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Abstract: Large Language Models (LLMs), such as the GPT series, LLaMA, and BERT, pos-
sess incredible capabilities in human-like text generation and understanding across diverse
domains, which have revolutionized artificial intelligence applications. However, their
operational complexity necessitates a specialized framework known as LLMOps (Large
Language Model Operations), which refers to the practices and tools used to manage lifecy-
cle processes, including model fine-tuning, deployment, and LLMs monitoring. LLMOps
is a subcategory of the broader concept of MLOps (Machine Learning Operations), which
is the practice of automating and managing the lifecycle of ML models. LLM landscapes
are currently composed of platforms (e.g., Vertex AI) to manage end-to-end deployment
solutions and frameworks (e.g., LangChain) to customize LLMs integration and application
development. This paper attempts to understand the key differences between LLMOps and
MLOps, highlighting their unique challenges, infrastructure requirements, and method-
ologies. The paper explores the distinction between traditional ML workflows and those
required for LLMs to emphasize security concerns, scalability, and ethical considerations.
Fundamental platforms, tools, and emerging trends in LLMOps are evaluated to offer
actionable information for practitioners. Finally, the paper presents future potential trends
for LLMOps by focusing on its critical role in optimizing LLMs for production use in fields
such as healthcare, finance, and cybersecurity.

Keywords: large language models (LLMs); LLMOps; MLOps; model fine-tuning; infrastructure
scalability; ethical AI practices; security in AI operations; generative AI (GenAI); LangChain;
Vertex AI; retrieval-augmented generation (RAG); GPT; text generation; cybersecurity

1. Introduction
Artificial intelligence (AI) and machine learning (ML) have made substantial progress

in recent years. They have transformed various industries and are influencing daily life,
enabling companies to accelerate progress in decision making and strategic planning [1].
Generative artificial intelligence (GenAI) has recently been implemented in numerous
businesses and areas to transform traditional practices. The application of advanced AI
technologies has impacts on sectors like manufacturing [2], cybersecurity [3], medicine and
healthcare [4,5], supply chain management [6,7], software development [8], air transport
industry [9], and everyday software automation, and is widespread in several indus-
tries [10,11]. Despite remarkable progress, many potential ML applications have struggled
to meet expectations in real-world scenarios and failed or faced challenges to be deployed
in production. Understanding the various challenges is crucial for improving the success
rate of ML deployment. These challenges include unqualified data collection practices
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or biased datasets [12], data security and privacy issues such as ML model deployments
that can cause leakage of private information [13–15], ML models experiencing delays
in processing or inference—which can affect applications that run in real time due to the
complexity size of the ML model [16]—and drift issues—which refer to changes in data or
model behavior over time and critically affect ML model performance in production [17].

To effectively address the challenges connected to the deployment of ML models in
production, it is necessary to analyze the current research focus and explore the utilization
of MLOps. This approach optimizes the procedure for the deployment, management, and
supervision of machine learning models in a production environment [18]. It requires years
of collaboration among data scientists, front-end developers, machine learning engineers,
and production engineers. These teams must work together to share their expertise and
establish efficient workflows for transitioning models into production. However, the
process is fraught with challenges that are among the primary reasons why only a small
fraction of ML projects successfully reach production [19].

Advancements in LLMs (e.g., BERT, GPT, LLaMA, and T5) have revolutionized ML
by enabling human-like text generation and understanding [20–23]. These models are
applied in various domains, such as financial LLMs based on tasks [24], multilingual
LLMs [25], clinical and biomedical LLMs [26], vision language LLMs [27] and code lan-
guage models [28]. But they face challenges like high computational requirements and the
need for fine-tuning [29]. A critical concern in managing LLMs is ensuring their longevity
and avoiding model drift, which can affect their performance over time [30]. Lifelong
learning is vital to enable LLMs to adapt to evolving data, tasks, and user preferences, as
static datasets are inadequate to handle the dynamic nature of real-world information [31].
Cybersecurity risks further underscore the importance of monitoring and securing LLMs
against adversarial threats [32,33]. Adversaries are increasingly employing LLMs to carry
out a range of attacks. Examples include backdoor attacks [34] (i.e., unauthorized access
is secretly gained that enables manipulation or extraction of sensitive data from targeted
systems), transfer-based black-box attacks [35,36] (i.e., adversarial examples using a surro-
gate model that can be transferred to a target model without access to internal structure),
data-poisoning attacks [37] (i.e., maliciously injecting malicious data into the training set
to degrade model performance or induce biased, incorrect, or harmful outputs), and jail-
break attacks [38] (i.e., exploiting vulnerabilities in the model using malicious prompts to
bypass safety restrictions and make the model behave in unintended ways, e.g., generating
prohibited or harmful content).

In total, the complexity of LLMs, which involves billions of parameters and vast
datasets, demands robust lifecycle management [39]. To address the challenges in LLMs,
LLMOps (Large Language Model Operations) provides tools for efficient data handling,
model training, deployment, and maintenance, addressing issues such as model drift and
ensuring adaptability to changing data and tasks [40]. Essentially, MLOps tailored for
LLMs provide a framework for managing applications powered by these models [41,42].
The growth of LLMOps highlights the need to refine traditional MLOps to meet the unique
challenges of the production scale [43]. Robust LLMOps practices are critical to maintaining
performance and reliability throughout the AI lifecycle. The implementation of these
practices throughout the lifecycle from data collection and model training to deployment
and maintenance is essential to mitigate these risks. Continuous monitoring and proactive
detection of anomalies and adversarial behaviors are necessary to secure the integrity of
LLMs and their applications [44].

An extensive study has been conducted on MLOps platforms covering principles,
architectures, workflows, and challenges. Kreuzberger et al. [18] provided comprehensive
analyses of MLOps principles, components, and workflows. Najafabadi et al. [45] reviewed
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the state of the art in MLOps. However, Faubel et al. [46] presented Industry 4.0 case
studies and practical insights. Laurea et al. [47] compared MLOps with DevOps by focus-
ing on open-source tools. Symeonidis et al. [19] explored the integration of MLOps with
AutoML. Xu et al. [48] examined the deployments of the ML model (YOLOv3 and LSTM)
in AWS and GCP. Eken et al. [49] analyzed 150 academic sources and 48 gray literature
sources to identify MLOp challenges, practices, and solutions. Testi et al. [50] emphasized
standardized strategies to bridge research and business applications. Atish et al. [51] high-
lighted the role of CI/CD pipelines in large-scale MLOps deployments. Matsui et al. [52]
provided foundational resources for MLOps practitioners. Ayesha et al. [53] discussed
the methodologies, benefits, and challenges of MLOps with a practical TensorFlow 2 case
study. However, Wazir et al. [54] identified optimal tool structures to implement effective
MLOps methodologies.

Figure 1 describes AI types and their associated operations based on degree of
specialization.

AIOps focus on the use of artificial intelligence (AI) to automate IT operations tasks to
improve system performance and optimize workflows (autoscaling, identifying anomalies,
etc.); however, MLOps provide a structured approach to the full lifecycle of machine
learning models from training to monitoring in production (model management, model
deployment, continuous monitoring, and retraining) [55]. LLMOps integrate GenAI, LLMs,
and retrieval-augmented generation (RAG) for efficient development and deployment of
advanced LLMs. RAG is a key component in many LLMOps pipelines to enhance the
model’s ability to generate accurate data. This includes systems for retrieving specific
data through vector databases, as well as model fine-tuning, monitoring, inference, and
prompt engineering [56]. LLMOps that involve the life cycle management of LLMs include
the aspects of GenAIOps (managing model training, deployment, etc.) and RAGOps
(managing relevant information to augment generative capabilities) [57]. Figure 1 simplifies
overlaps and dependencies between frameworks, and it misses nuances like LLM-specific
challenges (scale, ethics, infrastructure, etc.) and RAG’s emerging role in improving LLM
performance. LLMOps advancements are focused on RAG systems, vector databases, and
tools like LangChain for dynamic prompts and context augmentation. The figure misses
the details about the role of federated and real-time learning that emphasize adaptability
and scalability. All in all, the industry currently prioritizes MLOps but ignores LLMOps.
There are still gaps in addressing LLM challenges. In this paper, we leverage LLMOps
to provide efficient solutions for managing and deploying LLMs. This research aims to
explore the following aspects:

• What platforms and systems can better support LLMs by building on previous
MLOps advances?

• Why is it important to address LLMOps challenges not fully managed by traditional
MLOps techniques?

• How do LLMOps improve the accuracy of LLMs?
• Why do traditional ML metrics not fully capture LLM performance?
• Why is it important to use LLMOps to improve the performance and accuracy

of LLMs?
• How do MLOps and LLMOps differ in terms of their roles in machine learning en-

gineering, and why is it important to understand these differences when addressing
challenges in production and deployment? To this aim, key aspects like data manage-
ment, model development, infrastructure, deployment, system integration, updates
and maintenance, versioning, and parallel processing are discussed.
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Figure 1. A hierarchy of AI types and associated Ops organized by the level of specialization [57].

Some key contributions of this article in the field of LLMOps are as follows. First, it
provides a comprehensive comparison between MLOps and LLMOps. It highlights the
distinctive challenges posed by LLMs like scalability, security, and ethical considerations.
Second, it evaluates current platforms and tools for LLMOps to offer actionable insights
for practitioners. Third, by exploring emerging trends and platforms (e.g., LangChain and
Vertex AI), it discusses and offers actionable insights and implications into optimizing
LLMs’ deployment and performance in different industries (production environments)
like healthcare, finance, and cybersecurity. Finally, it outlines future research directions
to further refine LLMOps practices and address biases and ethical concerns, as well as
improve the security and scalability of LLMs systems.

The remainder of this article is structured as follows. Section 2 presents MLOps.
In Section 3, LLMOps are discussed. Section 4 presents DevOps. Section 5 outlines the
differences between LLMOps, MLOps, and DevOps. However, Section 6 presents the open
issues and future direction. The conclusions are described in Section 7.

2. Machine Learning Operations (MLOps)
MLOps, short for Machine Learning Operations, encompass the procedures and

techniques used to install, monitor, and manage machine learning models in production en-
vironments with maximum efficiency and effectiveness. This ensures the efficacy, efficiency,
and scalability of the models, enabling their application in a productive, cost-effective, and
timely manner. The core idea behind machine learning on production (MLOps) is to take
a machine learning model that you develop on your own computer and move it into a
production environment where thousands of people can use it [58].

2.1. Why Do We Need MLOps?

According to Databricks [59], the deployment of machine learning models in pro-
duction is difficult. Complex components of the machine learning lifecycle include data
import, data prep, model training, tweaking, deployment, monitoring, explainability, and
more process involvement, which are a challenge to deploy in production successfully.
MLOps require seamless cross-team collaboration, especially between the Data Engineering,
Data Science, and Machine Learning Engineering teams [60]. Effectively managing these
interdependent processes requires strict operational discipline to ensure continuous and
simultaneous execution. As a result, the process encompasses the entire machine learning
lifecycle by emphasizing rigorous experimentation, iterative development, and ongoing
model optimization [61].
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As shown in Figure 2. MLOps have grown into an independent ML lifecycle manage-
ment strategy, which refers to the end-to-end process of managing ML models from initial
phases such as the development phase through the end phase of deployment in the produc-
tion instance and ongoing maintenance, as well as enhancement in ML models [62]. Raw
data are acquired from many sources to start the MLOps lifecycle. The acquiring of raw
data is followed by a data analysis that identifies patterns. The data are then cleaned, and
features are engineered and versioned for model training. Various algorithms are applied
to create and evaluate predictive models. After validation, the model is deployed in pro-
duction for real-time predictions. Continuous monitoring is needed to ensure performance
and maintain accuracy. Also, hardware resources may be scaled to meet demand. Finally,
the model is retrained with new data to maintain accuracy, completing the lifecycle [63–65].

Figure 2. MLOps lifecycle management [66].

Data collection, model generation (within the software development lifecycle (SDLC),
including continuous integration/continuous delivery), automation, deployment, health
monitoring, diagnostics, governance, and business metrics all come together to create a
robust framework in MLOps [66]. Building this pipeline that addresses the five key per-
formance diagnostic challenges (i.e., data governance, model deployment, model training,
sensitivity to alarm thresholds, and explainability) helps to effectively overcome these
challenges [65]. Figure 2 does not show LLM challenges like prompt engineering, fine-
tuning, and ethics, as well as the iterative and dynamic nature of model development that
requires continuous learning and adaptation. Recent research highlights the importance
of Human-in-the-Loop (HITL) systems and CI/CD pipelines in LLMOps. These improve
accuracy and reduce biases. The use of AutoML and Model Monitoring ensures scalabil-
ity. MLOps should expand to include LLM-specific stages like prompt optimization and
ethical auditing.

2.2. Benefits of MLOps

Yasir et al. [67] identified 58 distinct Critical Success Factors (CSFs) related to MLOps
projects that were categorized into three key areas: technical, organizational, and so-
cial/cultural dimensions. Tazeem et al. [62] emphasized the importance of strong MLOps
plans to guarantee effective security standards for ML deployments in operational technol-
ogy settings. Joshi [68] presented case studies that demonstrate successful deployments in
various industries and demonstrated the tangible benefits of this approach in real-world ap-
plications. Jana et al. [51] emphasized the critical role of version control and repeatability in
ensuring the traceability and longevity of deployed ML models. These framework simplify
the deployment of ML models in a reliable, scalable, and efficient manner. They improve
model quality, increase automation, and foster better collaboration between data scientists,
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developers, and operations teams, as well as improve monitoring and maintenance and
reduce hazards related to machine learning in production environments. The key benefits
are described below.

2.2.1. Automation and Scalability

MLOps form a field that automates the entire machine learning model lifetime, cut-
ting down on human intervention. Automation improves efficiency and dependability
in machine learning applications by managing the entire model lifecycle, ranging from
training, testing, deployment, and monitoring [63,69]. In fact, MLOps frameworks such
as MLflow, Kubeflow, and Airflow are specifically designed to handle large-scale model
deployments with ease and scalability. These frameworks enable efficient management
of models across diverse contexts and systems, thereby playing a pivotal role in ensuring
operational effectiveness in large-scale deployments [51].

2.2.2. Continuous Integration and Deployment (CI/CD)

By incorporating CI/CD ideas into machine learning, MLOps enable continuous
model deployment, integration, and testing. That way, whenever new data are gener-
ated or changes happen, models can be easily retrained and redeployed because they are
constantly up to date. By guaranteeing the safe release of updated models into produc-
tion systems through automated testing and validation, continuous deployment reduces
downtime [60,63,70].

2.2.3. Monitoring and Performance Tracking

Monitoring and performance evaluation are critical components of MLOps, as they
ensure that machine learning models operate effectively in production and minimize
potential business or customer impacts. Key practices include real-time monitoring, data
drift detection, alerts, and notifications, as well as comprehensive logs and auditing [49,63].

2.2.4. Improved Model Quality and Reduced Risk

Models are protected from hazards like data drift and security vulnerabilities by
continuous testing, validation, and monitoring of MLOps. To reduce the chances that
biased models are used in production settings, automated pipelines can have built-in tests
for model correctness and fairness [60,62,69].

2.2.5. Improved Collaboration Between Teams

By leveraging MLOps standardized workflows and communication channels, data
scientists, ML engineers, and operations teams are able to work together more effectively.
The pressure on the teams responsible for development and deployment is reduced as a
result, and there are smooth transitions between model development, testing, deployment,
and maintenance. This integrated approach improves coordination between various teams
and improves the scalability of the system in production [71–73].

2.2.6. Compliance and Governance

MLOps frameworks typically provide functionalities that facilitate regulatory com-
pliance and governance over data utilization, model performance, and deployment proce-
dures. To help with regulatory compliance, foster stakeholder collaboration and co-learning,
as well as ensure the safe implementation of novel public sector AI services, the method-
ology proposes the use of AI regulatory sandboxes and Machine Learning Operations
practices [74].
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2.2.7. Data Management and Versioning

In MLOps, the data are versioned, along with the models and code, which guarantees
that any model can be retrained or validated using the precise version of the data with
which it was originally developed. This guarantees data integrity and traceability, which
are essential for debugging and auditing the performance of the model over time [75–77].

2.2.8. Simplifies Complex ML Workflows

MLOps mitigate the intricate nature of machine learning workflows by offering a
systematic framework to manage various processes, including feature engineering, data
pretreatment, model training, and deployment. This facilitates the management of depen-
dencies across several contexts, ensuring uniformity in workflows from development to pro-
duction. The pipelines enhance the end-to-end life cycle of machine learning models [78,79].

2.3. Applications of MLOps

For effective deployment, maintenance of models in production, and integration into
real-world systems, the MLOps framework is vital for operationalizing machine learning
models. Many different types of business can simplify their processes, boost their efficiency
and effectiveness of ML model, and improve the performance and computing load. It also
streamlines complex ML workflow, and deployment challenges issues are simplifying by
using this approach. Presented below are potential applications of this methodology:

• Provide effective security standards for ML implementations in complex operational
technologies using this methodology [62].

• Using the help of MLOps technologies, industrial settings can improve their image
recognition accuracy and adapt well to new conditions [80].

• Automating model training and deployment, as well as integrating these processes into
typical CI/CD pipelines, which is crucial to address the challenges associated with the
effective deployment of machine learning models using the MLOps methodology [63].

• The MLOps principles are particularly advantageous for large projects that require
continuous deployment and robust automated operations [81].

• Similar approaches can be used by MLOps cross-domain applications in healthcare
and finance to effectively manage changing data streams and concept drift [82].

• This study presents a resilience-aware MLOps approach for AI-powered healthcare
diagnostic tools. Its primary goal is to make systems more resistant to harmful outside
forces, such as hostile attacks and drift [83].

• It could be used in various applications, particularly by using microscopic pictures.
For example, the study in [84] investigated the use of MLOps analysis of sparse
image data and introduced a comprehensive approach that employs fingerprinting
to select optimal models and datasets. The method also employs automated model
development while leveraging continuous deployment and monitoring to facilitate
learning from errors.

• The use of MLOps for the prediction of lifestyle-related diseases. Through the analysis
of massive volumes of diverse healthcare data, this helps to predict lifestyle diseases,
which in turn helps to plan prevention, diagnosis, and treatment [85].

• It addresses the challenges of model retraining and versioning, as well as ensures
that the model remains efficient and more effective over time, resulting in the rise of
MLOps integrating to everyday applications such as smart kitchens and radiology
systems to detect turbine performance. These functions mitigate operational chal-
lenges, collaboration challenges, and deployment challenges to build an intelligent
application using this methodology [86].
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Table 1 outlines various existing MLOps platforms, highlighting the key features, and
providing examples of the use case to give a deeper understanding of the landscape.

Table 1. Comparison of MLOps platforms for different use cases.

Platforms Key Features Use Case Focus References

AWS Sagemaker
(Python SDK

version 2.94.0)

Fully managed
infrastructure, workflows,

and tools for building,
training, and deploying
machine learning (ML)

models for any use case.

Suitable for
enterprise-level ML

applications and
workflows.

Scalability, Integration
with AWS ecosystem (S3,
EC2, and other services).

[87–94]

Databricks
(Version 10.4)

A comprehensive
analytics platform that

offers collaborative,
real-time notebooks,

scalable data processing,
and integrated machine

learning workflows.

Well-suited for the
analysis of large-scale
datasets (Structured,

Unstructured) and the
collaborative construction

of machine learning
models (Building,

Training, and
Deployment).

Integration with Apache
Spark, Collaborative
notebooks supports
multiple languages

(Python, R, Scala, SQL).

[95–99]

Azure AutoML
(Azure ML SDK
version 1.38.0)

Automated model
building and tuning,

support for many machine
learning tasks, and

seamless interaction with
Azure services; cost

effective.

Ideal for individuals who
need to quickly create,
train, and use machine

learning models, as well
as time series forcasting.

Support for a variety of
data types and models,
integration with Azure

ML, time series
specialization, automation

and accessibility.

[100]

TensorFlow
(Version 2.10.0)

Comprehensive machine
learning framework,

distributed training with
(TensorFlow Distributed
Strategy), model serving

(TensorFlow Serving) and
edge deployment with

(TensorFlow Lite).

Machine learning
development from

beginning to end, scalable
training, production

deployment, mobile and
edge inference technology.

Management of machine
learning pipelines,

end-to-end development
and training of machine
learning models, serving
models at scale, enables
fast training and cross
platform compatibility
(mobile devices, cloud

environment, etc.).

[101]

PyTorch
(Version 1.13.0)

High-level application
programming interfaces
(TorchVision, TorchText,

etc.), model serving
(TorchServe), combination

with Kubernetes and
cloud platforms.

The use of research and
experimentation, the

construction of flexible
models, and production
deployment. Provides

dynamic methodology for
constructing and training

neural networks.

Deployment of models at
scale, efficient deployment,

scalable training
(distributed data parallel).

[102–104]

MLFlow
(Version 2.0.0)

MLflow is a popular
MLOps platform with full
machine learning model

lifecycle management
tools. It simplifies ML

project management with
experiment tracking,

model versioning, and
reproducibility.

MLflow is adaptable,
addressing various
machine learning

scenarios in model
selection, deployment,

model performance
monitoring, model

versioning, and
management.

Cross-Platform
Integration: MLflow

interacts with various
machine learning

frameworks, Scalability
and Flexibility,
Cloud-native.

[105–108]

Kubeflow
(Version 1.4.0)

Open-source MLOps
platform Kubeflow runs

scalable and portable
machine learning

workloads on Kubernetes.
It manages model

construction, training,
deployment, and

monitoring for ML.

Kubeflow facilitates the
automation and scaling of
recommendation models
for e-commerce, media

platforms, fraud detection
models, and

bioinformatics application
utilizing Kubeflow.

Cloud-Native and
Kubernetes Integration,
Scalabilty, Automation,

and Reproducibility.

[105,107,109–111]
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Table 1. Cont.

Platforms Key Features Use Case Focus References

Metaflow
(Version 2.5.0)

Human-centric MLOps
platform Metaflow

simplifies data science
project development and
management. Focus on

code while handling
scaling, versioning,

monitoring, and
simplifying model

development.

Metaflow is a
user-friendly library that

assists scientists and
engineers in constructing
and overseeing practical

data science projects.
Netflix is capable of
holding numerous
Metaflow projects.

Diverse integrations for
Metaflow, Parallelization

and Resource
Optimizations,

Collaboration, and
Transparency.

[112–114]

IBM Watson Studio
(Version 3.0.1)

IBM Watson Studio
enables analysts, data

scientists, and developers
to collaboratively build,

train, and deploy machine
learning models.

IBM Watson Studio is a
comprehensive platform
that merges many tools

and technologies to
streamline the

development, deployment,
and maintenance of

machine learning models,
and it facilitates with NLP

and AI projects.

IBM Watson Cloud
services are used to

develop natural language
processing solutions, and
it enables the creation of
advanced chat tools, as

well as support for
open-source tools.

[115,116]

Cloudera
(Version 7.1.4)

Cloudera manages
machine learning models

in production at scale,
model monitoring, ETL

capabilities, and
governance tools.

Comprehensive control of
the entire machine
learning lifecycle;

facilitates visibility
throughout the whole

machine learning lifecycle.

Cloudera provides open
standards-based MLOps
enabling enterprises to

industrialize AI, big data
processing and analytics
solutions, and enterprise

data management.

[117,118]

Apache Airflow
(Version 2.3.0)

Apache Airflow is a
widely utilized tool for
orchestrating intricate,

multistage data pipelines
and workflows across

many sectors, especially in
data engineering, machine

learning, and ETL
operations.

Apache Airflow has been
utilized for the

orchestration of ML
operations and the

scheduling of automated
model training, as well as

batch processing.

Automation of machine
learning pipelines for

anomaly detection
challenges, data migration
and integration, and task

scheduling and
monitoring.

[105,119–122]

2.4. Challenges in MLOps

Implementing MLOps involves various challenges that range from technical complex-
ities to organizational and operational hurdles. For example, Faubel et al. [46] presented a
case study in Industry 4.0, as there is limited information on its practical deployment in
industrial businesses. While only a small percentage of ML models make it to production,
an investigation conducted by Databricks highlighted the challenges associated with dif-
ficult handoffs, security and compliance risks, and complexity regarding managing ML
environments [59].

The lack of standardization in ML tools and procedures limits the transition from
model development to production, highlighting the importance of resilience features such
as transparency and security [123]. Data preparation, experimentation, and continuous
monitoring create a challenging workflow for machine learning engineers (MLEs), which
can overload teams and cause deployment failures. It requires strong data science engineer-
ing skills to assist with ML engineers [124,125]. Future research should focus on developing
the MLOps field by bridging the gap between business objectives and modeling perspective
through appropriate frameworks, as the success of data science projects depends not only
on technical matters [126]. Adopting MLOps presents many hurdles for practitioners,
including the complexity of ML solutions, platform challenges, pipeline complexities, and
organizational diversity. Addressing these challenges is crucial for understanding the adop-
tion barriers of these methodologies and developing effective solutions [49]. The primary
challenges of MLOps adoption in enterprises are collaboration between ML, DevOps, oper-
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ations (Ops), science teams, and data teams. Conceptual changes are obstacles to workflow
automation, and employers often lack a complete understanding of the paradigm [109].

3. Large Language Model Ops (LLMOps)
3.1. What Are LLMOps?

LLMOps (Large Language Model Operations) involve an innovative methodology
designed to tackle the issues of implementing LLMs in practical applications [127]. It is
essential to improve the precision of the recommendations, minimize latency, and improve
user experiences. LLMOps guarantee the efficient functioning of LLMs in recommendation
systems by fine-tuning the model, enhancing user experience and improving computa-
tional processes [43]. Today, future trends are building on revolutionizing the AI industry
with LLMs, and a different approach is required to maintain AI-powered products. As a
result, new guidelines and resources will emerge to manage the lifecycle of LLM-driven
applications [128]. These approaches facilitate the seamless deployment, monitoring, and
retraining of LLMs for organizations, offering a complete framework and best practices for
AI practitioners seeking to efficiently operationalize their generative AI systems [129]. This
methodology intended for the management and maintenance of ultra-large-scale machine
learning technology. It enables the automated deployment and management of machine
learning models through natural language, improving efficiency and dependability [43].

3.2. LLMOps Life Cycle Components

Based on model selection, model tuning, deployment, prompt engineering, and mon-
itoring, the fundamental components of LLMOps are crucial to efficiently oversee the
lifetime of LLMs across diverse applications. These components are engineered to address
the distinct issues presented by LLMs, including scalability, security, and ethical considera-
tions while improving their operational efficiency and dependability [127,130]. The main
elements of LLMOps, as defined in the article [41], are organized around the Discover,
Distill, Deploy, and Deliver (4D) phases within its framework. These elements are crucial
for efficiently overseeing the lifecycle of LLMs in enterprise environments. This GenAI
solution focused on the creation and deployment of LLMs-based applications. LLMOps
promise to create strong, high-performance LLM systems that can oversee comprehensive
operations, including managing vector databases. The Figure 3 illustrates the LLMOps
architecture, which comprises multiple key components designed to enhance the interac-
tion between users and LLMs using RAG. The process begins with user-submitted queries
(prompts) that are inputs formulated by users to request specific information or perform
tasks. These prompts are transferred to the embedding model. It converts the text into a
dense numerical representation (i.e., embeddings) to capture the query’s semantic meaning.
Then, the system uses RAG mechanisms to search a vector database using the embeddings
generated from the query. The vector database stores a vast array of preprocessed infor-
mation. The various sources of information include structured documents, unstructured
data, and multimedia content, which are indexed in a format optimized for efficient sim-
ilarity matching. The RAG procedure retrieves the most relevant information from the
database. The retrieved information is appended to the initial user query via a procedure
called context augmentation. It enriches the input with additional data to provide a more
comprehensive understanding for the model. Using this augmented context, the LLMs
processes the integrated data and generates the final output. This architecture ensures the
accuracy of responses and enhances the overall user experience by utilizing the capabilities
of LLMs and RAG systems. Figure 3 highlights RAG’s role in improving LLM outputs
but omits complexities such as training challenges, fine-tuning, and distributed training in
LLMOps. Recent LLMOps advancements include distributed training (e.g., DeepSpeed,
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ZeRO, etc.) model parallelism, and ethical AI frameworks for security and fairness. It is
thus necessary to update the architecture with ethical auditing, adversarial testing, and
distributed infrastructure.

Figure 3. LLMOps architecture pattern: enhancing virtual assistant interactions with RAG [131].

3.3. Why Do We Need LLMOps?

Early LLMs like BERT and GPT-2 were introduced in 2018, showcasing the impact of
transformer-based architecture, but initially did not gain popularity due to the narrower
application scope. As shown in Figure 4, the demand of ChatGPT (with Model version
GPT-3.5) in December 2022 led to a surge in media attention, and LLMs were subsequently
integrated into a broad range of applications in various domains. These include content
generation (e.g., ChatGPT [132]), program assistance (e.g., GitHub Copilot [133,134]),
writing assistant (e.g., Notion AI [135] (various model versions are available Notion 2.21,
Notion 2.47), Jasper [136] (multiple integration patterns, AI application library available to
automate various generative tasks)) and other areas that have revolutionized the AI indus-
try (e.g., LLaMA and Gemini) [137,138]. By 2023, various industries, including blockchain,
security, and data utilization, began to embrace LLMs. This change shows how media
publicity can significantly influence their adoption across in different industries, extending
their use from chatbots to fields such as finance, data technology, and semiconductors [139].
Figure 4 did not cover the challenges (e.g., costs, ethics, and model drift) or multimodal
LLMs combining text, vision, and audio.

Figure 4. Rise of LLMs [128].
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People are sharing their experiences as they develop and deliver LLM-powered applica-
tions to production. Although creating something innovative with LLMs is relatively simple,
preparing it for production presents a significant challenge [140]. It shows the importance
of combining DevSecOps with LLMOps, ensuring that security is a shared duty throughout
both the development and the operational phases. This provides both theoretical and prac-
tical support for the successful implementation of LLMs [130]. Using LLMOps, enterprises
can improve the efficacy and reliability of large-scale machine learning models, resulting
in personalized recommendations that are more closely aligned with user preferences [43].
As depicted in Figure 5, the power of LLMOps lies in its ability to effectively manage and
optimize the LLM lifecycle in the production environment [43,127,141–143].

Figure 5. Power of LLMOps.

Implementing LLMOps offers several advantages to organizations that use LLMs,
significantly influencing their AI efforts and overall commercial results. Implementation
enhances team productivity through various steps, beginning with collaboration among
team members. Data scientists, ML engineers, DevOps, and stakeholders can engage
more efficiently on a consolidated platform for communication and insight exchange,
model development, and deployment, leading to faster delivery [43]. LLMOps constitute
a specialized component of FMOps (Foundation Model Operations) that enhances the
principles of MLOps (Machine Learning Operations) to facilitate the seamless deployment,
monitoring, and retraining of LLMs within enterprises [129]. The LLMOps framework,
which is organized around the Discover, Distill, Deploy, and Deliver (4D) stages, offers a
systematic approach to the management of the LLMs lifecycle, which enhances operational
reliability [41]. The study concludes that the LlamaDuo pipeline represents an important
breakthrough in LLMOps, offering a robust framework for transitioning from large-service
LLMs to smaller ones, thus ensuring service continuity in operational failures, rigid privacy
policies, or offline requirements [141].

3.4. Best Practices for LLMOps

As can be seen in Figure 6, there are ten key areas of best practices for LLMOps. These
include data management that ensures clean and high quality data for training, as well as
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model training and fine-tuning that involves continuous improvement to LLMs for specific
use cases. For Scalability and Infrastructure, scalability highlights the need for robust
systems that handle growing demands and robust infrastructure for efficient deployment
and management. Monitoring and Observability ensure that model performance and
behavior are tracked. Security and Compliance focuses on protecting data and adhering to
regulations, and Inference Optimization addresses the efficiency of LLMs deployment. Con-
tinuous development is supported by Continuous Integration/Continuous Deployment
(CI/CD) to ensure seamless updates. Collaboration and documentation promote team
alignment. Human-in-the-Loop (HITL) integrates human oversight for quality control.
Ethical considerations emphasize responsible AI use by addressing biases and ensuring
fairness. All in all, Figure 6 did not include direct details about dynamic development
needs, prompt engineering, and adversarial robustness, which are key for performance
and security. Recent LLMOps progress emphasize HITL systems, adversarial testing, and
CI/CD pipelines to enhance LLM accuracy, reduce biases, and ensure scalable deployment.

Figure 6. Best practices for LLMOps [144].

3.5. Applications of LLMOps

LLMOps streamline repetitive, labor-intensive activities, facilitating expedited process-
ing across several domains (automation process). They facilitate the extensive deployment
of LLMs in practical applications, guaranteeing that models can manage substantial vol-
umes of data and user interactions (scalability). Additionally, they aid in facilitating the
development and administration of intelligent systems capable of processing and gen-
erating natural language, hence enhancing decision making in sectors such as finance,
healthcare, and cybersecurity (intelligent decision making). Figure 7 shows a list of applica-
tions used in LLMOps is provided in various sectors. Its features are described as follows:
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Figure 7. Tree chart of LLMOps applications [130,145–164].

• The document [165] presents the concepts of LLM–Computer Interaction (LLMCI),
in which LLMs integrate with computer vision to engage with user interfaces. The
applications of LLMOps encompass the facilitation of LLMs in comprehending and
manipulating UI elements, retrieving information, executing functions, and doing
duties analogous to human interactions. LLMOps enable more human-like interac-
tions with computers by integrating language comprehension and visual perception
capabilities.

• The study in [166] presents a framework for LLMOps, which is a distinct subset of
MLOps targeted to the development, deployment, and maintenance of LLMs within
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Continuous Integration/Continuous Deployment (CI/CD) pipelines. The case study
on text summarization demonstrates that integrating a human feedback loop into
the LLMs CI/CD pipeline improved its quality and dependability, emphasizing the
importance of human input in improving LLMs performance.

• The work in [43] enhances the user experience in personalized recommendation
systems by refining extensive machine learning models to provide accurate, timely,
relevant, and precise recommendations based on the interests of each individual user,
as well as integrating prompt engineering. LLMOps customize input prompts to
improve recommendation accuracy and user happiness.

• The work in [167] indicates a reference framework for the development of a large
language models (LLMs) application stack, highlighting common systems, tools, and
design methodologies identified in companies and AI startups.

3.6. LLMOps Platforms for Managing Large Language Models

The landscape of LLMOps is a rapidly growing ecosystem that combines various
platforms and frameworks to manage the lifecycle of LLMs. The key components of
this landscape include platforms for model deployment and scaling, frameworks for
model customization and integration, tools for monitoring and ethical considerations, and
automation frameworks for continuous integration and deployment. As LLM technology
continues to advance, the landscape will evolve, with emerging trends such as federated
learning, model distillation, and real-time learning contributing to the optimization of
deployment at scale. Table 2 outlines various platforms, highlighting their key features
and providing examples of the use case to provide a deeper understanding of the different
platforms in the LLMOps landscape.

Table 2. Comparison of LLMOps platforms for different use cases.

Platforms Key Features Use Case Focus References

Hugging Face
Transformers

(Version 4.30.0)

It comes with a model hub,
API support, and

pretrained models for a
number of NLP tasks. It is
also easy to integrate with
PyTorch and TensorFlow.

This is the best way to
quickly build and change

natural language
processing (NLP) models,
multimodal applications,
and text summarization.

Fine tunning of NLP uses,
model modification,

scalability, and
performance.

[130,168–170]

LangChain
(Version 0.0.150)

Multiple LLMs can be
used together, including
OpenAI, Hugging Face,
and others. Interactive

agent and prompt
management are

supported.

Perfect for making
complicated LLM apps
with dynamic prompt

management and
processes based on agents,

dynamic content
generation.

Automation of complex
workflows, the creation of

chatbots, and managing
context for LLMs; natural
language understanding,
text generation, and text

classfications.

[171–178]

DeepSpeed
(Version 0.8.0)

ZeRO optimization, mixed
precision training,

gradient accumulation,
and distributed training
are some of the features

that are included in
optimized training for big

models.

Ideally suited for the
efficient and effective
training of large-scale

deep learning models with
limited resources.

Suitable for the training of
large-scale deep learning

models, scalability for
large models, simplified

distributed training.

[179–181]

Google Cloud
Dialogflow CX
(Version 2.0.1)

Visual flow builder,
multiturn discussions,

enhanced natural
language understanding,
support for omnichannel
use, context management.

Ideally suited for the
development of

complicated
conversational agents and
chatbots that can handle
numerous turns across

multiple platforms.

Virtual assistants,
customer care bots

(optimize the customer
experience), seamless

integration with Google
Cloud platform.

[182–185]
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Table 2. Cont.

Platforms Key Features Use Case Focus References

Azure Bot Service
with OpenAI
(Version 1.0.0)

Integrated bot framework,
support for OpenAI
models (such as GPT

series), powerful artificial
intelligence capabilities,

bot orchestration.

Outstanding for the
development, deployment,

and management of
intelligent conversational

agents through the
utilization of OpenAI’s
large language models

(LLMs).

Automating and scaling
customer interactions,

built-in Azure services for
scalability, integration

with a variety of
communication channels.

[186,187]

Apache Airflow
(with LLMOps)
(Version 2.3.0)

Orchestration of
workflows, dynamic
scheduling of tasks,

interaction with machine
learning pipelines, and

supports distributed
execution.

A perfect solution for the
management and

automation of large
language model (LLM)
pipelines that contain

complicated dependencies,
serving and deploying

LLMs.

Automation of complex
workflows, integration
with various ML tools,

scalability for large
scalable models.

[188,189]

AWS Inferentia
(Neuron SDK version 1.7.0)

Designed for deep
learning models, high

throughput, low latency,
cost-efficiency, and

multimodel support.

Designed to facilitate the
deployment of LLMs and

other deep learning
models at reduced costs

while maintaining
high-performance

inference efficiency and
speech recognition

assistance.

Providing real-time
inference for LLMs,

scaling at a cost-effective
rate, and accelerating deep

learning models;
integration with AWS

ecosystem.

[190,191]

Google Cloud Vertex AI
(Version 1.12.1)

Machine learning platform
that covers the entire

process, including
AutoML, managed
machine learning

pipelines, individualized
model training, model

monitoring, and tracking.

This solution is perfect for
constructing, training,

deploying, and
administering machine

learning models and
LLMs at a distributed

scale, as well as NLP tasks
(text classifications,

chatbots, etc.).

End-to-end machine
learning platforms,

scalability and flexibility,
model management and

monitoring.

[192,193]

4. Development and Operations (DevOps)
What Are DevOps?

DevOps are a combination of Development and Operations, which represents a new
approach in the software engineering field [194]. They entail a cultural and collaborative
methodology that unifies software development (Dev) and IT operations (Ops) to improve
communication, cooperation, and efficiency across the software development lifecycle [195].
This methodology is designed to integrate development and operations teams within orga-
nizations, promoting expedited software delivery and improved collaboration [196]. The
objective is to improve software delivery performance and improve team engagement while
overcoming the weaknesses of conventional software development methodologies [197].

The DevOps lifecycle consists of seven key components (also known as 7 Cs), as
illustrated in Figure 8. These include Continuous Development, Continuous Integration,
Continuous Testing, Continuous Deployment/Continuous Delivery, Continuous Moni-
toring, Continuous Feedback, and Continuous Operations. Table 3 outlines the DevOps
platforms and frameworks for various use cases. Figure 8 does not explicitly address
aspects critical to LLM integration, such as prompt engineering, model fine-tuning, or
ethical AI practices in LLMOps. Recent researche stresses LLM-specific CI/CD pipelines
with prompt engineering, fine-tuning, and ethical auditing. DevSecOps adoption is key
for secure LLM deployment. It suggests that DevOps should include LLM stages such as
prompt optimization and ethical checks.
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Figure 8. DevOps lifecycle with 7 Cs [198].

Table 3. Comparison of DevOps platforms for different use cases.

Platforms Key Features Use Case Focus References

Jenkins
(Version 2.319.3)

Jenkins is a free and
open-source automation

tool designed to
streamline Continuous

Integration and
Continuous Delivery

(CI/CD) processes, and it
features support for

development, testing, and
deployment.

Automated development
and testing,

multienvironment
deployment, customized

workflows for larger
enterprises, infrastructure

automation.

Flexibility allows users to
construct customized

pipelines, scalability, and
distributing tasks;

integration with other
DevOps tools.

[199–202]

GitLab CI/CD
(Version 15.5.0)

GitLab covers full DevOps
lifecycle, including source

control to deployment.
Complete DevSecOps

capabilities.

GitLab manages
Continuous Integration

(CI) operations,
multicloud deployment,
and automated testing.

Ideal for enterprises
utilizing GitLab for source

control and those
requiring DevSecOps;

flexibility and
customization.

[203–205]

CircleCI
(Version 2.1.0)

CircleCI is a cloud-based
Continuous Integration

(CI) service that
streamlines software

development by
automating the build

process.

CircleCI can be integrated
to Google Firebase Test

Lab to test Android apps
on multiple devices and

configurations using cloud
infrastructure.

Effective for small- to
mid-sized projects with

fast, scalable CI/CD;
infrastructure
optimization.

[206–208]
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Table 3. Cont.

Platforms Key Features Use Case Focus References

Azure DevOps
(Version 2.0.0)

Azure DevOps is Azure
Pipelines, which was first
made on Microsoft Team
Foundation Server. It has

grown into a strong
environment that

Microsoft uses a lot for
software development.

Azure DevOps has
various components, such
as Azure Boards, Repos,
Pipelines, Artifacts, and

Test Plans; makes software
creation faster and easier.

Microsoft builds the
majority of its software
with Azure Pipelines,

which allows the company
to take advantage of the
stability, resilience, agilty,

and collaboration.

[209–211]

Kubernetes
(Version 1.31.5)

A Kubernetes pipeline
indicates the automated

processes within a CI/CD
framework that utilizes

Kubernetes for the
deployment, scaling, and

management of
containerized
applications.

It focuses on the
development cycle, which

includes writing code,
compiling it, testing it,

and fixing bugs, all while
Kubernetes runs apps in

containers.

Optimal for the
orchestration, scaling, and
automation of containers

in distributed
environments.

[212–215]

Docker
(Version 20.10.9)

Docker DevOps pipeline
enhances automation and
environment replication

by integrating
containerization into

Continuous Integration
(CI) workflows.

Utilizing Docker enables
teams to establish uniform

environments, optimize
application delivery, and
promote swift iterations.

Ideal for using containers
to create, execute, and

share isolated application
environments; simplifies
application deployment.

[216–218]

SonarQube
(Version 9.6.1)

SonarQube provides a
solution that automates
white-box testing and
security assessments
within a continuous

integration (CI) pipeline.

SonarQube enables
developers to effectively
oversee vendor branches
and guarantee that both

their proprietary code and
third-party components
adhere to security and
testing best practices.

Optimal for maintaining
code quality, identifying

defects, and guaranteeing
adherence to coding

standards.

[219,220]

5. Difference Between LLMOps, MLOps, and DevOps
DataOps offer tools for creating efficient data processing pipelines, commonly known

as DevOps. MLOps establish a systematic framework for the building, training, evaluation,
optimization, deployment, inference, and monitoring of machine learning models in a pro-
duction environment. LLMOps serve as a comprehensive framework that integrates com-
ponents of generative AI (GenAI), large language models (LLMs), and retrieval-augmented
eneration (RAG). Figure 9 represents an intersection diagram comparing DevOps, MLOps,
and LLMOps. DevOps emphasize software development, operational processes, automa-
tion, and Continuous Integration/Continuous Deployment pipelines. In contrast, MLOps
encompass the full machine learning lifecycle, comprising model training, deployment,
and monitoring. LLMOps, on the other hand, focus on the optimization, inference, and
the handling of LLMs. LLMOps advancements include LangChain, Hugging Face Trans-
formers, RAG systems, vector databases, and federated learning, enabling scalability and
continuous adaptation.

The intersections of DevOps and MLOps include automation, scalability, resource
optimization, and continuous deployment. Both DevOps and LLMOps focus on model
deployment, the security of infrastructure, and the orchestration of models and applica-
tions. MLOps and LLMOps emphasize the management of large datasets for LLMs, the
supervision of large-scale machine learning models, and the fine-tuning and conduct of
experiments. All areas (i.e., automation, monitoring, scalability, interdepartmental collabo-
ration, and performance enhancement) are essential in achieving success. In the case of data
management and handling large datasets, MLOps include flexible storage, preprocessing,
data management strategies, and the ability to handle different amounts and types of data
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well. Implementing techniques like data labeling, version control, and the use of different
paths to efficiently handle data across multiple machine learning models is part of the
process in MLOps. On the other hand, LLMOps address the unique challenges of working
with very large and complicated datasets, usually made up of text. These datasets need
special ways to be prepared, stored, and managed. LLMs are very big and complicated,
so they need high-throughput pipelines, distributed storage systems, and powerful data
versioning. The main goal is to efficiently handle large amounts of data while keeping the
data’s quality and value for improving LLMs. Tables 4–6 provide a detailed comparison of
LLMOps, MLOps, and DevOps.

Figure 9. Intersection diagram comparing DevOps, MLOps, and LLMOps [221].

Table 4. Comparison of LLMOps, MLOps, and DevOps.

Aspect LLMOps MLOps DevOps References

Hardware Requirements

GPUs
(Graphics Processing

Units)

Due to the size and
complexity of LLMs like

GPT-4, GPUs are essential
for LLMOps performance.

GPUs are commonly
utilized in MLOps to

accelerate deep learning
model training. MLOps

workflows can scale across
GPUs, depending on

model size and
complexity.

The primary focus of
DevOps is to utilize

CPU-based tasks, with
GPUs rarely used based

on deploying ML models.

[222–225]
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Table 4. Cont.

Aspect LLMOps MLOps DevOps References

Hardware Requirements

TPUs
(Tensor Processing

Units)

TPUs can handle large
parallel processing better
than GPUs, making them
ideal for LLMOps large

models. TPUs are ideal for
training LLMs at scale

when speed and efficiency
are crucial.

TPUs are utilized in
MLOps to deploy

TensorFlow-based models.
They can replace GPUs in
MLOps pipelines, because

they are optimized for
neural network matrix

multiplications.

Although TPUs are not
widely used in DevOps,
they are still able to be

utilized in
high-performance

circumstances that need
quicker processing

(deplying ML models with
more computational

loads).

[138,226–231]

Parallel Processing

LLMs have billions of
parameters; therefore,

LLMOps require
considerable parallel

processing (critical for
large model training).

MLOps use parallel
processing to speed up

model training, especially
in remote

situations/distributed
environments. Parallelism
varies by model size, with
many smaller ML models

not requiring parallel
processing.

In the context of DevOps,
parallel processing is

typically utilized for the
purpose of managing and

automating a variety of
tasks, such as include

testing, system
monitoring, and parallel
deployment pipelines.

[230,232–235]

Table 5. Comparison of LLMOps, MLOps, and DevOps.

Aspect LLMOps MLOps DevOps References

Data Management and Handling Large Datasets

Data Volume

Handles vast datasets,
frequently consisting of

petabytes of textual
information, to train LLMs.

Highly heterogeneous,
often multimodal (e.g.,

large-scale corpora of text,
videos, etc.).

Capable of processing
moderate to large datasets,

adapting to the size
requirements of the ML

model and infrastructure.
Heterogeneous data
(images, text, etc.).

Manages various data
volumes, focusing on
operations, logs, and

configuration data with a
focus on cloud storage for

large scale applications.
(homogeneous data).

[236–238]

Data Preprocessing

Encompasses specific
methodologies for

processing textual data,
including tokenization,
contextual embeddings,
and managing extensive

text corpora.

Includes data cleaning,
normalization, feature

engineering, and
transformation for diverse

ML tasks (ETL tools,
Pandas, Spark, etc.).

Includes system
configuration and
operational data

preprocessing, such as log
collection, normalization,

and parsing for
monitoring and
troubleshooting.

[43,239–244]

Data Storage and
Management

Due to the immense
volume of text data, the

utilization of modern
distributed storage

systems and
high-throughput solutions

is necessary.

Utilizes many storage
technologies such as cloud

storage, databases, and
distributed file system to

achieve scalability.

Uses cloud-based storage
and databases to

efficiently manage and
backup operational data
(e.g., AWS S3, GCS, etc.).

[145,245–249]

Data Labeling and
Annotation

Usually involves the
process of annotating

huge amounts of text data
(multimodel data

annotation), typically
using semi-supervised

techniques or pretrained
models for labeling.

Supervised learning relies
on many procedures, such

as manual labeling,
automated annotation

tools, and crowdsourcing,
to ensure accurate data

labeling.

Labeling operational
metrics and logs can
enhance analysis and

monitoring, although data
labeling and annotation

are rare.

[250–257]

Data Versioning and
Lineage

Utilizes complex
versioning techniques to

manage substantial
amounts of training data,

maintaining traceability in
extensive NLP operations.

Utilized methods such as
DVC (Data Version
Control) to monitor

modifications in datasets
and guarantee
reproducibility.

Uses Git for configuration
management and code

version control (not
directly associated with

data versioning).

[250,258–260]
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Table 6. Comparison of LLMOps, MLOps, and DevOps.

Aspect LLMOps MLOps DevOps References

Cloud Platforms and Services

Primary Cloud Platforms

LLMs require specific
services (training, fine

tunning, etc.) and
infrastructure to

accommodate the
extensive dataset and

computational
requirements.

Example: AWS offers
high-performance

computing (HPC) services
such as P3 instances and
EFS (Elastic File System).

Azure offers custom
inferencing solutions and

integration with Azure
OpenAI.

Cloud providers offer a
wide range of services that
are well suited for various

machine learning tasks,
such as training models,

deploying them, and
monitoring their

performance.
Example: Amazon Web

Services (AWS) provides a
wide range of MLOps
technologies, such as
SageMaker and EFS
(Elastic File System).

Google Cloud Platform
(GCP) encompasses the AI

Platform BigQuery.
Microsoft Azure offers

Azure Machine Learning
and Databricks.

When it comes to
managing infrastructure,

automation, and
continuous integration
and delivery pipelines,

DevOps largely makes use
of Amazon Web Services
(EC2, S3). Google Cloud

Platform (GCE,
Kubernetes Engine).

Microsoft Azure (App
Service, Azure pipelines).

[138,261–264]

Scalability

Requires highly scalable
solutions to handle the
substantial computing

requirements and
extensive data of LLMs.

Example: Highly scalable
infrastructure.

Distributed training refers
to the process of training
machine learning models

over several TPUs or
GPUs, such as Azure
dedicated computing

clusters.

Provides adaptable scaling
solutions to handle

diverse workloads and
model specifications.

Example: MLOps
solutions offer adaptable

scaling capabilities to
accommodate a wide
range of workloads.

Auto-scaling services are
AWS EC2 auto-scaling and

Google Kubernetes
Engine (GKE).

Scalable infrastructure for
application deployment,
automated workflows,

and continuous
integration and

continuous delivery
pipelines. It is common

practice to employ
auto-scaling for cloud

resources Amazon Elastic
Compute Cloud
auto-scaling and

Kubernetes.

[265–269]

Data Management and
Storage

Essential for efficient LLM
training, it makes use of
state-of-the-art storage

technologies built for high
throughput and massive
text datasets. Example:
Particularly for LLMs,
offer tailored storage

solutions. Amazon Web
Services: S3 for large
datasets and FSX for
Lustre. GCP offers

BigQuery and Cloud
Storage.

Data lakes, databases, and
storage solutions that

support a wide range of
data formats. Amazon

Web Services (AWS) offers
three key services: S3,

Redshift. Google Cloud
Platform (GCP) offers
several powerful data
storage and processing

services, including
BigQuery for data analysis.

Azure offers several
storage options, including

Data Lake Storage,
Cosmos DB, and

Blob Storage.

Cloud platform-based
solutions such as Amazon
Web Services S3 version
control systems, such as

Git, are essential to
configuration

management, since they
allow for the tracking of

changes. DevOps tool for
data management such as

DBMS, PostgreSQL,
MongoDB, and MySQL.

[270–276]

Cost Management

Intense computing
demands lead to increased

costs; methods for cost
management include

using reserved instances
and specialized hardware.

Example: High Costs:
Because LLMs use a lot of

resources. Optimizing
costs: Reserved Instances

and Preemptible VMs.
Dedicated devices like

AWS Inferentia and Azure
AI Accelerators are used

for inference cost
management.

Contains resources for
monitoring and improving

the efficiency of various
machine learning projects
budgets. Example: Tools

for keeping an eye on and
lowering costs are called
cost-effectiveness. AWS:
AWS Budgets and Cost

Explorer. GCP: Tools and
records for managing
costs. Azure: Keeping

track of costs and billing.

The management of
expenses by DevOps

teams is accomplished
through the utilization of

auto-scaling,
pay-as-you-go cloud
models. Tools such as
Amazon Web Services,

Cost Explorer, Microsoft
Azure’s Cost Management,

and Google Clouds are
frequently utilized for the

purpose of monitoring
and controlling expenses.

[277–280]
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Table 6. Cont.

Aspect LLMOps MLOps DevOps References

Cloud Platforms and Services

Service Offerings

Requires utilizing
powerful computing
systems for training,
utilizing dedicated

hardware for making
predictions, and providing

customized fine-tuning
services. Example:
High-Performance

Computing (HPC) is used
for training large-scale
LLM models, such as

Google Cloud Platform’s
Tensor Processing Units

(TPUs), and Amazon Web
Services P3 instances.

Model fine-tuning can be
done via APIs such as

Azure OpenAI and
Hugging Face on AWS.

This focuses on tools and
services that facilitate the
automated development,

deployment, and
monitoring of models.

Example: AutoML
Services refer to the

automated process of
developing and tuning

models, AWS SageMaker
Autopilot, and GCP
AutoML. Managed

Kubernetes Services, such
as AWS EKS and GCP

GKE, are used for
deploying applications in
a scalable manner. Model
monitoring refers to Azure

Monitor and AWS
CloudWatch, to keep track

of the performance and
behavior of

deployed models.

Continuous Integration
and Continuous Delivery
(CI/CD) pipelines are the
focus of a wide range of

services that are provided
by DevOps initiatives. It is

possible to use GitLab
CI/CD, Jenkins, or AWS

CodePipeline as
references. In addition,

monitoring tools such as
Prometheus, Grafana,

AWS CloudWatch, and
Azure Monitor are

essential components for
monitoring the
performance of

the system.

[53,138,166,281–285]

6. Open Issues and Future Research Directions
This section presents a brief overview of some open issues and potential research

directions:

• The integration of LLMs into Continuous Integration/Continuous Deployment
(CI/CD) pipelines presents several open challenges and opportunities. Key barriers
include computational costs, inaccuracies, error handling, biases, and concerns related
to development, deployment, maintenance, and ethics [166]. These issues highlight the
need for innovative approaches to seamlessly incorporate LLMs into CI/CD processes,
ensuring they are utilized effectively and efficiently. Future research should focus on
strategies to enhance the speed, reliability, and consistency of LLMs integration while
mitigating associated risks and addressing the ethical implications involved.

• The evolving landscape of LLMOps presents a variety of ongoing challenges that
require continued exploration. One prominent issue is the potential for LLMs to
introduce inaccuracies and biases within the Continuous Integration/Continuous
Deployment (CI/CD) process. This creates the need for rigorous oversight to ensure
the quality and reliability of software products. Another key challenge lies in the
difficulty of capturing and reproducing test scripts across diverse devices, platforms,
and applications. Disparities in screen dimensions, input methods, platform func-
tionalities, API inconsistencies, and varying application designs further complicate
this issue [286]. Addressing these challenges will require innovative approaches to
improve cross-platform compatibility and ensure consistent behavior of LLMs-driven
systems. Future research should focus on developing strategies to mitigate biases and in-
accuracies in LLMs, particularly in CI/CD workflows. Additionally, further investigation
is needed into methods for standardizing test script reproduction across heterogeneous
environments to enhance the scalability and reliability of LLMOps practices.

• Future research directions in LLMOps focus on advancing the development and
reliability of LLMs. Key areas include integrating human feedback loops to improve
model outputs, addressing biases and ethical concerns in LLMs applications, and
enhancing the integration process. Additionally, there is a need to mitigate challenges
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in natural language understanding and explore the potential of fine-tuning with
domain-specific data to improve performance on specialized tasks. Lastly, further
research is needed to formulate best practices for incorporating these models into
Continuous Integration/Continuous Deployment (CI/CD) pipelines.

7. Conclusions
Generative AI, particularly LLMs, is reshaping various industries with its unparalleled

capabilities in text generation and understanding. As these models continue to evolve at a
rapid pace, it is crucial to comprehend the underlying architectural principles, along with
the challenges and solutions required to scale these models for real-world applications.
This paper highlighted the distinctions between LLMOps and MLOps, emphasizing the
unique needs of LLMs in terms of deployment, monitoring, security, and scalability. By
evaluating current tools, platforms, and emerging trends, we have outlined the essential
infrastructure and operational strategies that practitioners must consider when managing
LLMs in production environments. The rapid growth of LLMOps methodologies is key to
addressing these challenges and ensuring the efficient scaling of LLMs-based applications
in sectors such as healthcare, finance, and cybersecurity. Looking ahead, the evolution
of LLMOps will be critical for optimizing LLMs performance and ensuring their ethical,
secure, and scalable integration into diverse production environments. Thus, continued
focus on these methodologies will be pivotal in advancing the future of generative AI.
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LLMOps Large Language Model Operations
MLOps Machine Learning Operations
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pretrained Transformer
LLaMA Large Language Model Meta AI
GenAI Generative Artificial Intelligence
AIOps Artificial Intelligence for IT Operations
RAGOps Retrieval-Augmented Generation Operations
GenAIOps Generative AI Operations
T5 Text-to-Text Transfer Transformer
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AutoML Automated Machine Learning
YOLO You Only Look Once
RAG Retrieval-Augmented Generation
LSTM Long Short-Term Memory
DevOps Development and Operations
CI/CD Continuous Integration and Continuous Delivery
DataOps Data Operations
SDLC Software Development Life Cycle
CSFs Critical Success Factors
MLEs Machine Learning Engineers
FMOps Foundation Model Operations
HITL Human-in-the-Loop
LLMCI LLM–Computer Interaction
GCP Google Cloud Platform
AWS Amazon Web Services
EC2 Elastic Compute Cloud
S3 Simple Storage Service
NLP Natural Language Processing
ETL Extract, Transform, and Load
ZeRO Zero Redundancy Optimizer
DevSecOps Development, Security, and Operations
GPU Graphics Processing Unit
TPU Tensor Processing Unit
GCS Google Cloud Storage
DVC Data Version Control
EFS Elastic File System
HPC High-Performance Computing
GKE Google Kubernetes Engine
UI User Interfaces
AI Artificial Intelligence
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