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Abstract: Ensemble learning can improve predictive performance compared to the perfor-
mance of any of its constituents alone, while keeping computational demands manageable.
However, no reference methodology is available for developing ensemble systems. In this
paper, we adapt an ensemble framework for patent classification to assist data scientists
in creating flexible ensemble architectures for text classification by selecting a finite set of
constituent base models from the many available alternatives. We analyze the axes along
which someone can select base models of an ensemble system and propose a methodology
for combining them. Moreover, we conduct experiments to compare the effectiveness of
ensemble systems against base models and state-of-the-art methods on multiple datasets
(three patent classification and two text classification datasets), including long and short
texts and single- and/or multi-labeled texts. The results verify the generality of our frame-
work and the effectiveness of ensemble systems, especially ensembles of classifiers trained
on different data sections/metadata.
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1. Introduction
The task of text classification varies from domain to domain, depending on the type of

text that must be classified. Different types of text differ in terms of various features, such
as length, structure, metadata, kinds of words/phrases, grammatical patterns, syntactic id-
iosyncrasies, writing style, language/word distribution, etc., and thus different techniques
for their classification are possible.

One example is patent classification, a text classification task dealing with long patent
text that is full of technical and legal terminologies and structured in a distinctive way.
Similarly to other domains, current research efforts in patent classification mainly focus
on the use of machine learning (ML) models, deep learning (DL) models [1–4], and, lately,
large language models (LLMs) [5,6] to address the automated assignment of classification
codes to patent text. A promising technique that can improve the performance of traditional
learning models is the use of ensembles of models that combine the knowledge gained
from multiple learning models [7]. Recently, ensembles of classifiers have been applied in
patent classification, bringing significant improvements in terms of accuracy compared to
their constituent classifiers [8,9].

Even though the application and features of patent classification differ from other text
classification tasks, the underlying problem remains the same. Hence, ensembles of base
classifiers similar to those applied in patent classification could potentially attain better
performance in any text classification task. Indeed, various combinations of classifiers have
been proposed in the literature to address text classification [10]. However, a roadmap
methodology for designing ensemble systems does not yet exist. This is an important
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problem, as ensemble systems can be developed in myriad ways, but an ensemble must
have only a small, finite set of constituent base models. Therefore, a data scientist must make
a difficult decision, taking into account domain-specific language, data-centric parameters,
the techniques that are applicable, or even practical demands such as periodicity when
updating base models.

To assist this process, an Ensemble Patent Classification Framework (EPCF) has been
proposed to guide the creation of ensemble architectures for automated patent classifica-
tion [11]. Its objective is to guide patent researchers in designing new ensemble patent
classification systems or transforming existing patent classification systems into powerful
ensemble systems. Although it has been devised for patent classification, the framework
can be transferred to any text classification task.

The main contributions of this work are as follows:

1. To define a new general, domain-agnostic ensemble framework for text classification;
2. To validate the applicability of the framework;
3. To evaluate the effectiveness of combining classifiers’ knowledge against base classi-

fiers and state-of-the-art (SotA) methods on several text classification datasets, and
especially the effectiveness of combining knowledge from different data sections.

The remainder of the paper is structured as follows: Section 2 describes the related
work in ensemble methodologies and frameworks. Section 3 presents the ensemble frame-
work for text classification. Section 4 introduces the design approaches followed for devel-
oping representative ensemble systems that will be evaluated within this paper. Section 5
describes the data collection methods used for the evaluation. Sections 6 and 7 focus on the
evaluation of the proposed framework, consisting of both the experimental methodology
and evaluation results. Finally, Section 8 discusses the experimental results and Section 9
concludes the paper.

2. Related Work
Text classification, also known as text tagging or text categorization, is a task in which

one or many pre-defined classification codes, known as tags or categories, are assigned
to a given text based on its content, denoting the topic, the sentiment polarity, etc. The
underlying text can vary significantly, from a few words or phrases (e.g., sentiment analysis)
to long documents (e.g., document classification).

Earlier works in text classification organize the task into two steps: (1) extracting
features and (2) feeding extracted features into a classifier to obtain the final label. The
classifier could be an ML or a DL algorithm. Over the last decade, DL models have
surpassed classical ML models in a variety of text classification tasks, and the main focus
has shifted to developing the most appropriate DL classifier [12]. Recently, LLMs have
changed the classification paradigm and demonstrated improved performance [13].

Meanwhile, ensemble learning has been explored as a new approach to boosting
the performance of DL models in general and text classification specifically [14,15]. Fun-
damentally speaking, an ensemble learning model can be applied in any domain/task
where high-bias and high-variance base predictive models exist to combine them into a
better-performing, more stable model. Ensembles of heterogeneous classifiers, which differ
in terms of the type of classifier, have been used to improve classification performance
in the assignment of categories to long documents [16,17] and shorter texts such as ticket
text [18]. Ensembles of homogeneous classifiers, which use the same classifier but differ in
the way they manipulate the data, have also been used for text classification, using either
different partitions of a dataset [19] or different subspaces of the feature space [20] and
then submitting them to a classifier. Hybrid approaches using both heterogeneous and
homogeneous classifiers can also be found in the literature. Different classifiers leverage
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complementary information and different feature representation methods to predict the
topic of documents [10] or leverage different feature sets for sentiment classification [21].

Even though numerous research initiatives exist related to ensembles of classifiers
for text classification, there are no or very few available studies explaining the options
for creating an ensemble system. A simple representation of an ensemble framework was
presented in [22]. Although the framework does not include a design methodology, the
authors describe two basic ensemble composition approaches: (i) to differ in the training
dataset, i.e., a homogeneous approach, or (ii) to differ in the type of the base classifier, i.e., a
heterogeneous approach. They also provide guidelines for the creation of different training
datasets, introducing the concept of the data partitions. Data partitioning is based on the
multi-view characteristic of the data that have a natural separation of their features or can
be described using different views of information [23]. Ensemble learning can exploit these
multiple partitions or views of the data and perform better than base learners [24,25]. Last, a
significant study reviewing the key factors of any ensemble framework, especially ensemble
deep learning, is presented in [15]. These factors include the following: (i) the data sampling
method, (ii) the diversity of base classifiers, whether they are sequential and each of them
has an impact on the formation of the next classifier or they are parallel, (iii) the fusion
method, and (iv) the heterogeneity of the involved base classifiers, whether homogeneous
or heterogeneous. Although these characteristics are adequately described, they are not
presented on a simplistic and illustrative basis to make it easy to put them together.

3. An Ensemble Framework for Text Classification
Following the design principles introduced by the EPCF, we propose an ensemble

framework for text classification that is structured according to the following three dimensions.

Dimension 1: Fundamental Ensemble Components

This dimension consists of the two core components that are necessary to create an
ensemble system of base classifiers, including the following:

• The training dataset is the training samples providing labeled ground truth pairs of
inputs and expected outputs.

• The base classifiers are the learning models trained on the given training dataset.

Dimension 2: Modes of Heterogeneity

Following the general principle of ensemble learning, the base classifiers involved in an
ensemble system should be usefully diverse and have independent, hence complementary,
predicting capabilities [26–28]. This diversity is implemented in the second dimension,
which guides researchers in designing different base classifiers and includes diversity in
each fundamental ensemble component.

Dimension 2.a: Different training datasets—Data Heterogeneity

The training datasets employed by base classifiers can differ in many aspects, called
views or partitions:

• The horizontal data partitioning creates different training datasets by resampling the
entire training dataset into dataset partitions (also called bootstraps). By repeating the
copying of random samples, representative new datasets are formed that resemble
the population of the initial dataset. This is a statistical method for deriving robust
estimates of population parameters like mean.

• The vertical data partitioning creates different training datasets by using various features
of the original data, such as other modalities, e.g., the text and the accompanied
graphics; different sections or metadata, e.g., the title’s and the main body’s text; or
other data representations, e.g., TF-IDF and word embeddings.
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• The functional data partitioning forms different training datasets using any function that
splits the original data into subparts, e.g., different data partitions split the data based
on the publication date or the labels.

Dimension 2.b: Different base classifiers—Classifier Heterogeneity

The base classifiers leveraged by an ensemble system can differ in the following design
aspects:

• The type of the base classifier can be a traditional ML or a DL classification algorithm.
Recently, a classification head/layer has been added at the end of a pre-trained LLM
to predict the final label.

• The architecture of the base classifier can vary in several aspects, such as the type of
network architecture, the number of layers/nodes, the number of filters, the loss
function, the learning rate, the dropout rate, the weight initializations, and other
hyper-parameters, e.g., the batch size, the number of epochs, etc.

• The training method of the base classifier can be a single or multi-label training method.
Classifiers can be trained using the primary label or all available labels regardless
of whether they are evaluated for a single label or for multiple labels. In the case of
multi-label training, the labels can be represented as multi-hot encoded vectors or
probability vectors [29].

Dimension 3: Selection and Fusion Techniques

This dimension defines the combination of base classifiers that produces the final
prediction. In particular, the base classifiers of an ensemble system can be combined using
different selection and fusion techniques, which can fall into two broad groups:

• The averaging techniques are score aggregation techniques that calculate the score based
on a number of evidence types, e.g., voting, or simple data fusion algorithms, e.g.,
mean, medium, etc. A summary of different averaging techniques can be found in [30].

• The meta-learning techniques involve a meta-learning stage. The most common meta-
learning techniques are stacking and the mixture of experts:

• In stacking, a meta-classifier is trained on features that are the outputs of base classifiers
to learn how to combine their predictions best.

• In the mixture of experts, an expert classifier is trained on a sub-task and then a gating
model is developed that learns which expert classifier to trust each time based on
the input.

Figure 1 depicts the ensemble framework for text classification and illustrates its
dimensions. Each slice of the cube corresponds to a different design approach. For example,
selecting the sub-cube with the pattern creates an ensemble system consisting of base
classifiers trained on different functional partitions, while the outcomes of base classifiers
are combined using an averaging technique.
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Figure 1. The ensemble framework for text classification.

4. Homogeneous vs. Heterogeneous Ensembles
When designing an ensemble system, there are two core approaches: a homogeneous

or a heterogeneous approach. This section describes these two core design approaches,
which will be evaluated in the following sections.

4.1. Homogeneous Approach

In the homogeneous approach, the base classifiers composing the ensemble system
are identical in terms of the type, the architecture, and the training method, but they differ
in the training dataset. Specifically, four representative variations of ensemble systems
consisting of homogeneous classifiers trained on different training datasets are evaluated.
These have been created following different data partitioning techniques:

• Horizontal data partitioning—Bagging technique. A well-known ensemble learning tech-
nique, named Bagging [31], is used for creating different subsets of the training dataset,
called bootstraps, resampling randomly, usually with replacement, the entire train-
ing dataset.

• Horizontal data partitioning—Adaboost technique. Another ensemble learning technique
to create different subsets of the training dataset is the boosting technique. Ad-
aBoost [32], one of the most well-known boosting techniques, prioritizes misclassi-
fied samples during the resampling of the entire training dataset to form sequential
base classifiers.

• Vertical data partitioning—sections. The training datasets consist of different sec-
tions/metadata, e.g., the title, the abstract, the detailed description or main body,
etc. These sections can be used to train different base classifiers.

• Functional data partitioning—label’s representation. A promising technique further de-
scribed in [33] is to split the training dataset based on the labels’ frequency. Different
subsets of the training dataset are formed with samples having high-represented
and/or low-represented labels. The threshold under/over for which a code is consid-
ered high- or low-represented can be set from 100 to 500 training samples depending
on the dataset’s size and labels’ distribution.

4.2. Heterogeneous Approach

In the heterogeneous approach, the base classifiers are trained on the same partition of
the training dataset, but they differ in the design characteristics of the classifier. Specifically,
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three representative variations of ensemble systems are tested consisting of heterogeneous
classifiers differentiating in the following:

• The type ofthe base classifier. Base classifiers may differ in the learning model. For exam-
ple, different classification algorithms, such as RNN, CNN, or BERT, can be leveraged.

• The architecture of the base classifier. Base classifiers may differ how they structure
the network architecture, with myriads of parameters available to differentiate their
predictive behavior.

• The training method of the base classifier. Base classifiers can be trained by having as a
target the primary category or the combined list of primary and secondary categories
assigned by annotators [29]. For example, in patent test collections, such as the CLEFIP-
0.54M and WIPO-alpha, the assigned classification codes have different priorities. The
main classification code is the primary code of a patent document since it will be later
classified and searched with this code. Secondary classification codes, called further,
are also assigned to a patent document that corresponds to other relevant features of
the invention that are not the most representative of the essential prior art, but they are
still considered useful. Base classifiers can be trained in these datasets using the main
or all classification codes. There are more origins of heterogeneity, e.g., classification
codes can be represented as a multi-hot encoding or probability distribution vector.
The probabilities can be evenly or unevenly assigned to categories based on additional
annotator information, such as confidence and disagreement [29].

5. Data Collections
Five benchmark datasets—the CLEFIP-0.54M, the WIPO-alpha, the USPTO-2M, the

Web of Science (WOS), and the EURLEX57K—have been used to evaluate the applicability
of the proposed ensemble framework and the effectiveness of ensemble systems.

5.1. CLEFIP-0.54M

The CLEFIP-0.54M [34] contains the English patents of the CLEF-IP 2011 test collection,
which have been extracted with the condition to have (i.e., not being empty) the main
classification code, the EN abstract, the EN description, the EN claims, the EN title, the
applicants, and the inventors. In addition to the main classification code, all (main and
further) IPC classification codes at the subclass (third) level of the IPC 5+ level hierarchy
are available. The dataset contains 541,131 patents classified in 731 main (and 810 main and
further) subclass codes. Moreover, the text of the EN abstract, the EN description, and the
EN claims has undergone a pre-processing, removing any character that is not alphabetic
and English stop words.

5.2. WIPO-Alpha

The WIPO-alpha is an English patent database issued in 2002 by the World Intellec-
tual Property Organization (WIPO). It is a data collection of about 75K XML documents
distributed over 30,000 codes in the fifth level and 5500 codes in the fourth level, e.g., there
is only one patent with the “A01C00502” code in the fifth level and seven patents with the
“A01C005” code in the fourth level. For our experiments, we use the codes of the third
level, known as subclass codes, which amount to 451 main codes and 633 all codes (main
and further).

5.3. USPTO-2M

The USPTO-2M is a large-scale patent classification dataset made publicly available
by Li et al. [3,35]. The dataset includes the title, the abstract, and the subclass labels (multi-
label) for each patent. The dataset contains 2,000,147 patents classified in 637 categories
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from 2006 to 2015. The same or subparts of this dataset have been used by other studies,
such as in [36], which removes the low-represented labels with a frequency of less than
100 documents and finally considers 544 labels.

5.4. Web of Science (WOS-5736, WOS-11967, and WOS-46985)

The Web of Science (WOS) [37] is a document classification dataset of 46,985 scientific
papers with 134 categories and 7 parent categories, which have been made available by
the Web of Science. Each document contains two fields, the abstract, and the keywords,
provided by the authors. The WOS-5736 and WOS-11967 are two subsets of the WOS-46985.
The WOS-11967 contains 11,967 documents with 35 categories and 7 parent categories and
the WOS-5736 contains 5736 documents with 11 categories and 3 parent categories.

5.5. EURLEX57K

The EURLEX57K [38] contains 57K English EU legislative documents from the EUR-
LEX portal tagged with ~4.2K labels (concepts) from the European Vocabulary (EUROVOC).
Each legislative document is provided in a JSON file containing information for a legal
act (EU Directive, Regulation, Decision), as published in the Eur-Lex portal. The entire
content of each legal act can be represented solely by its title, header, recitals, main body,
and attachments.

Some statistics about the datasets are presented in Table 1.

Table 1. Statistics of the benchmark datasets.

Dataset Document Type Task(s) #Labels #Train/Test

CLEFIP-0.54M Patent documents Single and
multi-label

731 main and 810
main and further 487,018/54,113

WIPO-alpha Patent documents Single and
multi-label

451 main and 633
main and further 46,324/28,926

USPTO-2M * Patent documents Multi-label 544 1,947,223/49,888

WOS-5736
WOS-11967
WOS-46985

Scientific
publications Single-label

11
35

134

5162/574
10,770/1197
42,286/4699

EURLEX57K Legislative
documents Multi-label ~4.2K 45,000/6000

* Keeping only the labels found in more than 100 patent documents.

6. Evaluate the Applicability of the Ensemble Framework
We conduct a first set of experiments to exemplify the ensemble framework’s potential

and evaluate the effectiveness of ensemble systems against base classifiers. Specifically,
we create representative instantiations of the ensemble framework, demonstrating differ-
ent ways to design an ensemble system and evaluating the effectiveness of combining
knowledge against base classifiers.

6.1. Experimental Methodology in the CLEFIP-0.54M Dataset

We made our code publicly available so that other researchers could easily reproduce our
experiments. Moreover, we provide some important details about our experimental parame-
ters in this section. The first set of experiments is conducted on the CLEFIP-0.54M dataset.
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6.1.1. Base Classifier

Concerning the training data, for each training sample, the first 60 words of the abstract
section are used to train the base classifiers. These 60 words are mapped to embeddings
using a domain-specific pre-trained language model with 300 dimensions [4].

All base classifiers employ a simple classification algorithm. This is a bidirectional
LSTM (Bi-LSTM), which has been proven in a previous study to attain the best accuracy
for single-label patent text classification when different RNN and CNN base classifiers, in-
cluding 1D-CNN, GRU, LSTM, Bi-GRU, and Bi-LSTM, are compared to create an ensemble
system [9,11]. The network architecture of base classifiers is depicted in Figure 2.
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The CLEFIP-0.54M contains both the main and all IPC classification codes at the
subclass level; thus, both the single- and multi-label training methods can be used. In this
set of experiments, each base classifier is trained to target only the main classification code,
which is encoded using the one-hot encoding scheme.

Moreover, for all experiments in this first set, the batch is set to 128 and the epochs
to 15.

6.1.2. Design Details of Homogeneous Ensemble Classifiers

• Horizontal data partitioning—Bagging technique: Random resampling is used to create
the different training datasets, while the number of base classifiers varies from 3 to 5
and to 7.

• Horizontal data partitioning—Adaboost technique: Weights are set to concentrate on
training samples that have been classified incorrectly. The number of sequential base
classifiers varies from 3 to 5 and to 7 and their final prediction is taken by adding the
weighted prediction of every classifier.

• Vertical data partitioning—sections: In addition to the abstract, we use the title, descrip-
tion, and claims sections of the patent document to train different base classifiers.

• Functional data partitioning—labels’ representation. Two base classifiers are created: one
that is trained on patent documents of high-represented classification codes and one
that is trained on patent documents of low-represented classification codes. The
threshold under which a code is considered low-represented is set to 500 patent
documents after an initial exploration of the accuracy attained as the patent frequency
of codes increases.

6.1.3. Design Details of Heterogeneous Ensemble Classifiers

• The type of the base classifier. Different base classifiers are used in addition to a Bi-LSTM
classifier. We use a bidirectional GRU (Bi-GRU), an LSTM, and a GRU classifier with
similar network architectures. Details of the DL models can be found in [9].

• The architecture of the base classifier. Classifiers may differ in many ways concerning the
network architecture. In this experiment, classifiers differ in the number of hidden
units they use, adding another base classifier with 200 units.

• The training method of the base classifier. In the case of a heterogeneous ensemble using
a different training method for base classifiers, these are trained to target either the
main (i.e., single-label training method) or all IPC classification codes (i.e., multi-label
training method). For the representation of all IPC classification codes, a greater
probability of 0.6 is assigned to the main classification code, while the remaining
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probability of 0.4 is evenly distributed among all other IPC classification codes, i.e.,
further classification codes. For example, if there are 4 IPC classification codes (1 main
and 3 further), they are assigned a probability of 0.6, 1.33, 1.33, and 1.33, respectively. In
these cases, the Kullback–Leibler (KL) divergence loss is used instead of the categorical
cross-entropy.

6.1.4. Combination Method

For all ensemble variations presented in this paper, the outcome probabilities of
base classifiers are fused using an averaging technique for each label to produce the
final prediction.

The exception is the case of base classifiers that are trained on different labels’ rep-
resentations and present a significant deviation in the accuracy achieved. In this case, a
meta-classifier is used to combine their outcomes, learning to distinguish their input and
combine their outcomes appropriately.

The meta-classifier’s network architecture is structured in two dense layers, as depicted
in Figure 3. The first dense layer consists of several neurons, equal to the number of base
classifiers multiplied by the number of labels and activated with a RELU function, while
the second dense layer consists of neurons equal to the number of labels and activated with
a sigmoid function.
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6.2. Results in the CLEFIP-0.54M Dataset

The base classifiers and the ensemble system created from the combination of these
base classifiers are evaluated in terms of predicting the correct main classification code
(single-label classification task).

Tables 2–4 present the performance of representative variations of ensemble systems
consisting of homogeneous base classifiers and the improvement achieved when applying
the ensemble learning compared with the accuracy achieved by their ensemble constituents,
i.e., the base classifiers, when they operate individually.

Table 2. Ensemble systems of homogeneous base classifiers using different horizontal data partitions.

Bagging Technique Adaboost Technique

Base classifier #1 61.74% 61.93% 61.83% 63.73% 63.86% 63.73%
Base classifier #2 62.08% 61.78% 61.86% 61.98% 62.14% 61.98%
Base classifier #3 62.01% 61.74% 62.03% 62.05% 61.79% 62.01%
Base classifier #4 61.92% 61.89% 62.16% 62.02%
Base classifier #5 62.09% 61.94% 61.75% 61.82%
Base classifier #6 61.97% 62.19%
Base classifier #7 61.93% 61.88%

Ensemble 64.85% 65.70% 65.90% 65.31% 65.76% 66.07%

Improvement 2.91% 3.81% 3.98% 2.72% 3.42% 3.84%
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Table 3. Ensemble systems of homogeneous base classifiers using different vertical data partitions.

Sections

Base classifier #1 trained on titles 59.58%
Base classifier #2 trained on abstracts 63.76%

Base classifier #3 trained on descriptions 66.46%
Base classifier #4 trained on claims 64.56%

Ensemble 70.54%

Improvement 6.95%

Table 4. Ensemble systems of homogeneous base classifiers using different functional data partitions.

Labels’ Representation

Base classifier #1 trained on low-represented labels 9.37% (65.72%)
Base classifier #2 trained on high-represented labels 63.91% (68.02%)

Ensemble 68.15%

Improvement 4.39%

Specifically, Table 2 presents the accuracy of base classifiers trained on 3, 5, and
7 bootstraps created (i) using random resampling of the training dataset (Bagging technique)
and (ii) using weighted resampling of the training dataset assigning a greater weight on
misclassified samples (Adaboost technique). Moreover, Table 2 presents the accuracy of
the ensemble system consisting of these base classifiers and the improvement achieved
by the ensemble system compared with the average accuracy achieved by its constituent
base classifiers.

Moreover, in Table 2, the AdaBoost and Bagging techniques of horizontal data parti-
tioning achieve similar performance, although they manipulate the data differently. More
specifically, AdaBoost initiates with slightly improved performance, as the first base clas-
sifier is trained on the entire training dataset (bootstrap). In contrast, the performance
of later base classifiers is decreased as misclassified instances are preferred in respective
bootstraps, resulting in a similar total performance with the Bagging technique, which
creates random, unbiased bootstraps. In addition, we observe that the number of base
classifiers (and bootstraps) plays a role in the total performance of the ensemble system.
Specifically, the more classifiers, the higher accuracy achieved.

Table 3 depicts the accuracy of base classifiers trained on different vertical partitions,
particularly different features of the patent document, including the title, abstract, de-
scription, and claims section. Moreover, it presents the accuracy of the ensemble system
created by these base classifiers. As we can see, a significant improvement is recorded
when we combine these base classifiers into an ensemble system, reaching an increase of
6.95% compared with the average accuracy achieved by base classifiers, confirming that the
more diverse the base classifiers are, as the ones presented in Table 3, the better accuracy
is achieved.

Table 4 presents the accuracy of base classifiers trained on different training subparts.
Specifically, the first classifier is trained on patents with low-represented labels and the
second is trained on patents with high-represented labels. Then, their outcomes are com-
bined using a stacking method, i.e., the meta-classifier depicted in Figure 3. The main
accuracy (outside brackets) is achieved when the entire testing set is evaluated, consisting
of patents belonging to both groups of low- and high-represented labels, while the accuracy
inside brackets is achieved when the classifier is tested only on patents that the classifier is
trained to be able to handle, e.g., on patents of low-represented labels. Moreover, Table 4
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presents the accuracy of the ensemble system created by these base classifiers. As we can
see, the improvement of the ensemble system is 4.39% compared with the accuracy of a
base classifier trained on the entire dataset (63.76%).

Table 5 presents the performance results of representative variations of ensemble
systems consisting of heterogeneous base classifiers. Base classifiers differ in (i) the type,
(ii) the network architecture, and (iii) the training method. All techniques can improve
the ensemble system’s measured accuracy compared with base classifiers. The highest
improvement is recorded (2.48%) when using different types of base classifiers.

Table 5. An ensemble system of different base classifiers.

Type Architecture Training Method

Bi-LSTM
Bi-GRU

63.76%
63.45% Bi-LSTM—100 units 63.76% Single-label

training method 63.76%

LSTM 63.08%
Bi-LSTM—200 units 64.21%

Multi-label
training method 63.37%GRU 63.41%

Ensemble 65.90% Ensemble 65.59% Ensemble 65.38%

Improvement 2.48% Improvement 1.61% Improvement 1.82%

Overall, the accuracy measures are improved when an ensemble technique is applied
compared to base classifiers. The optimal improvement is attained using homogeneous
classifiers, particularly when combining knowledge from base classifiers working on
different features (6.95%), namely the title, abstract, description, and claims.

Based on this observation, we decided to expand our experiments and train base
classifiers and then combine their outcomes for the rest of the sections, including the title,
the description, and the claims. Thus, we create an ensemble system for each section,
and then we aggregate the predictions of ensemble systems for each section, creating an
ensemble of these ensembles. The accuracy of ensemble systems for each section and the
accuracy of the ensemble system consisting of these ensembles is presented in Table 6.
Moreover, the table presents the improvement achieved compared with the accuracy of a
base classifier trained on the entire dataset (63.76%). As shown in Table 6, the best accuracy,
reaching 71.10% with an improvement of 11.39%, is attained when base classifiers are
trained on over- and under-represented samples for each section, and thereafter, the results
of ensemble systems for each section are averaged.

Table 6. Ensemble of ensemble systems for each patent section.

Method
Accuracy of Ensemble Systems (ES) Accuracy of

Ensemble of ES
Improvement

Title Abstract Description Claims

H
om

og
en

eo
us

Bagging
technique 61.31% 65.90% 68.36% 66.38% 70.80% +7.04%

Adaboost
technique 61.38% 66.07% 68.67% 66.65% 70.93% +7.17%

Labels’ repre-
sentation 62.46% 68.15% 71.10% 68.88% 75.15% +11.39%

H
et

er
og

en
eo

us Type 62.21% 66.34% 68.94% 66.91% 71.19% +7.43%

Architecture 61.56% 65.59% 68.06% 66.43% 71.57% +7.81%

Training
method 60.43% 65.38% 67.69% 65.86% 70.70% +6.94%
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7. Evaluate the Effectiveness of Ensemble Systems
To validate the effectiveness of ensemble systems against SotA methods, we conduct

another set of experiments. In this set, we train the same Bi-LSTM base classifiers on
different vertical data partitions and combine their knowledge to create an ensemble system.
Then, we compare the base classifiers and their ensemble systems with SotA methods.

At this point, it should be mentioned that the incentive for comparing ensemble
systems with SotA methods is to demonstrate the improvement that can be achieved using
ensemble systems compared to base classifiers, which can have comparable performance
to SotA methods. In no way have we aimed to compete with recent SotA methods, and
because of this, only indicative examples of SotA methods are included rather than an
exhaustive list.

7.1. Experimental Methodology for Comparisons with SotA

The second set of experiments is conducted on several well-established text clas-
sification datasets: (i) two from the patent domain, including the WIPO-alpha and the
USPTO-2M, and (ii) two from the text classification domain, including the WOS (the three
versions of the WOS: WOS-5736, WOS-11967, and WOS-46985) and the EURLEX57K.

Depending on the data collection, different numbers of words and sections are used
to train the base classifiers. In USPTO-2M, the first 100 words from the title section, the
abstract section, and the concatenated title and abstract section are used. In the WIPO-alpha,
the first 60 words from the title, the abstract, the description, and the claims section are
used. In the EURLEX57K, the first 100 words from the title, the header, the recitals, the main
body, and the attachments are used. In the WOS, the first 180 words from the keywords
and the abstract section are used.

In the case of patent data collections, the feature words are mapped to word embed-
dings using the same domain-specific pre-trained language model as the one used in the
previous section. For the WOS and EURLEX, the pre-trained GLOVE language model with
300 dimensions is used [39].

Concerning the type of classifier, all base classifiers employ a Bi-LSTM with similar
architecture and hyper-parameters as those depicted in Figure 2.

In the USPTO-2M and EURLEX57K, each document is assigned more than one label,
namely IPC subclass codes and EUROVOC categories, respectively (multi-label classifica-
tion task). Since there is no evidence to imply that the labels’ order plays a specific role,
we follow a multi-label training method, and probabilities are evenly assigned among
codes/categories. In the WOS, each document is assigned a single label, namely the scien-
tific category. Thus, a single-label training method is followed, and each label is encoded
using the one-hot encoding scheme. Last, the WIPO-alpha contains both the main and all
IPC subclass codes, and thus, base classifiers can be trained to target the main label or all
available labels. For this set of experiments, each base classifier is trained to target all IPC
classification codes, which are encoded to a vector using different probabilities based on
their priority (as described in Section 6.1.3). In the case of the single-label training method,
the categorical cross-entropy loss function is used, while for the multi-label training method,
the KL divergence loss function is used instead.

Last, the batch is set to 128 and epochs are set to 30 for the WIPO-alpha, the WOS, and
the EURLEX57K, while the epochs are set to 15 for the USPTO-2M.

The outcome probabilities of the base classifiers trained on each section are fused
using an averaging technique.
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7.2. Results for Comparisons with SotA

In the WOS, the base classifiers and the ensemble system of these base classifiers are
evaluated on the accuracy of predicting the correct scientific category. Table 7 presents the
accuracy of base classifiers trained on the text coming from each section and the accuracy
of the ensemble system of these base classifiers, averaging the predictions for each label
across all sections. Our ensemble method achieved the best accuracy in the case of the
smaller variation of the WOS (WOS-5736) and an accuracy comparable to SotA methods
for the other two variations (WOS-11967 and WOS-46985).

Table 7. Experiments on the WOS-5736, WOS-11967, and WOS-46985. The light gray rows present
the performance of base classifiers trained on the keyword text and abstract text, respectively, while
the dark gray row presents the performance of the ensemble system of these base classifiers.

Method
WOS-5736 WOS-11967 WOS-46985

Accuracy Accuracy Accuracy

SotA

CNN [40] 70.46% 83.29% 88.68%

RNN [40] 72.12% 83.96% 89.46%

HDLTex [41] 76.58% 86.07% 90.93%
Ensemble (Sections) 79.17% 82.79% 90.24%

Keywords 53.69% 69.26% 70.56%Base Classifiers
(Bi-LSTM) Abstract 76.04% 75.36% 89.72%

In the WIPO-alpha, three evaluation metrics are measured [42], the accuracy of top
prediction (Top 1 vs. main), the accuracy of all categories (Top 1 vs. main + further), and
the accuracy of three guesses (Top 3 vs. main). Table 8 presents these metrics for the
base classifiers trained on different vertical partitions, the title, abstract, description, and
claims, and the accuracy of the ensemble system of these base classifiers. As we can see,
the ensemble method outperforms the SotA methods for all measures.

Table 8. Experiments on the WIPO-alpha. The light gray rows present the performance of base
classifiers trained on the title, abstract, description, and claims text, respectively, while the dark gray
row presents the performance of the ensemble system of these base classifiers.

Method Top 1 vs. Main Top 1 vs. Main
+ Further Top 3 vs. Main

SotA
Bi-GRU [4] 49% - -

CNN [43] 55.02% - -

Bi-GRU [44] 53.76% 62.65% 76.97%
Ensemble (Sections) 58.36% 67.90% 82.41%

Title 44.77% 53.28% 68.50%
Abstract 50.18% 60.06% 75.72%

Description 54.07% 63.32% 78.74%
Base Classifiers

(Bi-LSTM)
Claims 50.26% 58.99% 74.79%

In the USPTO-2M and EURLEX57K, the base classifiers and the ensemble system of
these base classifiers are evaluated on the precision, the recall, and the F1-score at the top K
predicted labels where K is equal to one (P@1, R@1, and F1@1). These evaluation metrics
are depicted in Tables 9 and 10, respectively.

Table 9 depicts the evaluation metrics in the USPTO-2M dataset. Specifically, the
table presents the P@1, R@1, and F1@1 for the base classifiers trained on different vertical
partitions, including the title, the abstract, and their concatenation, respectively, and the
same metrics for the ensemble system of these base classifiers. As we can see, the ensemble
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method underperforms or performs comparably to the SotA methods for all measures,
which are mainly based on BERT and XLNet models.

Table 9. Experiments on the USPTO-2M. The light gray rows present the performance of base
classifiers trained on the title, abstract, and concatenation of title and abstract text, respectively, while
the dark gray row presents the performance of the ensemble system of these base classifiers.

Method P@1 R@1 F1@1

SotA

PatentBERT [5] 80.61% 54.33% 64.91%

DeepPatent [3] 73.88% - -

PatentNet XLNet [36] 86% 42.9% 57.2%
Ensemble (Sections) 80.16% 41.71% 54.87%

Title 70.64% 36.76% 48.36%
Abstract 77.20% 40.18% 52.85%Base Classifiers

(Bi-LSTM) Concat. title and
abstract 79.02% 41.12% 54.09%

Table 10. Experiments on the EURLEX57K. The light gray rows present the performance of base
classifiers trained on the title, header, recitals, main body, and attachments text, respectively, while
the dark gray row presents the performance of the ensemble system of these base classifiers.

Method P@1 P@5 R@1 R@5

SotA

BiGRU-ATT [45] 89.90% 65.40% 20.40% 68.50%

HAN [46] 89.40% 64.30% 20.30% 67.50%

BIGRU-LWAN [47] 90.70% 66.10% 20.50% 69.20%

BERT-BASE [38] 92.20% 68.70% 20.90% 71.90%
Ensemble (Sections) 89.07% 64.78% 17.60% 64.02%

Title 84.83% 61.37% 16.77% 60.65%
Header 85.35% 61.29% 16.87% 60.57%
Recitals 83.10% 60.21% 16.43% 59.50%

Main body 81.45% 59.94% 16.10% 59.23%

Base
classifiers
(Bi-LSTM)

Attachments 52.67% 38.42% 10.41% 37.97%

Table 10 depicts the evaluation metrics in the EURLEX57K dataset. Specifically, the
table presents the P@1, R@1, P@5, and R@5 for the base classifiers trained on different
vertical partitions, including the title, header, recitals, main body, and attachments, respec-
tively, and the same metrics for the ensemble system of these base classifiers. As we can
see, the ensemble method achieved improvements compared to the base classifiers, while
it performed comparably to the SotA methods, which are mainly based on BiGRU, BERT,
and HAN.

In the experiments with the WOS and WIPO-alpha datasets (Tables 7 and 8), the base
classifiers utilize a Bi-LSTM classification algorithm, which is similar to the classification
algorithms applied in the respective SotA methods, such as CNN, RNN, and GRU. There-
fore, the comparison was made on an equal basis. On the other hand, in the experiments
with the USPTO-2M and EURLEX57K datasets (Tables 9 and 10), we penalize our ensemble
model since we compare it with SotA methods utilizing the BERT and XLNet classifiers.

8. Discussion
The primary objective of this paper was to present the design principles for devel-

oping ensemble systems for text classification. Ensemble learning is a technique that can
achieve considerable gains in any individual model’s prediction performance, producing
results with high variance. Following the principles described in the proposed ensemble
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framework, data scientists have a valuable roadmap for developing base classifiers and
using them as building blocks for effective and more robust ensemble systems. Although
we selected a simple classification algorithm, i.e., the Bi-LSTM, to demonstrate the bene-
fits of ensemble systems, someone can apply the ensemble technique on more complex
classification algorithms, such as BERT or XLNet.

We can compare the operation of ensemble models with the process of experts re-
viewing a research publication or a research proposal. The more reviewers assigned to
the evaluation, the more likely it is that a reliable decision will be made, and all different
aspects that could affect a decision will be detected and taken into account.

Hence, an ensemble system combines the results of base models into a more stable and
better-performing model. Ensemble systems can be applied in any task where base models
show high bias and/or high variance. Additionally, ensembles can improve performance
if multiple signals exist, and their fusion can be combined. Finally, ensemble systems are
better fit in professional domains where the gains of increased reliability are worth the
extra effort in terms of time and resources, such as medical, legal, or patent domains.

One representative example from the patent field is when a reclassification is required
due to changes in IPC/CPC. Many patent documents should be reclassified. This update
should be carried out with the highest possible degree of reliability and confidence, as
misclassification will have significant consequences. In this scenario, it would be worth
any additional effort (in time and resources) to employ an ensemble.

Finally, as shown in the experiments, the performance gains achieved using the
ensemble technique can be compared with those attained with SotA methods for text
classification, e.g., transformers-based models. Hence, ensemble architectures consisting of
simpler base models can be compared and even counterbalance the use of newer models,
offering an alternative solution in cases of computational constraints.

8.1. Document Classification

Documents include many sources of information that can be used as signals by clas-
sifiers. For example, a patent document contains thousands of words that can be used as
features. Using all available document features for training a classification model may be
neither efficient nor effective. Therefore, strategies for addressing multiple features are
required. Ensemble architectures, consisting of numerous base classifiers, can be trained on
different features and combine their outcomes appropriately to produce the final prediction.
This way, they can exploit many features, achieving better results, and counterbalance the
failure of some.

Moreover, despite its ability for parallelization, the attention mechanism used by
transformers-based models makes it difficult to process long texts, e.g., the BERT model
handles 512 tokens, omitting a significant portion of content that may potentially point
to additional labels due to the locality of concepts that is evident in long documents.
Appropriate ensemble strategies are needed to adapt LLMs for long documents, splitting
them into smaller chunks, processing each chunk individually and later combining the
outcomes of all chunks to produce a final prediction [48].

8.2. Efficiency vs. Complexity

Complexity is translated in time and resources, including memory and CPU/GPU.
The imposed complexity of ensemble models lies in the number of base models and the
combination technique used to combine their outcomes. Thus, the complexity may vary
significantly, from a simple ensemble system composed of two base models whose results
are combined using an average function to a complicated ensemble system consisting of
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many base models whose results are combined in a complicated way, e.g., using stacking
techniques, the selective combination of models, etc.

Let us give a specific example comparing the SotA classifiers’ complexity with the
ensemble classifier’s complexity in Table 10. To achieve that, we quantify the complexity
of the development of a system using a simple system complexity metric, counting the
number of nodes and the one-way interactions they have. The complexity of SotA classifiers
is always one since only one classifier is involved. The complexity of developing the
ensemble system increases linearly as a new base classifier is added, reaching six, as five
base classifiers use a simple combination method, such as the averaging technique, to fuse
their results.

Concerning the complexity of deploying ensemble systems (inference), base classifiers
can operate in parallel; thus, no additional delays are added to the total inference time
provided that their results are fused using a simple combination technique. Therefore, no
significant scalability concerns may be raised by adopting an ensemble solution instead of
a single-model solution.

Last, as mentioned above, ensemble architectures of simpler base models can achieve
comparable results with SotA methods. Therefore, ensemble systems can be a suitable
substitute for recent resource-intensive models, e.g., transformers-based models, in cases of
computational constraints.

9. Conclusions
We proposed an ensemble framework for text classification that can be used to struc-

ture the design of new ensemble systems. Following the framework’s principles, researchers
can define the base classifiers of ensemble systems and how to include diversity across
them. Moreover, we have shown that ensembles of classifiers outperform base classifiers
and perform comparably to similar previous work on text classification.

In this work, we have focused on long and short texts from patents and scientific and
legislative documents. Yet, our framework should be easily adaptable to other genres and
domains. Further improvements for text classification can be expected from an ensemble of
classifiers combining additional textual information, e.g., unexplored sections, or combining
parts that articulate the topic(s) better, e.g., essential parts or significant words. Finally, as
ensembles of classifiers improve the attained performance of base classifiers, transforming
existing text classification models with simple and low-cost ensemble techniques, like
combining the knowledge from all sections, may be a promising direction to improve the
text classification performance.
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