to the nodes involved in the modification process
using the node reputation reward–punishment model. The detailed mechanisms have been
elaborated in Section 3.1 of this paper.

4.1.7. Verification Stage

By referencing the accountability verification method in [23], this scheme designs its
own accountability method. Since the final modification node Nupdate in this scheme is

Information 2025, 16, 83 15 of 25

selected based on a verifiable random function (VRF), which incorporates a zero-knowledge
proof mechanism, other nodes can hold Nupdate accountable during the final modifier
node selection phase. Once the nodes obtain the Proo f , they can verify the modifying
node responsible for altering the block using the VRF verification algorithm. The specific
algorithm is as follows (Algorithm 6).

Algorithm 6: Verification algorithm

VRFVeri f y(PKVRF, x′, λ, Proo f)→ result
Input:

1. Public key PKVRF (generated in theVRFGen phase).
2. Modified data x′.
3. Random number λ.
4. Proof.

Verification: The node to be verified inputs the public key PKVRF generated during
the final modification node selection phase VRFGen, the modified data x′, the random
number
λ, and the proof Proo f . The algorithm outputs result. Using x′ and the result set result,
the node responsible for modifying the blockchain block is identified, and accountability
measures are taken. This method achieves the accountability function of the proposed
scheme.

4.2. Decentralized Management of Trapdoor

Existing blockchain modification schemes often rely on traditional chameleon hash
functions that depend on a trusted central node or authority. These central entities generate
the chameleon hash keys and manage subsequent distribution using verifiable secret
sharing (VSS) technology. This approach introduces a high degree of centralization during
the initialization phase, conflicting with the decentralized nature of blockchain systems.
Moreover, the security of the system is threatened if the distribution node in the secret-
sharing scheme is dishonest. Reference [24] introduced a decentralized chameleon hash
function to address these issues by decentralizing the trapdoor generation process, avoiding
the centralization problems caused by single-node trapdoor management. Building on this,
our scheme further improves the decentralized chameleon hash function proposed in [24].
Specifically, we adapt it to support multi-node collaborative key generation within the
trapdoor management node group in our system. The proposed scheme employs a multi-
party collaborative key generation algorithm to eliminate the reliance on a single-node
trapdoor generation approach typical of traditional chameleon hash functions. The trapdoor
is generated in a decentralized manner, and nodes participating in collaborative generation
hold individual trapdoor shares. To compute a new collision hash random number, the
modification node must receive a threshold number of shared random number portions
before successfully calculating the correct new random number. This ensures the collision
resistance of the hash function, prevents trapdoor leakage, and realizes decentralized
trapdoor key management. Below, we detail the four algorithms (Algorithms 7–10) involved
in the multi-party collaborative key generation technique.

Algorithm 7: Parameter initialization algorithm

DH_PGen(ξ)→ Pp

Input: Security parameter ξ.
Output: Public parameter Pp.

Information 2025, 16, 83 16 of 25

Algorithm 8: Chameleon hash public and private key collaborative generation
algorithm

DS_Gen(Pp)→ (hk, tk0, tk1, . . . , tkn−1)

Input: Public parameter Pp.
Output:

1. A public key hk.
2. n sec ret keys (tk0, tk1, . . . , tkn−1), where the n secret keys are held by the n nodes

participating in the collaboration.

Step 1: Node Ni selects an n− 1 degree polynomial, such as,
fi(y) = ai

0 + ai
1y + . . . + ai

n−1yn−1

where ai
0, ai

1, . . . , ai
n−1 is a random integer and y represents the user identity information

of the node. Each node can compute an intermediate value based on this polynomial,
resulting in n intermediate values

{
(j, fi(j))|n−1

j=0

}
for the polynomial.

Step 2: The n nodes will distribute the i-th

intermediate value (processed as (fi(j), g fi(j), gaj
0) to node j.

Step 3: Node j verifies the correctness of the intermediate values and calculates the

output public key hk = gs ←
n
∏
j=1

gaj
0 (where s represents the chameleon hash trapdoor

key, s =
n−1
∑

j=0
aj

0) and the trapdoor sharing formula tki =
n−1
∑

j=0
fi

(
j
)

. The remaining nodes

can obtain the shared portions of the trapdoor key through the above steps.

Algorithm 9: Hash algorithm

DH_PGen(ξ)→ Pp

Input: Message x, random number r, public key hk (where r is obtained from
r = ge(e ∈ Zp

)
).

Output: Hash value
h (calculated using h = H(r, x, hk) = r·hkx = ge+s·x , where H : {0, 1}∗ → G∗ is a
traditional collision-resistant hash function)

Algorithm 10: Hash collision discovery algorithm

DH_Adpt((x, r), x′, hk, (tk0, tk1, . . . , tkn−1))→ r′

Input:

1. Original data and random number tuple (x, r).
2. Public key hk.
3. Trapdoor key shares tki from participating nodes, modified data x′.

Output: New random number r′.
Step 1: Compute trapdoor key share contribution; Node nin_ini
uses the trapdoor sharing formula to compute the random number share
r′i = ge·g(x−x′)·tki .
Step 2: Aggregate shares and combine the shares such that e′ = e + (x− x′)· tki is
satisfied.
Step 3: Generate a new random number. Derive the new random number r′, ensuring
i ∈ (0, 2, . . . , n− 1) holds true.

The verification algorithm of the improved chameleon hash function is consistent with
the traditional chameleon hash, so it will not be separately explained.

Information 2025, 16, 83 17 of 25

5. Scheme Analysis
5.1. Security Analysis

Theorem 1. The scheme possesses editability. For any data x in a given block that need to be
modified to x′, it is always possible to find a new random number r corresponding to x, such
that DH_Hash(x, r, hk) = DH_Hash(x′, r′, hk), and ensure that it passes the validation in the
chameleon hash function, CHVeri f y(hk, x, h) = CHVeri f y(hk, x′, h) = D = 1. This guarantees
that the modification of data in the block does not alter their output hash value, nor does it affect the
hash values of other blocks. Consequently, the integrity, immutability, and security of the entire
blockchain system are preserved.

Proof. In the improved hash collision discovery algorithm, the final modification
node only needs to possess more than the threshold t shares of the trapdoor tk to com-
pute the new random number r′ using the formula r′i = ge·g(x−x′)·tki (i ∈ (1, 2, . . . , n))

and r′ =
t

∏
i−1

r′i(i ∈ (1, 2, . . . , n)). According to the verifiable secret sharing protocol, re-

constructing a complete secret requires possession of more than the threshold t secret
shares. Through Lagrange interpolation, the complete secret can be reconstructed. In this
scheme, given that the public key hk = gs, the formula h′ = r′·hkx′ = ge·g(x−x′)·s·gsx′ =

ge+x·s = r·hkx = h can be used to derive h′ = h, which can then be utilized to calculate
CHVeri f y(hk, x, h) = CHVeri f y(hk, x′, h) = D = 1. As a result, for any random number
r corresponding to x, it is always possible to find a new random number r′ such that
DH_Hash(x, r, hk) = DH_Hash(x′, r′, hk). Thus, it ensures that modifications to the block
data maintain consistency in the chameleon hash value, allowing the modified block to
pass validation without affecting the hashes of other blocks, thereby preserving the security
and integrity of the blockchain. □

Theorem 2. The RE-TNG node selection method and multi-party trapdoor generation can reduce
the impact of malicious nodes.

Proof. By introducing a reputation evaluation and reward–punishment model, and
integrating reputation values into the grouping system, the RE-TNG node selection method
effectively filters out well-reputed nodes. This significantly reduces the proportion of
malicious nodes participating in the modification process, ensuring the credibility of the
entire modification procedure. Over multiple iterations, nodes with reputation values
below Rmin are restricted or prohibited from participating in subsequent modification
processes. Consequently, malicious nodes are excluded from selection for both the trapdoor
management group Ntk and the modification node candidate group Nc, ensuring that these
groups remain honest and trustworthy. The multi-party collaborative trapdoor generation
mechanism ensures the decentralization of trapdoor management, effectively preventing
malicious nodes in traditional schemes from obtaining the trapdoor key and launching
attacks on the blockchain system. Only entities holding a number of trapdoor shares
exceeding the defined threshold can reconstruct the complete trapdoor information. This
guarantees the security of trapdoor management and mitigates the impact of malicious
nodes on trapdoor administration. □

Theorem 3. The reputation reward and punishment model can improve the modification efficiency
of the editable blockchain system.

Proof. The introduction of a reputation reward and punishment model increases the
enthusiasm of nodes to participate in the modification process while reducing the impact

Information 2025, 16, 83 18 of 25

of inactive nodes on modification efficiency. The mechanism rewards actively participating
nodes with an increase in reputation value, which grants them greater operational privileges
within the blockchain system. For inactive nodes (e.g., trapdoor management group nodes
Ntk that abstain from voting during the voting phase), the punishment formula defined
in the reputation reward and punishment model deducts their reputation values. After
multiple rounds of reputation evaluation, nodes that consistently demonstrate inactivity
may lose eligibility to participate in the modification process due to insufficient reputation
values. This exclusion prevents their negative behavior from hindering the system’s
modification efficiency. Therefore, the reputation reward and punishment model not only
ensures the security of the entire system but also significantly enhances its modification
efficiency. □

5.2. Functional Comparison

This section compares the proposed scheme with existing editable blockchain solutions
from four perspectives: decentralized trapdoor management, node selection, accountability,
and security. The comparison includes schemes from references [7,8,24] and [12], aiming to
comprehensively demonstrate the functional features of the proposed solution.

The solutions in [7,8] rely on traditional verifiable secret sharing (VSS) techniques,
where a single central node generates the trapdoor and divides it into multiple secret
shares for distribution. However, these approaches exhibit excessive centralization from
the outset, contradicting the decentralized nature of blockchain systems. Furthermore, the
security of these schemes depends heavily on the integrity of the central node responsible
for distributing the secret, making them vulnerable to dishonest behavior from the central
node.

Reference [24] addresses this issue by introducing decentralized trapdoor generation,
mitigating the centralization problem caused by single-node management. However, it
lacks a mechanism to screen nodes involved in the modification process, leading to reduced
efficiency and potential risks to security when dishonest nodes participate in the process.

In contrast, the proposed scheme improves upon [24] by incorporating decentral-
ized trapdoor management tailored for a multi-node trapdoor management group. A
multi-party collaborative key generation algorithm ensures the decentralization of trap-
door generation, moving away from the traditional single-node approach. Furthermore,
the proposed scheme employs a reputation-based reward–punishment model to screen
participating nodes, ensuring their reliability and honesty. Nodes with reputation values
below a minimum threshold Rmin are restricted or prohibited from participating in future
modification processes, thus safeguarding the security and efficiency of the system.

Reference [12] introduces a supervisory group and a reputation evaluation model
to ensure the honesty of nodes participating in the modification process. However, the
management of the supervisory group is cumbersome and impacts the overall efficiency
of modifications. Additionally, the reputation evaluation model suffers from reputation
accumulation issues, leading to increased centralization over time.

By contrast, the proposed RE-TNG node selection method addresses the problem of
reputation accumulation and prevents a scenario where reputation becomes concentrated
in a few nodes during repeated modification processes. This avoids the centralization of
the system while selecting highly reputable nodes to participate in later processes. As a
result, the proposed scheme reduces communication overhead caused by the involvement
of all nodes and ensures security without compromising efficiency.

The comparison of specific functions is shown in Table 5.

Information 2025, 16, 83 19 of 25

Table 5. Comparison of editable blockchain schemes.

Scheme Decentralized Trapdoor
Management Node Selection Accountability Security

Reference [7] No No No Low
Reference [8] No No No Moderate
Reference [24] Yes No Yes High
Reference [12] No Yes Yes High

Proposed Scheme Yes Yes Yes High

5.3. Experimental Analysis
5.3.1. Experiment Environment

To better validate the various performance aspects of the proposed scheme, simulation
experiments were conducted. These experiments include scenarios such as processing
multiple block modification requests simultaneously and dealing with varying numbers of
malicious nodes disrupting the modification process. The experiments aim to demonstrate
the scheme’s performance across multiple dimensions. The experimental environment
configuration is shown in the table below (Table 6).

Table 6. Environmental configuration (City and country where the device is located: Shanghai,
China).

Hardware/Software Model

Operating System Windows 11, version 24H2
CPU 12th Gen Intel(R) Core(TM) i5-12400F 2.5 GHz

Memory KINGBANK 16 G RAM 3200 MHZ

5.3.2. Performance Analysis

1. Success Rate of Correctly Modified Block Data with Different Numbers of Malicious
Nodes

This experiment compares the existing solutions, which either do not filter the nodes
involved in the modification process or do not implement decentralized gate management,
with the proposed solution. The analysis focuses on the success rate of correctly modifying
block data under different proportions of malicious nodes in the blockchain system. The
solution without node filtering is represented by reference [8], while the solution without
decentralized gate management is represented by reference [12]. The results are shown in
Figure 4.

From the graph, it is clear that reference [8] follows a more traditional approach
to modifiable blockchains, lacking both node filtering for modification participants and
decentralized gate management. As a result, when the proportion of malicious nodes
increases, the success rate of modification is the lowest among the three solutions. Refer-
ence [12] introduces a supervisor group mechanism, which includes a filtering mechanism
that improves the system’s security to some extent. However, since the management of
the gate still relies on trusted nodes, security issues remain significant when malicious
nodes increase.

Information 2025, 16, 83 20 of 25

Information 2025, 16, x FOR PEER REVIEW 21 of 26

CPU 12th Gen Intel(R) Core(TM) i5-12400F 2.5 GHz
Memory KINGBANK 16 G RAM 3200 MHZ

5.3.2. Performance Analysis

1. Success Rate of Correctly Modified Block Data with Different Numbers of Malicious
Nodes
This experiment compares the existing solutions, which either do not filter the nodes

involved in the modification process or do not implement decentralized gate manage-
ment, with the proposed solution. The analysis focuses on the success rate of correctly
modifying block data under different proportions of malicious nodes in the blockchain
system. The solution without node filtering is represented by reference [8], while the so-
lution without decentralized gate management is represented by reference [12]. The re-
sults are shown in Figure 4.

From the graph, it is clear that reference [8] follows a more traditional approach to
modifiable blockchains, lacking both node filtering for modification participants and de-
centralized gate management. As a result, when the proportion of malicious nodes in-
creases, the success rate of modification is the lowest among the three solutions. Reference
[12] introduces a supervisor group mechanism, which includes a filtering mechanism that
improves the system’s security to some extent. However, since the management of the
gate still relies on trusted nodes, security issues remain significant when malicious nodes
increase.

In contrast, the proposed solution employs the RE-TNG node selection method to
filter the candidate modification nodes and gate management nodes, decentralizing both
the selection of modification nodes and the management of the gate. This makes the solu-
tion more secure. In the experiment, under the influence of various numbers of malicious
nodes, the proposed solution consistently demonstrates a higher success rate in modifica-
tions compared to the other solutions, indicating superior security.

Figure 4. The success rate of correctly modifying block data under different proportions of malicious
nodes. (Method 1 references the method in [8], Method 2 references the method in [12], and Method
3 is the method used in this paper).

Figure 4. The success rate of correctly modifying block data under different proportions of malicious
nodes. (Method 1 references the method in [8], Method 2 references the method in [12], and Method
3 is the method used in this paper).

In contrast, the proposed solution employs the RE-TNG node selection method to filter
the candidate modification nodes and gate management nodes, decentralizing both the
selection of modification nodes and the management of the gate. This makes the solution
more secure. In the experiment, under the influence of various numbers of malicious nodes,
the proposed solution consistently demonstrates a higher success rate in modifications
compared to the other solutions, indicating superior security.

2. Modification Efficiency when Handling Multiple Modification Requests Simultane-
ously

This experiment compares the modification efficiency of our proposed scheme with
those of [8] and [12] under ideal conditions when multiple modification requests are
processed simultaneously, analyzing the time required for each scheme under the same
conditions. Reference [8] represents a scheme where modification nodes are selected
randomly, while reference [12] introduces a supervisor group for selecting modification
nodes. The experimental results are shown in Figure 5.

From the experimental chart, it is observed that when the number of modification
requests is less than or equal to 24, the modification efficiency of reference [8] is the
best. Since both our scheme and that in [12] require selection and grouping in the initial
stage, they both take a certain amount of time initially. However, when the number of
modification requests exceeds 24, the scheme given in [8] requires all nodes to participate
in the modification process, resulting in significantly higher time requirements than our
scheme and that in [12], which only require partial nodes to participate. Therefore, as the
number of modification requests increases, both our scheme and that in [12] outperform
that from [8] in modification efficiency. However, since reference [12] requires more time to
manage and select supervisor group members, after the number of modification requests
exceeds 28, our scheme begins to outperform that in [12] as the number of requests continues
to rise.

Information 2025, 16, 83 21 of 25

Figure 5. The modification efficiency when handling multiple modification requests simultaneously.
(Method 1 references the method in [8], Method 2 references the method in [12], and Method 3 is the
method used in this paper).

3. Confirmation Time Required for Modification under Different Proportions of Mali-
cious Nodes

This experiment simulates the average modification time required for each scheme to
process multiple requests simultaneously as the number of modification requests increases,
under different proportions of malicious nodes. Our proposed scheme is compared with
the schemes in references [8,12]. The experimental results are shown in Figure 6. The
experiment tested scenarios where the proportion of malicious nodes accounted for 5%,
15%, 30%, and 40% of the total nodes. As the number of modification requests increased,
the time taken by the three schemes to complete modification requests and confirm them
was measured.

As shown in Figure 6, as the proportion of malicious nodes increases, the scheme in [8]
is most affected, with the lowest modification efficiency. The scheme in [12] is affected to a
lesser extent, while our proposed scheme is least affected and exhibits the best modification
efficiency.

4. Reputation Value Changes of Different Nodes After Multiple Modifications

This experiment simulates the reputation value changes of a trustworthy node, a
malicious node, and a passive node after participating in multiple modification processes
within the proposed scheme. The experiment is set with a one-day interval between each
modification, and the initial reputation values of the three nodes are all 60. The transaction
cycle constant T = 10 and the growth rate v = 1 in Equation (3) are applied.

Information 2025, 16, 83 22 of 25

Information 2025, 16, x FOR PEER REVIEW 23 of 26

requests increased, the time taken by the three schemes to complete modification requests
and confirm them was measured.

(a) (b)

(c) (d)

Figure 6. The confirmation time required for modifications under different proportions of malicious
nodes. (a) Confirmation time required for modifications under a 5% malicious node ratio. (b) Con-
firmation time required for modifications under a 15% malicious node ratio. (c) Confirmation time
required for modifications under a 30% malicious node ratio. (d) Confirmation time required for
modifications under a 40% malicious node ratio. (Method 1 references the method in [8], Method 2
references the method in [12], and Method 3 is the method used in this paper).

As shown in Figure 6, as the proportion of malicious nodes increases, the scheme in
[8] is most affected, with the lowest modification efficiency. The scheme in [12] is affected
to a lesser extent, while our proposed scheme is least affected and exhibits the best modi-
fication efficiency.

4. Reputation Value Changes of Different Nodes After Multiple Modifications
This experiment simulates the reputation value changes of a trustworthy node, a ma-

licious node, and a passive node after participating in multiple modification processes
within the proposed scheme. The experiment is set with a one-day interval between each
modification, and the initial reputation values of the three nodes are all 60. The transaction
cycle constant 10T = and the growth rate 1v= in Equation (3) are applied.

As shown in Figure 7, the trustworthy node performs well in each modification pro-
cess, and its reputation value gradually increases and stabilizes as the number of modifi-
cations increases. The malicious node, however, engages in malicious behavior during the
first modification process, causing its reputation value to drop to 47, below the threshold

Figure 6. The confirmation time required for modifications under different proportions of mali-
cious nodes. (a) Confirmation time required for modifications under a 5% malicious node ratio.
(b) Confirmation time required for modifications under a 15% malicious node ratio. (c) Confirmation
time required for modifications under a 30% malicious node ratio. (d) Confirmation time required for
modifications under a 40% malicious node ratio. (Method 1 references the method in [8], Method 2
references the method in [12], and Method 3 is the method used in this paper).

As shown in Figure 7, the trustworthy node performs well in each modification process,
and its reputation value gradually increases and stabilizes as the number of modifications
increases. The malicious node, however, engages in malicious behavior during the first
modification process, causing its reputation value to drop to 47, below the threshold
Rmin = 55 for participation in future modification processes. As a result, it is prohibited
from participating in subsequent modification processes.

The passive node shows inactivity during the first modification process (i.e., it is
selected as a member of the gatekeeper management group Ntk but does not vote), leading
to its reputation value dropping to 51. After applying Equation (3) to restrict its participation
within a certain cycle, its reputation value recovers to 55.995, allowing it to continue
participating in modification processes. However, during the seventh modification process,
the passive node again fails to take action, and its reputation value drops to 46.995, below
the threshold Rmin = 55, resulting in its exclusion from further modification processes.

Information 2025, 16, 83 23 of 25

Information 2025, 16, x FOR PEER REVIEW 24 of 26

min 55R = for participation in future modification processes. As a result, it is prohibited
from participating in subsequent modification processes.

The passive node shows inactivity during the first modification process (i.e., it is se-

lected as a member of the gatekeeper management group tkN but does not vote), lead-

ing to its reputation value dropping to 51. After applying Equation (3) to restrict its par-
ticipation within a certain cycle, its reputation value recovers to 55.995, allowing it to con-
tinue participating in modification processes. However, during the seventh modification
process, the passive node again fails to take action, and its reputation value drops to
46.995, below the threshold min 55R = , resulting in its exclusion from further modification
processes.

In summary, both malicious and passive nodes are removed from the modification
process after engaging in malicious behavior or inactivity, ensuring they will not pose a
threat or impact the subsequent modification processes. This guarantees the safety and
efficiency of the modifications. Meanwhile, the trustworthy node’s reputation value
shows a nonlinear upward trend and gradually stabilizes in the later stages, preventing
the accumulation of excessive reputation values, which could lead to an overly centralized
system. This ensures the decentralization characteristics of the entire blockchain system.

Figure 7. The change in reputation values of different nodes after multiple modifications.

6. Conclusions
This paper proposes a modifiable blockchain solution based on the RE-TNG node

selection method, aimed at addressing the issues of dishonest and inactive nodes affecting
modification efficiency, modification rights, and the excessive centralization of trapdoor
management in existing modifiable blockchain solutions. Additionally, it tackles the prob-
lem of reputation value accumulation in reputation-based node selection for modification.
By combining the node reputation reward and penalty model with secondary grouping,
the RE-TNG node selection method is designed. The Fibonacci sequence grouping rule is
used to filter nodes participating in the modification process, effectively solving the issue
of reputation value accumulation and ensuring long-term decentralization of the system.
The second grouping selects high-reputation nodes, ensuring the integrity of nodes as-
signed modification rights or trapdoor management roles. This method effectively re-
duces the impact of dishonest and inactive nodes on modification efficiency. The multi-
party collaboration for trapdoor key generation decentralizes trapdoor management,

Figure 7. The change in reputation values of different nodes after multiple modifications.

In summary, both malicious and passive nodes are removed from the modification
process after engaging in malicious behavior or inactivity, ensuring they will not pose
a threat or impact the subsequent modification processes. This guarantees the safety
and efficiency of the modifications. Meanwhile, the trustworthy node’s reputation value
shows a nonlinear upward trend and gradually stabilizes in the later stages, preventing
the accumulation of excessive reputation values, which could lead to an overly centralized
system. This ensures the decentralization characteristics of the entire blockchain system.

6. Conclusions
This paper proposes a modifiable blockchain solution based on the RE-TNG node

selection method, aimed at addressing the issues of dishonest and inactive nodes affecting
modification efficiency, modification rights, and the excessive centralization of trapdoor
management in existing modifiable blockchain solutions. Additionally, it tackles the prob-
lem of reputation value accumulation in reputation-based node selection for modification.
By combining the node reputation reward and penalty model with secondary grouping,
the RE-TNG node selection method is designed. The Fibonacci sequence grouping rule is
used to filter nodes participating in the modification process, effectively solving the issue of
reputation value accumulation and ensuring long-term decentralization of the system. The
second grouping selects high-reputation nodes, ensuring the integrity of nodes assigned
modification rights or trapdoor management roles. This method effectively reduces the
impact of dishonest and inactive nodes on modification efficiency. The multi-party collab-
oration for trapdoor key generation decentralizes trapdoor management, enhancing its
security. For selecting the final modifier, the method uses a verifiable random function to
randomly select and then employs zero-knowledge proofs to ensure accountability. Addi-
tionally, the proposed modifiable blockchain solution based on the RE-TNG node selection
method has been analyzed and experimentally evaluated. The analysis and experimental
results indicate that, compared to existing solutions, the proposed method offers a higher
modification efficiency, security, and decentralization, while ensuring the editability and
security attributes of the blockchain.

Although the RE-TNG grouping rule effectively selects trusted nodes, further achiev-
ing decentralization and avoiding the large communication overhead of involving all nodes
in the selection, the initial grouping process still incurs considerable computational over-
head. Therefore, future work will focus on optimizing computational algorithms, reducing

Information 2025, 16, 83 24 of 25

the number of nodes initially participating in grouping by random selection, and reducing
the communication consumption associated with reputation evaluation and two-stage
grouping calculations during each modification. Regarding random selection algorithms,
the plan is to use weighted random sampling or hash-based random selection, which will
require further research and experimental verification.

Author Contributions: Conceptualization, S.Z.; methodology, C.L. and B.D.; software, R.C.; valida-
tion, R.C.; investigation, C.L. and B.D.; writing—original draft preparation, R.C.; writing—review
and editing, R.C. and C.L.; supervision, C.L.; project administration, C.L. and S.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yuan, Y.; Wang, F.Y. Blockchain: The state of the art and future trends. Acta Autom. Sin. 2016, 42, 481–494.
2. Liu, S.Y.; Lei, M.Y.X.; Wang, L. A review of key technologies and existing problems in blockchain research. Comput. Eng. Appl.

2022, 58, 66–82.
3. Cai, X.Q.; Deng, Y.; Zhang, L. The principles and core technologies of blockchain. Chin. J. Comput. 2021, 44, 84–131.
4. He, S.; Huang, X.N.; Liu, Q.B.; Yang, Y.J. Research on improvement of DPoS blockchain consensus mechanism. Appl. Res. Comput.

2021, 38, 3551–3557.
5. Yuan, Y.; Wang, F.Y. Editable blockchain: Models, techniques and methods. Acta Autom. Sin. 2020, 46, 831–846.
6. Krawczyk, H.; Rabin, T. Chameleon Hashing and Signatures. Cryptology ePrint Archive. 1998. Available online: http:

//eprint.iacr.org/1998/010 (accessed on 5 October 2023).
7. Ateniese, G.; Magri, B.; Venturi, D.; Andrade, E. Redactable blockchain-or-rewriting history in bitcoin and friends. In Proceedings

of the 2017 IEEE European Symposium on Security and Privacy, Paris, France, 26–28 April 2017; pp. 111–126.
8. Li, P.L.; Xu, H.X.; Ma, T.J.; Mu, Y. Research on fault-correcting blockchain technology. J. Cryptologic Res. 2018, 5, 501–509.
9. Ashritha, K.; Sindhu, M.; Lakhmy, K.V. Redactable blockchain using enhanced chameleon hash function. In Proceedings of the

International Conference on Advanced Computing and Communication Systems, Coimbatore, India, 15–16 March 2019.
10. Lyu, W.L.; Wei, S.J.; Yu, M.H.; Li, S. Research on verifiable blockchain ledger redaction method for trusted consortium. Chin. J.

Comput. 2021, 44, 2016–2032.
11. Gao, W.; Chen, L.Q.; Tang, C.M.; Zhang, G.; Li, F. One-time chameleon hash function and its application in redactable blockchain.

J. Comput. Res. Dev. 2021, 58, 2310–2318.
12. Gu, K.; Zhang, S.H.; Li, C. Blockchain ledger revision scheme based on supervisor group. Appl. Res. Comput. 2023, 40, 2266–2273.
13. Chun, H.W.; Li, H.K.; Yu, S.D. Quantum resistant key-exposure free chameleon hash and applications in redactable blockchain.

Inf. Sci. 2020, 548, 438–449.
14. Khalili, M.; Dakhilalian, M.; Susilo, W. Efficient chameleon hash functions in the enhanced collision resistant model. Inf. Sci. 2020,

510, 155–164. [CrossRef]
15. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
16. Chor, B.; Goldwasser, S.; Micali, S.; Awerbuch, B. Verifiable secret sharing and achieving simultaneity in the presence of faults. In

Proceedings of the 26th Annual Symposium on Foundations of Computer Science, Portland, OR, USA, 21–23 October 1985.
17. Chen, S.M.; Wang, B.; Chen, Y.Q. Improved PBFT consensus algorithm based on node grouping reputation model. Appl. Res.

Comput. 2023, 40, 2916–2921.
18. Chen, R.Y.; Wang, L.W.; Zhu, R.G. PBFT consensus algorithm based on reputation value voting and random number election.

Comput. Eng. 2022, 48, 42–49.
19. Sun, M.; Jiao, S.X.; Wang, C.Y. Credit-based committee consensus mechanism. J. Comput. Appl. 2024, 1, 1–10. Available online:

http://kns.cnki.net/kcms/detail/51.1307.TP.20240409.1659.002.html (accessed on 14 May 2024).

http://eprint.iacr.org/1998/010
http://eprint.iacr.org/1998/010
https://doi.org/10.1016/j.ins.2019.09.001
https://doi.org/10.1145/359168.359176
http://kns.cnki.net/kcms/detail/51.1307.TP.20240409.1659.002.html

Information 2025, 16, 83 25 of 25

20. Dai, B.R.; Jiang, S.M.; Li, D.W.; Li, C. Evaluation model of cross-chain notary mechanism based on improved PageRank algorithm.
Comput. Eng. 2021, 47, 26–31.

21. Zhao, L.; Li, B.; Zhou, Q.L.; Chen, X. Improvement and optimization of consensus algorithm based on PBFT. In Proceedings of
the 4th International Conference on Communications, Information System and Computer Engineering, Piscataway, NJ, USA,
27–29 May 2022; pp. 350–356.

22. Dodis, Y.; Yampolskiy, A. A verifiable random function with short proofs and keys. In International Workshop on Public Key
Cryptography; Springer: Berlin/Heidelberg, Germany, 2005.

23. Zhao, X.; Zhang, Z.; Li, Y. An editable and accountable blockchain scheme. J. Cyber Secur. 2022, 7, 19–28. [CrossRef]
24. Lai, M.X.; Du, R.Y.; Chen, J.; He, K. A Decentralized and Traceable Editable Blockchain Scheme. J. Wuhan Univ. Sci. Ed. 2024, 70,

413–420. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.19363/J.cnki.cn10-1380/tn.2022.09.02
https://doi.org/10.14188/j.1671-8836.2023.0063

	Introduction
	Related Knowledge
	Chameleon Hash
	Verifiable Secret Sharing (VSS)
	Verifiable Random Functions (VRFs)

	RE-TNG Node Selection Method
	Node Reputation Reward and Penalty Model
	RE-TNG Node Selection Method Design

	Design of a Modifiable Blockchain Scheme Based on the RE-TNG Node Selection Method
	Scheme Definition
	Initialization Stage
	RE-TNG Node Selection Method—Selection Stage
	Final Modifier Node Selection Stage
	Voting Stage
	Trapdoor Generation Stage
	Data Modification Stage
	Verification Stage

	Decentralized Management of Trapdoor

	Scheme Analysis
	Security Analysis
	Functional Comparison
	Experimental Analysis
	Experiment Environment
	Performance Analysis

	Conclusions
	References

