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Abstract: Blockchain sharding is a scalable solution for distributed ledgers, but may be
hindered due to cross-shard transactions and uneven workload distribution. This paper
presents EquiFlowShard, an advanced blockchain sharding protocol designed to improve
robustness and enhance cross-shard efficiency. Specifically, by employing Optimized Ac-
count State Distribution Algorithm (OSADA), EquiFlowShard dynamically assigns and
segments account states, so as to minimize cross-shard transaction volume and balance
shard workloads. In addition, the protocol introduces the SFlow mechanism to facilitate se-
cure and consistent state transfers and a Smooth Transition scheme to mitigate performance
impacts during state reconfigurations. Evaluation results confirm that EquiFlowShard
outperforms existing benchmark protocols in terms of throughput, transaction confirma-
tion latency, and cross-shard transaction ratio, demonstrating its effectiveness in dynamic
blockchain environments.

Keywords: blockchain; sharding technology; account; state segment/aggregate; intermediary
account

1. Introduction
The advent of blockchain technology has revolutionized the landscape of digital

transactions and data management, offering a decentralized and immutable ledger system.
Despite its transformative potential, blockchain technology faces significant scalability
challenges that hinder its widespread adoption. Traditional blockchain architectures,
which rely on linear transaction processing and global consensus mechanisms, struggle to
meet the demands of high transaction throughput and low latency, especially in dynamic
and resource-constrained environments like the Internet of Things (IoT). The increasing
adoption of IoT in various industries further amplifies these demands, as IoT devices
continuously generate vast amounts of data that require secure, decentralized handling
across distributed networks.

To enhance transaction throughput, overcome the limitations of traditional blockchains,
and meet real-world application demands, researchers have extensively studied methods to
improve blockchain scalability. Among these, sharding technology is regarded as a key ap-
proach for effectively enhancing system scalability and addressing the issue of insufficient
blockchain throughput. Prominent sharding techniques [1–6] propose dividing the entire
blockchain network into multiple segments that independently process transactions and
maintain states, thereby improving overall efficiency. Sharding can be further categorized
into three types: network sharding, transaction sharding, and state sharding. Among
these, state sharding allows each node to store only the ledger of its shard, significantly
reducing storage overhead and improving throughput. Despite its potential to significantly
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enhance blockchain performance, state sharding faces substantial challenges, making it the
focus of this study. Although theoretically promising, practical implementations of state
sharding remain scarce, and existing solutions encounter major challenges. For instance, a
high proportion of cross-shard transactions [4,6–8] incurs excessive communication over-
head, causing latency issues. Moreover, uneven workload distribution among shards
often leads to performance bottlenecks, where certain shards are overloaded while others
remain underutilized.

To address these challenges, several solutions have been proposed. Pyramid [6]
introduced a two-layered sharding architecture, enabling certain nodes with superior
hardware to belong to multiple shards, moderately improving throughput. However, this
approach increases shard management complexity and hardware requirements, limiting
its scalability in dynamic environments. BrokerChain [9] and LB-Chain [10] proposed
account-partitioning methods to balance workload across shards and reduce transaction
delays, while these methods alleviate workload imbalance, they fall short in significantly
reducing cross-shard transactions, which continue to hinder performance. Building on these
efforts, Huang et al. [11] proposed the Transformers protocol, which uses the community-
aware CLPA algorithm for account allocation, balancing cross-shard transaction ratios
and workload distribution. However, CLPA, as a non-overlapping community detection
algorithm, is suitable for account partitioning but not for segmentation. Additionally, most
existing methods rely on static configurations and fail to adapt to the blockchain’s dynamic
nature, leading to potential performance degradation over time. These limitations highlight
the need for a dynamic and adaptive protocol that can optimize workload distribution
while minimizing cross-shard transactions.

Motivation: Existing blockchain sharding solutions face significant limitations that
hinder their scalability and adaptability in dynamic environments. First, static and inflexi-
ble account allocation methods are prevalent in many existing protocols, such as CLPA, a
non-overlapping community detection algorithm that can only identify the single shard
most closely associated with a node. This approach is limited to account partitioning but
is unsuitable for account segmentation, as it fails to account for dynamic and overlap-
ping relationships among shards, which are crucial in reducing cross-shard transactions
and balancing workload in real-world applications. Second, BrokerChain [9] adopts a
static intermediary setup, where high-frequency accounts are predefined as intermediaries
based on historical transaction data. However, this approach cannot dynamically respond
to blockchain’s fluctuating workload or evolving transaction patterns, especially in sce-
narios like IoT, where node behavior and transaction characteristics are highly dynamic.
Consequently, the lack of dynamic selection, allocation, and updating mechanisms for
intermediaries can lead to suboptimal performance and increased cross-shard transaction
delays. Additionally, existing account segmentation strategies are overly simplistic, often
distributing account states uniformly across shards without considering the closeness of
relationships between accounts and shards. This may result in insufficient balances in
certain shards, necessitating excessive cross-shard transfers to complete transactions. Such
transfers not only introduce latency but also degrade the overall performance and scala-
bility of blockchain systems. In summary, these limitations highlight the need for a more
dynamic, efficient, and context-aware sharding solution to address the gaps in account
allocation, intermediary management, and state segmentation.

Figure 1 illustrates the impact of different agent account configurations on sharding.
An agent account handles cross-shard transactions by splitting each into two intra-shard
sub-transactions. In Figure 1a, the system includes six accounts and four transactions(TX),
among which TXA→D and TXB→E are cross-shard transactions. The system’s transaction
load is 6, with each cross-shard transaction contributing to the load of both involved
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shards. As shown in Figure 1b, when account C is selected as the agent account, the
cross-shard transactions TXA→D and TXB→E are split into sub-transactions handled by C.
This increases the total number of transactions to 6 but eliminates cross-shard transactions.
The system’s transaction load remains 6. In contrast, when account D is selected as the
agent account, as depicted in Figure 1c, the number of transactions decreases to 5, reducing
the system’s transaction load from 6 to 5. Account D’s state is evenly divided across two
shards. In Shard 2, account D participates in three transactions, two as the sender, while in
Shard 1, it participates in only two transactions, both as the recipient. Clearly, account D
should hold a larger proportion of its total balance in Shard 2 to reduce the likelihood of
insufficient balance for initiating transactions, which would otherwise require transferring
balance from Shard 1 to Shard 2—a process that constitutes a cross-shard transaction. After
adjusting the state allocation ratio, as shown in Figure 1d, account D’s total state is set to
1, with 0.9 allocated to Shard 2 and only 0.1 remaining in Shard 1. This allocation better
reflects the actual transaction distribution across shards, minimizing the likelihood of
intra-account state transfers and further reducing cross-shard transactions.

(a) (b)

(c) (d)

Figure 1. The effects of different agent account settings. (a) Without agent account. (b) Agent account
with low association. (c) Agent account with high association and even split of state. (d) Agent
account with high association and appropriate split of state.

This paper proposes an efficient cross-shard blockchain protocol, EquiFlowShard.
Before each consensus round, ordinary accounts are dynamically allocated to optimal
shards based on historical transactions, while active accounts are segmented across relevant
shards to serve as intermediaries, termed LinkAgents, for handling cross-shard transactions.

EquiFlowShard introduces a novel approach to blockchain sharding by addressing crit-
ical challenges in state management and cross-shard transaction efficiency. Unlike existing
sharding protocols such as BrokerChain, which focus primarily on static account allocation
or predefined intermediary configurations, EquiFlowShard dynamically optimizes account
state distribution through the Optimized Account State Distribution Algorithm (OASDA).
This innovation allows for real-time adaptability to changing transaction patterns and shard
workloads, reducing cross-shard transaction overhead and ensuring balanced resource
utilization. Furthermore, the integration of the State Flow (SFlow) mechanism and Smooth
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Transition scheme enhances state consistency and mitigates the performance impact of
state reconfigurations, setting EquiFlowShard apart from traditional approaches.

The potential applications of EquiFlowShard extend beyond general blockchain sys-
tems into industrial and IoT environments. In IoT systems, where vast networks of devices
generate high transaction volumes with diverse and dynamic patterns, EquiFlowShard’s
ability to adaptively manage account states and balance workloads across shards becomes
particularly advantageous. Its real-time monitoring and feedback mechanism ensures
optimal shard performance, even in scenarios with fluctuating device connectivity and
varying data traffic. Moreover, the protocol’s focus on minimizing cross-shard transactions
aligns with the need for low-latency and high-throughput operations, which are critical in
IoT-based applications such as supply chain management, smart manufacturing, and en-
ergy grid optimization. By addressing these challenges, EquiFlowShard not only enhances
blockchain scalability but also provides a robust foundation for integrating blockchain
technology into IoT ecosystems.

The main contributions of this paper are summarized as follows:

1. A dynamic Optimized Account State Distribution Algorithm (OASDA) is proposed
to allocate ordinary accounts to the optimal shard while selecting the most active
accounts as LinkAgents and segmenting their states across an optimal set of shards.
This reduces cross-shard transaction proportions, balances cross-shard workloads,
and significantly enhances throughput.

2. The State Flow (SFlow) mechanism is designed, comprising two parts: one for the sys-
tem’s optimization phase, where state redistribution is achieved via a communication
mechanism based on OASDA results, and another for the consensus phase, where
state transfers between segmented sub-accounts are executed through transactions.

3. To ensure smooth state updates, a Smooth Transition scheme is developed. During
state reconfiguration, fine-grained account locking is used to minimize the impact on
system performance. Additionally, a transitional phase is introduced for LinkAgent
deactivation, establishing a three-phase life cycle.

4. The EquiFlowShard protocol is implemented and simulated using Ethereum historical
transaction data. Experimental results show that this protocol outperforms other
benchmark protocols in terms of throughput, transaction confirmation latency, and
the proportion of cross-shard transactions.

2. Related Work
2.1. Blockchain Sharding

Numerous sharding solutions have been proposed to enhance blockchain scalabil-
ity. Elastico [1] is recognized as the inaugural sharding protocol for public blockchains,
segmenting transactions across different shards to facilitate parallel processing. However,
it implements only transaction sharding, requiring nodes to store the entire state ledger,
which incurs significant storage and communication overhead. To address these limitations,
OmniLedger [3] introduces a state sharding protocol using a scalable BFT-based consen-
sus algorithm to enhance transaction throughput. RapidChain [2] further reduces the
overhead associated with sharding reconfiguration. Chainspace [12] adopts a distributed
atomic commit protocol to support smart contract sharding. Monoxide [5] employs an
account/balance-based sharding model and introduces a relay transaction mechanism
to handle cross-shard transactions efficiently. Other advancements include OptChain [4],
which minimizes cross-shard transactions in UTXO-based systems, and Prism [13], which
optimizes network throughput by deconstructing the blockchain structure into atomic
functionalities. Dynamic sharding systems, such as those proposed by Tao et al. [14],
improve throughput by adapting to smart contract-based operations.
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In blockchain sharding architectures, operations are segmented into epochs, each
comprising two pivotal phases: the consensus phase and the reconfiguration phase. In the
consensus phase, shard committees process transactions and generate blocks by achieving
intra-shard consensus. In the reconfiguration phase, blockchain nodes are allocated to
different shards based on specific policies to avoid Sybil attacks.

2.2. Processing a Cross-Shard Transaction

In state sharding, nodes within each shard store only a portion of the overall state
ledger. Since cross-shard transactions involve inputs and outputs across different shards,
verifying these transactions requires communication and coordination between multiple
shards to ensure consistent state updates. Therefore, efficiently and securely handling
cross-shard transactions is a major challenge in state sharding.

Omniledger [3] employs the Atomix protocol, based on the Two-Phase Commit mech-
anism with locking and rollback processes, to handle cross-shard transactions, ensuring
transaction atomicity and state consistency. However, its reliance on the 2PC mecha-
nism introduces communication overhead and delays, especially in environments with
frequent cross-shard interactions. Furthermore, the protocol heavily depends on the client.
Chainspace [12] integrates the BFT mechanism with the S-BAC (Sharded Byzantine Atomic
Commit) protocol to manage cross-shard transactions, significantly improving system
efficiency and scalability. Its lightweight communication overhead and rapid state syn-
chronization enable high throughput and low latency. However, its complex architecture
and potential bottlenecks require further optimization to adapt to more dynamic and in-
tricate blockchain environments. RapidChain [2] reduces communication overhead and
latency significantly by parallelizing the processing of transaction parts in each shard and
employing a lightweight communication protocol along with local and global consensus
mechanisms. However, its performance is highly sensitive to network latency and stability,
degrading significantly in high-latency or unstable environments. Monoxide leverages the
asynchronous reference mechanism, allowing cross-shard transactions to reference the state
and results of other shards via relay transactions, eliminating the need for synchronous com-
munication between shards. However, its account allocation strategy, which maps accounts
to shards based on the modulo operation of the last 8 bits of their addresses, can lead to a
“hot shard” issue, where a large number of accounts become concentrated in a single shard.
Pyramid [6] introduces a hierarchical sharding consensus protocol, where special nodes
with better hardware handle cross-shard transactions. However, this approach imposes
high hardware requirements and results in significant storage overhead. Subsequently,
BrokerChain [9] proposed a special type of account to act as a broker, replacing Monoxide’s
relay transaction mechanism for managing cross-shard transactions, thereby ensuring
atomicity and security. However, the brokers in BrokerChain are statically predefined,
making it difficult to adapt to the dynamic nature of blockchain systems. In UTXO model,
Estuary [15] divides all accounts into small state units, enabling all user transactions to be
handled within a single shard. However, this approach may lead to inefficiencies, as the
segmentation of all accounts can result in insufficient balances for some. This could trigger
frequent state transfers between shards during transaction processing and may struggle
to adapt to the dynamic and rapidly changing nature of blockchain systems. Sharon [16]
converts cross-shard transactions into intra-shard transactions through shard rotation and
merging mechanisms. However, during each consensus phase, Sharon requires repeated
pairwise shard merging, with a time complexity of O(n2). Additionally, the merging pro-
cess involves synchronizing large amounts of state data, resulting in significant transaction
processing delays and storage overhead.
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A comparative analysis of EquiFlowShard and related protocols reveals its advantages:
(1). Monoxide employs a relay transaction mechanism for cross-shard transactions. How-
ever, its static, address-based sharding method often leads to hot shard issues, resulting in
workload imbalances. In contrast, EquiFlowShard leverages the OSADA to dynamically
allocate account states, effectively mitigating hot shard problems and enhancing workload
balance across shards. (2). BrokerChain introduces static brokers to manage cross-shard
transactions, ensuring atomicity. However, static brokers perform poorly in dynamic envi-
ronments. EquiFlowShard addresses this limitation by implementing a dynamic LinkAgent
selection mechanism and life-cycle management, significantly improving the protocol’s
adaptability and scalability. (3). Estuary reduces the proportion of cross-shard transactions
by segmenting all accounts into smaller state units. However, excessive segmentation
granularity may introduce additional challenges. EquiFlowShard overcomes this by selec-
tively segmenting only active accounts based on the LinkAgent selection algorithm, leaving
other accounts unsegmented. Furthermore, the state segmentation ratio is determined by
the account’s association with specific shards rather than equal distribution, ultimately
reducing the number of state transfers between accounts.

3. Overview of EquiFlowShard
In this section, we introduce EquiFlowShard, an efficient cross-shard blockchain

sharding protocol capable of adaptively allocating and segmenting accounts.

3.1. System Model

The overview of EquiFlowShard is shown in Figure 2. Similar to existing blockchain
protocols [2,9,11,17], EquiFlowShard employs the PBFT [18] protocol for consensus, with a
partially synchronous peer-to-peer network for communication, where nodes exchange
messages through the Gossip protocol. Each node is assigned to a single shard and
maintains its own independent ledger. A fixed system runtime interval, defined as an
epoch, consists of a consensus phase and an optimization phase. EquiFlowShard includes
two types of shards:

• Optimization Shard (O-shard): O-shard is responsible for optimizing the distribution
of account states. In each epoch, it adaptively allocates account states and updates the
LinkAgent.

• Processing Shard (P-shard): P-shard is responsible for generating blocks during the
consensus phase by processing transactions and achieving intra-shard consensus.

Figure 2. Workflow of EquiFlowShard in an epoch.
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To prevent Sybil attacks [19] and join–leave attacks [20,21], the Cuckoo rule is periodi-
cally applied to update the composition of O-shards and P-shards.

3.2. Workflow of EquiFlowShard

As shown in Figure 2, the EquiFlowShard protocol’s workflow in an epoch consists of
the following five steps:

• Step 1, identity authentication: To prevent Sybil attacks, at the beginning of each
epoch, all consensus nodes generate unbiased and unpredictable randomness based
on a Verifiable Random Function (VRF). Similar to [9], nodes must solve a PoW
puzzle using their IP address, public key, randomness from the previous epoch, and
a flag indicating their willingness to become a LinkAgent in order to obtain a valid
identity for this epoch. Accounts intending to become LinkAgents must stake tokens
in advance.

• Step 2, process transactions: The P-shard continuously receives user transactions
and adds them to the transaction pool. During each epoch, the P-shard packages the
transactions from the pool, generates blocks, broadcasts them to the shard network,
and reaches consensus using the PBFT consensus algorithm.

• Step 3, collect data: The O-shard continuously receives block information broadcasted
by the P-shard and uses the transactions within the blocks to construct and update a
transaction distribution graph.

• Step 4, optimize distribution: Based on the transaction distribution graph, the O-
shard periodically executes the OSADA to generate the optimal account partition map
and updates the composition of LinkAgents and the segmentation map. The O-shard
reaches consensus on the algorithm results, generates a state block, and then sends a
state reconfiguration message to all P-shards.

• Step 5, update state: The P-shard updates its ledger state and transaction pool based
on the state block. Active LinkAgents will segment the shard’s state according to
the segmentation map and distribute it to the respective shards. LinkAgents in the
reintegration phase must aggregate all segmented states back into the main shard.

4. EquiFlowShard Protocol Design
This section introduces the EquiFlowShard protocol, covering the optimized account

state distribution algorithm, the State Flow mechanism, the Smooth Transition strategy,
and the real-time monitoring and feedback mechanism.

4.1. Formulation of Distribution Problem

In EquiFlowShard, the state of ordinary accounts is allocated to a single shard, while
the state of LinkAgents is partitioned and distributed across closely related shards.

First, consider the allocation of ordinary accounts. Define an account transaction
graph as G(V, E), where V represents a set of N accounts, expressed as V = {1, 2, . . . , N},
and E denotes the set of edges between accounts, expressed as E = {ei,j|i, j ∈ [N]}. Each
edge ei,j represents a transaction between accounts i and j, with its weight indicating
transaction volume. The set of neighboring nodes for account i is defined as Nbr(i). We
define S = {1, 2, . . . , K} as the set of K shards. Each ordinary account belongs to a single
shard, represented by a binary variable δi,k(k ∈ [K]), which indicates whether account i is
in shard k. If δi,k = 1, account i belongs to shard k; if δi,k = 0, account i does not belong to
shard k. The partitioning result for accounts is defined as Pmap.

One factor to consider in account partitioning is the workload balance of shard k,
denoted as Wk, which consists of two components: the intra-shard workload Win

k , generated
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by transactions within the shard, and the cross-shard workload Wcross
k , generated by cross-

shard transactions. Thus, Wk is calculated as follows:

Wk = Win
k + Wcross

k =
N

∑
i=1

N

∑
j=1

δi,k · δj,k · ei,j +
N

∑
i=1

N

∑
j=1

δi,k · (1 − δj,k) · ei,j (1)

Similar to [9], to enhance blockchain throughput, the workload imbalance index ∆W
of EquiFlowShard should be minimized, as shown in the following calculation.

∆W = max
k∈S

∣∣∣∣∣Wk(p)− ∑K
k=1 Wk(p)

K

∣∣∣∣∣ (2)

where p represents the partitioning scheme and Wk(p) denotes the workload of shard k
under partitioning scheme p. Selecting the absolute difference between the maximum
shard workload and the average shard workload as the imbalance metric allows for a
direct quantification of system load imbalance, demonstrating higher sensitivity to extreme
shard workloads.

Secondly, selecting suitable accounts as LinkAgents and effectively segmenting their
states is necessary. A common approach is to select the accounts with the highest number of
transactions (i.e., hot accounts) and evenly distribute their states across all shards. However,
this method has limitations: if most transactions of a hot account are concentrated in a single
shard, segmenting its state does little to reduce cross-shard transactions. Additionally,
improper allocation can lead to insufficient balances for LinkAgents in certain shards,
requiring frequent transfers from other shards. This increases cross-shard transactions and
can degrade blockchain performance.

Finally, it is necessary to address state segmentation and aggregation during system
operation to maintain inter-shard consistency. Three scenarios are encountered: (1) When
an account is selected as a LinkAgent, its state must be segmented across relevant shards;
(2) When a LinkAgent reverts to an ordinary account, each shard’s sub-states should be
aggregated back to the main shard; (3) When a LinkAgent processes a transaction but
has an insufficient balance in the current shard, it may require a balance transfer from
other shards.

4.2. Optimized Account State Distribution Algorithm

To optimize account state distribution, this paper introduces the Optimized Account
State Distribution Algorithm (OASDA), which consists of three components: account
partitioning, LinkAgent selection, and LinkAgent segmentation.

Account partitioning: SLPA [22] is a well-known overlapping community detection
algorithm that initially assigns a random community label to each node, ultimately forming
a set of closely associated labels for each node. By combining SLPA [22] with CLPA [11], we
propose the Optimized Shard Label Propagation Algorithm (OSLPA). Ordinary accounts
receive a single optimal shard label, while LinkAgents obtain an optimal set of shard labels.
During the algorithm’s execution, each node updates its shard label by calculating the score
function η(i, k), defined as follows:

η(i, k) = α ·
∑j∈Nbr(i) ei,j · δj,k

∑j∈Nbr(i) ei,j
+ (1 − α)

minm∈SWm

Wk
(3)

where α is a hyperparameter that balances the impact of cross-shard transaction rates and
inter-shard workload balance on the score. Each node ultimately receives an optimal score
set η(i). Ordinary accounts select the label with the highest score as their shard, while
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LinkAgents select an optimal set of shard labels, with the highest-scoring label designated
as the primary shard.

LinkAgent selection: Active accounts should exhibit high transaction frequencies and
substantial cross-shard transactions. Therefore, an activity metric θi is defined to represent
the activity level of each account:

θi = TXi + β · TXcross
i (4)

where TXi represents the number of transactions for account i and TXcross
i represents the

number of cross-shard transactions for account i. β is the weight that adjusts the influence
of the number of cross-shard transactions.

Define the number of new LinkAgents selected in each update round as nA. All
accounts are ranked in descending order based on their activity score θi, and the top
nA accounts are selected as LinkAgents for the current round, added to the new LinkA-
gent queue Qnew. Using Qnew, the LinkAgent life-cycle map, represented by LmapLA, is
updated accordingly.

To adaptively respond to changes in the blockchain, the O-shard may dynamically
increase the LinkAgent count, defining the additional amount as nD. To prevent excessive
fragmentation of account states, an upper limit of nmax is set for Qnew. In EquiFlowShard,
the number of active LinkAgents per round is constrained within [nA, nmax].

LinkAgent segmentation: First, for each LinkAgent’s score set η(i), calculate the
closeness Ci,k between each shard and the LinkAgent:

Ci,k =
η(i, k)

∑k
S=1 ηi,s

(5)

Define the closeness threshold as γ, and the LinkAgent will segment its state to
shards where Ci,k ≥ γ. The LinkAgent’s state segmentation map is represented as SmapLA,
where SmapLA denotes the proportion of LinkAgent i’s state assigned to shard k, directly
correlated with the closeness level, calculated as follows:

SmapLA(i, k) =
Ci,k

∑s∈{x|Ci,x≥γ} Ci,s
(6)

Upon completing OASDA, the O-shard broadcasts the algorithm results, reaches
consensus, and generates the state block SblockO. It then broadcasts a message to notify the
P-shards to proceed with state reconfiguration.

4.3. State Flow Mechanism

In each epoch, account redistribution triggers dynamic state flows during operation,
including state migration, segmentation, and aggregation. To ensure stable and secure
system performance, this paper introduces the State Flow mechanism (SFlow).

The SFlow mechanism comprises two components: (1) state reconfiguration (SR)
during the optimization phase and (2) cross-state account transfer (CSAT) during the
consensus phase.

State reconfiguration: During the optimization phase, upon receiving a state recon-
figuration message from the O-shard, the P-shard initiates state migration, along with
LinkAgent segmentation and aggregation. Figure 3 illustrates this process.
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Figure 3. Example of state reconfiguration.

The migration of account a from shard s1 to shard s2 proceeds as follows:

1. Verify Pmap: Confirm that Pmap(a) = s2 and that account a has an existing state
statei,1 in shard s1.

2. Construct and transmit the message: Shard s1 sends a message to shard s2:
Msgs1→s2 = (statea,1, s2, epochId, nonce, hash(∗), σs1). The EpochId corresponds to
the current epoch of SblockO, preventing account migration desynchronization due
to transmission delays. To protect against malicious nodes replaying Msgs1→s2 to in-
crease account a’s balance, a nonce field is included in the message. The hash(∗) is a di-
gest of the message content to ensure its integrity and immutability. σs1 is the signature
of shard s1, guaranteeing the authenticity of the message and preventing repudiation.

3. Update local ledger: When s2 receives the message Msgs1→s2 , it verifies the signature
and hash values, verifies the nonce and EpochId, and then updates the local ledger
state accordingly.

The communication process for LinkAgent state segmentation and aggregation re-
sembles the ordinary account migration process, with key differences: (a) the LinkAgent
mapping LmapLA is checked, and (b) the segmentation function FSeg and aggregation
function FAgg are executed.

When executing the segmentation function FSeg, the account balance state is divided
based on the state ratio in SmapLA. For example, for account b in shard s2, the segmen-
tation function is executed as FSeg(stateb,2) = (segstateb,1, segstateb,2, segstateb,3), where
segstateb,k = rb,k · stateb,2.

Executing FAgg aggregates all received sub-states into a consolidated local state. For
instance, aggregating account c’s states from shards s1 and s3 into s2 would be represented
as FAgg(statec,1, statec,2, statec,3) = statec,2.

To ensure LinkAgent sub-states across shards match the proportions in SmapLA,
the system prioritizes FSeg. Due to potential communication delays, some shards may
receive aggregation messages with segmented states from other shards before the O-shard’s
reconfiguration message arrives. Executing FAgg before FSeg could cause inconsistent state
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division. Therefore, the system stipulates that FAgg is only called if the current shard has
received the O-shard reconfiguration message and does not need or has completed FSeg.

After SR concludes, the P-shard generates a state block, and consensus is reached
across shards to ensure consistency among all nodes.

CSAT: During the consensus phase, LinkAgent may encounter insufficient balance in
a sub-state within a shard, necessitating a transfer request from sub-states in other shards,
known as cross-shard account transfer (CSAT).

To improve the efficiency of state updates in each epoch, SR uses a communication
mechanism; however, this approach has lower security and limited flexibility and involves
extensive account state locking. For example, if an account has three sub-states and requires
state reconfiguration, all sub-states are locked and unable to process transactions. In the
consensus phase, if one sub-state needs to initiate a transfer request to another, we aim to
ensure the remaining sub-states remain unlocked and can continue processing transactions.
To address this, we propose a more secure and efficient CSAT.

CSAT is transaction-triggered. When a LinkAgent in shard k processes a transaction
tx and finds the current shard’s balance insufficient to support it, the LinkAgent checks its
state list, sorted in descending order by balance. It selects the shard with the largest balance
as the target shard and initiates CSAT, requesting a transfer to shard k. If a single shard’s
balance cannot meet the transaction amount of tx, multiple CSAT requests are issued across
multiple shards, following the order in the list. The CSAT process is as follows:

• Account i initiates a withdraw transaction TXw on source shard s1, specifying des-
tination shard s2 and transfer amount txvalue. To minimize the frequency of CSAT
triggers, account i may adjust the transfer amount based on its circumstances, pro-
vided the amount is not less than the CSAT-triggering transaction amount txvalue.
After broadcasting transaction TXw in s1, once TXw is confirmed, i’s state statei,1 in
s1 is reduced by txvalue, and i receives proof of the successful deduction, denoted
as proo fw.

• LinkAgent i, based on TXw and proo fw, constructs a deposit transaction TXd on
destination shard s2. Upon broadcasting transaction TXd in s2, and after TXd is
confirmed, i’s state statei,2 in s2 is increased by txvalue.

To ensure LinkAgent functionality, CSAT transactions are prioritized over regular
transactions, with shards prioritizing CSAT inclusion in blocks.

4.4. Smooth Transition

To ensure consistency of states before and after reconfiguration, the simplest approach
is to suspend all account transactions during reconfiguration, resuming them only once
reconfiguration is complete. However, this system-wide lock approach has a coarse granu-
larity and impacts performance. Additionally, when a LinkAgent becomes inactive and
reverts to an ordinary account, its state must be aggregated back to the main shard. Com-
munication delays may leave unprocessed cross-shard transactions in the transaction pool,
requiring reprocessing. To minimize these impacts and enable smooth state transitions, a
Smooth Transition scheme is proposed.

Fine-grained account locking:As shown in Figure 4, upon receiving an SR message
from the O-shard, each P-shard will lock only the specific accounts needing migration,
segmentation, or aggregation. Locked accounts cannot process transactions until their
state is fully reconfigured. During this period, unlocked accounts continue to process
transactions as usual.
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Figure 4. Example of transaction processing in SR.

Transition stages: As shown in Figure 5, each LinkAgent undergoes three life-cycle
phases—active, inactive, and reintegration. In the active phase, the LinkAgent handles
all transactions. In the inactive phase, it continues processing existing transactions in the
shard’s pool but does not handle new cross-shard transactions. In the reintegration phase,
the shard begins state reclamation for the LinkAgent, aggregating its state back to the main
shard and rolling back any unprocessed cross-shard transactions associated with it.

Figure 5. Life cycle of LinkAgent.

4.5. Real-Time Monitoring and Feedback

The optimized state distribution is derived from historical transaction data, but fu-
ture transaction patterns may not align closely with past characteristics, and blockchain
dynamics allow nodes to join or leave at any time. To further optimize state distribu-
tion and improve system performance, EquiFlowShard introduces real-time monitoring
and feedback.

During the consensus phase, the O-shard continuously monitors critical performance
metrics of each P-shard, including transaction throughput (TPS), transaction confirmation
latency (TCL), and the cross-shard transaction ratio (CTR). These metrics enable quick
off-chain identification of system bottlenecks and anomalies. Additionally, the O-shard
conducts real-time monitoring of each LinkAgent, tracking transaction volume, balance
changes, and CSAT occurrences. If a LinkAgent’s balance is too low or its transaction-
handling capacity is insufficient, a warning is issued, and a replacement with a new
LinkAgent may be considered.

Based on real-time monitoring data, the following feedback strategies are generated:
(1) Dynamic adjustment may be performed of key parameters, such as the score function
parameter α in OSADA, the state segmentation threshold γ for LinkAgents, and the addi-
tional number of LinkAgents nD. (2) If a shard experiences a sudden increase in workload,
the O-shard can segment active accounts within that shard, temporarily increasing the
number of LinkAgents or initiating partial account migration. (3) If a LinkAgent’s CSAT
usage is excessively high, the distribution ratio of its sub-states can be adjusted accordingly.
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(4) When malicious behavior by a LinkAgent is detected, its status can be revoked and the
staked tokens confiscated.

For security, all feedback mechanism outcomes require O-shard consensus approval.
With real-time monitoring by the O-shard, the entire blockchain system operates efficiently,
enhancing responsiveness and adaptability to dynamic environmental changes.

5. Experimental Results
We implemented the EquiFlowShard protocol using Golang on the open-source

blockchain prototype BlockEmulator [23]. This transaction-driven blockchain sharding sim-
ulator was used to evaluate the proposed sharding protocol. The system runs on hardware
configured with an Intel i7-12700H CPU and 32 GB RAM.

Dataset: We utilized real historical Ethereum [24] transaction data, consisting of one
million transactions, to evaluate system performance. These transactions were replayed to
the blockchain system at a specified arrival rate at the start of each epoch, with transactions
prepared by time and assigned to different P-shards based on account states.

Baselines: We considered the following three baselines:

(1). Monoxide [5]: Monoxide allocates accounts by taking the first few bits of the hash
address and applying modulo with the number of shards to determine the shard
assignment. For cross-shard transactions, Monoxide employs a relay transaction
mechanism. When a cross-shard transaction occurs, the source shard generates a relay
transaction and updates its internal state. This relay transaction is then broadcast to
the destination shard, which directly references the updated state from the source
shard without requiring direct synchronization.

(2). BrokerChain [9]: Similar to Monoxide, BrokerChain allocates accounts using the
first few bits of the hash address and applying modulo with the number of shards.
However, for cross-shard transactions, BrokerChain introduces intermediary accounts
called brokers. Cross-shard transactions are split into two sub-transactions: the first
half involves the sender transferring assets to the broker in the source shard. Once
confirmed, the broker initiates the second half of the transaction, transferring the
assets to the recipient in the destination shard. The transaction is considered successful
once the second sub-transaction is confirmed.

(3). CLPA-Broker [11]: CLPA-Broker uses the CLPA community detection algorithm for
account allocation. Its approach to handling cross-shard transactions is similar to Bro-
kerChain, utilizing brokers to split transactions into two phases for secure processing.

Since the brokers in BrokerChain and CLPA-Broker are predefined based on prior
knowledge, brokers in the experiments are randomly selected to ensure a fair comparison
between the different approaches.

Metrics: The system’s performance is measured by transaction throughput (TPS),
transaction confirmation latency (TCL), and cross-shard transaction ratio (CTR), which are
defined as follows: (1) TPS: Number of transactions processed per second. (2) TCL: Average
time taken for a transaction to move from the transaction pool to final confirmation on the
blockchain. (3) CTR: The proportion of cross-shard transactions to the total transactions.

Other parameter settings are as follows: The number of shards k = 8, with m = 4
nodes per shard and a maximum block size of 2000 TXs, and the account repartitioning
interval is set to 50 s. The parameter α, which balances the cross-shard transaction ratio and
inter-shard workload distribution, is set to α = 0.5 to ensure equal weighting of the two
optimization objectives and to prevent dominance by any single factor. A smaller α would
result in a higher cross-shard transaction ratio, while a larger α could lead to significant
workload imbalance among shards. For the parameter β, which adjusts the influence of
cross-shard transactions on LinkAgent activity, experimental results indicate that β = 0.5
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is an optimal value, effectively balancing transaction volume and cross-shard transaction
ratio. The parameter γ, which defines the closeness threshold for state segmentation, was
experimentally determined to be γ = 0.1, achieving a good balance between segmentation
granularity and the reduction of cross-shard interactions.

5.1. Comparing with Baselines

We conducted a comparative analysis between the proposed solution and existing
protocols, including Monoxide, BrokerChain, and CLPA-Broker. Both BrokerChain and
CLPA-Broker were evaluated in two modes: a random broker mode, denoted by the suffix
(R), and a pre-selected broker mode based on historical transaction data, denoted by the
suffix (P), where brokers remain unchanged during operation. The number of intermediary
accounts was fixed at ni = 30, with a TX arrival rate of 2000 TX/s and a total of 3 million
transactions.

The comparative results are presented in Table 1. By comparing BrokerChain and
CLPA-Broker, it is evident that account partitioning moderately improves throughput and
reduces the proportion of cross-shard transactions. However, a comparison between CLPA-
Broker(R), BrokerChain(P), and CLPA-Broker(P) shows that account segmentation leads
to greater performance improvements than partitioning alone. Therefore, the selection of
accounts for segmentation plays a important role in enhancing performance. Our results
indicate that EquiFlowShard slightly outperforms CLPA-Broker(P), with the performance
gap increasing as the transaction volume grows, suggesting that pre-defined intermediary
accounts cannot adapt well to the dynamic nature of blockchains.

Table 1. Comparing EquiFlowShard and baselines.

Method TPS TCL (s) CTR

Monoxide 1052 1,427,721 0.8817
BrokerChain(R) 918 6499 0.8535
CLPA-Broker(R) 1296 1691 0.4527
BrokerChain(P) 1595 1271 0.3572
CLPA-Broker(P) 1607 967 0.1583
EquiFlowShard 1685 862 0.0632

Additionally, EquiFlowShard is compared with CLPA-Broker(R) and CLPA-Broker(P)
by analyzing the transaction queue size in each shard, as shown in Figure 6. A larger queue
size indicates a heavier workload and lower processing capacity for the shard. Under CLPA-
Broker(R), the maximum transaction queue size reaches 10,000, with some shard queues
around 2000–4000, while in CLPA-Broker(P), the maximum queue size is approximately
5000. In contrast, EquiFlowShard maintains a maximum queue size of only 4000, with
minimal variation in transaction queues across shards for most of the time.

(a) CLPA-Broker(R). (b) (c)

Figure 6. TX pool queue size between different shards. (a) CLPA-Broker(R). (b) CLPA-Broker(P).
(c) EquiFlowShard.
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To validate the appropriateness of the account segmentation ratio, comparative experi-
ments were conducted with BrokerChain and CLPA-Broker, where intermediary accounts
were represented by hot accounts, denoted by the suffix (H). The intermediary account
states were fully segmented and evenly distributed across all shards. In the experiment,
the closeness threshold γ varied within the range 0, 0.1, 0.2. As shown in Table 2, when
γ = 0.1 or γ = 0.2, the number of CSATs was lower than in other schemes, indicating the
reasonableness of the segmentation strategy. However, a larger γ is not necessarily better,
as there is an optimal value. A higher γ means that the connection between the account
and the shard must be very strong for the state to be segmented into that shard, which
could reduce the number of shards holding the account’s state. Since LinkAgent accounts
are typically the most active and transact with many different shards, fewer segmented
states may lead to more cross-shard transactions. When the segmentation threshold γ is
set too high, no shard may meet the required closeness with the account. In such cases,
EquiFlowShard automatically assigns the shard with the highest score as the account’s
state shard for the current round. However, this results in LinkAgents having states in
only a single shard, rendering them incapable of handling cross-shard transactions. If too
many LinkAgents, or even all, are reduced to this state, the system may become unable to
process cross-shard transactions effectively. In experiments, when γ > 0.3, a significant
number of LinkAgents were found to have states in only one shard. To prevent system
failures, it is necessary to designate a minimum number of global LinkAgents. Moreover,
the reduction in CSATs due to increasing γ may not outweigh the increase in cross-shard
transactions, ultimately affecting system performance. Setting the γ threshold requires
a balance between segmentation granularity and system efficiency. A lower γ allows
LinkAgent sub-states to distribute across more shards, reducing the load on individual
shards but increasing cross-shard interactions, which raises the CTR and communication
overhead. Conversely, a higher γ allocates states only to shards with stronger correlations,
reducing CTR but potentially increasing the load on specific shards. If shard resources
are insufficient, this may lead to a significant rise in TCL. Therefore, the ideal value for γ

should be around 1.0/k, where k is the number of shards.

Table 2. The number of CSATs.

Method Number

BrokerChain(H) 18,261
CLPA-Broker(H) 26,565

EquiFlowShard (γ = 0) 24,973
EquiFlowShard (γ = 0.1) 17,499
EquiFlowShard (γ = 0.2) 3298

In conclusion, compared to the baselines, the proposed solution demonstrates signifi-
cant performance advantages, effectively handling large transaction volumes. By selecting
appropriate accounts as LinkAgents for state segmentation, the proportion of cross-shard
transactions is reduced, resulting in faster transaction confirmation times.

5.2. The Effect of the Number of Segmented Accounts

The intermediary accounts can have their states segmented across different shards.
Next, the TX arrival rate was fixed at 2000 TX/s, while the number of intermediary ac-
counts ni was varied from 10 to 60. The experimental results are shown in Figure 7. As the
number of segmented accounts ni increases, the throughput of all schemes improves grad-
ually. EquiFlowShard’s TPS remains between 1500 and 1700, CLPA-Broker’s TPS between
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1200 and 1400, and BrokerChain’s TPS between 1000 and 1200. Clearly, EquiFlowShard
outperforms the other approaches.

Figure 7b illustrates that TCL decreases as the number of segmented accounts increases,
although the reduction is modest, particularly for EquiFlowShard, which already exhibits
low latency.

Figure 7c shows that the cross-shard transaction ratios for both BrokerChain and
CLPA-Broker exhibit slight fluctuations as ni increases. This is because both schemes
use randomly selected brokers, which may result in the selection of inactive accounts for
segmentation. Even with an increase in the number of segmented accounts, the cross-shard
transaction ratio may not significantly decrease. However, compared to BrokerChain,
CLPA-Broker applies the CLPA method to allocate accounts to appropriate shards, which
reduces the cross-shard transaction ratio to some extent. EquiFlowShard, by adaptively
selecting hot accounts for segmentation, steadily decreases the cross-shard transaction ratio
as ni increases.

(a) (b) (c)

Figure 7. Effect of the number (a) Throughput. (b) TX confirmation latency (s). (c) Cross-shard
TX ratio.

5.3. The Effect of TX Arrival Rate

We compared the impact of different TX arrival rates on BrokerChain, CLPA-Broker,
and EquiFlowShard. The number of intermediary accounts was fixed at ni = 30, and the TX
arrival rate varied within the range 1000, 1500, 2000, 2500, 3000, 3500 TXs/s. The results are
shown in Figure 8. As the TX arrival rate increases, the throughput of all schemes shows a
significant rise, but beyond a certain threshold, the throughput stabilizes. This is because
when the TX arrival rate is low, all transactions can be included in the blocks. However,
when the TX arrival rate exceeds the maximum block size, the number of transactions
that can be packed is constrained by the block size. Compared to the other schemes,
EquiFlowShard demonstrates superior throughput, highlighting its higher capacity to
handle a large volume of transactions.

Furthermore, the TCL increases significantly with the rising TX arrival rate, also due
to the block size limitation. However, it is evident that EquiFlowShard maintains a lower
TCL compared to the other schemes, and the increase in TCL caused by higher TX arrival
rates is relatively smaller.

In conclusion, across different TX arrival rates, EquiFlowShard consistently exhibits
outstanding performance, with higher throughput, lower transaction latency, and a reduced
proportion of cross-shard transactions compared to the other schemes.
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(a) (b) (c)

Figure 8. Effect of TX arrival rate. (a) Throughput. (b) TX confirmation latency (s). (c) Cross-shard
TX ratio.

6. Discussion
6.1. System Security

EquiFlowShard follows the same configuration as related works [1,2,9,11], ensuring it
achieves a comparable security level under the same settings. Each shard’s consensus uses
the PBFT protocol, which tolerates up to one-third of malicious nodes. Thus, the upper
bound of system failure probability per epoch, Pr( f ailure), can be determined using the
cumulative hypergeometric distribution function, calculated as follows:

Pr( f ailure) ≤ (K + 1)
ns

∑
nm=⌊ns/3⌋

( f ·n
nm

)((1− f )·n
n−nm

)

( n
ns
)

(7)

Let n represent the total number of consensus nodes with valid identities in each epoch
and K + 1 represent the number of shards (K P-shards and 1 O-shard). ns = n/(K + 1)
denotes the number of consensus nodes per shard, and f ∈ [0, 1] represents the proportion
of malicious nodes, with nm indicating the number of malicious nodes in a shard.

As shown in the formula, the system remains secure as long as the proportion of
malicious nodes in each shard does not exceed one-third, i.e., nm < ns/3.

To demonstrate the system’s security, the following measures are analyzed for resist-
ing potential attacks: (1). Sybil attack: In EquiFlowShard, nodes participating in shard
consensus must solve a PoW challenge in each round to obtain identity authentication,
significantly increasing the cost for attackers. This serves as the primary defense against
Sybil attacks. Achieving a malicious node count exceeding one-third of the total network
nodes would require substantial computational power, rendering the attack economically
infeasible. Additionally, EquiFlowShard reconfigures nodes at the end of every epoch,
further reducing the likelihood of a successful attack. (2). Replay attack: To prevent replay
attacks, all communication messages in EquiFlowShard include a unique nonce field to
ensure message uniqueness and integrity. This mechanism effectively blocks attempts
to reuse or duplicate messages. (3). Bribery attack: EquiFlowShard addresses bribery
attacks by reconfiguring shard nodes at the end of each epoch. This frequent and random
reassignment of nodes reduces the window of opportunity for bribery and increases its cost
and complexity. In the future, we plan to adopt a reputation-based node reconfiguration
mechanism to further enhance security. Additionally, the system imposes strict penalties
on bribery attempts, including confiscating collateral and permanently removing malicious
nodes from the network.
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6.2. LinkAgent Security

First, all nodes wishing to become LinkAgents must obtain their identity through PoW
in order to be selected. Therefore, to increase the chances of becoming a LinkAgent by
creating multiple nodes, a significant amount of hashing power is required.

Second, the selection of LinkAgents is performed by the O-shard, with final consensus
reached through the PBFT protocol. As long as the proportion of malicious nodes in the
O-shard does not exceed one-third, the security of LinkAgent selection is guaranteed.
This paper employs a configuration similar to that of related work [11], indicating that
conducting a Sybil attack on the O-shard would likewise demand significant hashing power
from malicious nodes.

It is worth noting that LinkAgent selection is primarily based on account transaction
volume, allowing malicious nodes to increase their likelihood of selection by initiating nu-
merous small transactions in a short period. This tactic can be countered by implementing
transaction analysis at the application layer to identify these malicious-signature nodes.
The O-shard blacklists these nodes, excludes them from LinkAgent selection, and prevents
consensus on state blocks containing them. Additionally, the system confiscates tokens
previously staked by these malicious nodes to qualify as LinkAgents.

Lastly, even if a malicious node becomes a LinkAgent, security remains assured.
Malicious actions by a LinkAgent can occur in three scenarios: (1) during state migration,
where the LinkAgent may forge or tamper with messages or perform replay attacks;
(2) while handling cross-shard transactions, where the LinkAgent may alter transaction
messages or withhold the sender’s tokens, failing to process the subsequent parts of
the transaction; (3) under high congestion, where the LinkAgent may degrade system
performance by performing malicious actions.

For the first scenario, as described in Section 4.2, the state reconfiguration messages
include a hash digest of the message content to prevent tampering. Additionally, the
messages incorporate a nonce field, which increments with each transmission. Replay
attacks are detected as repeated nonces are flagged.

For the second scenario, the way LinkAgents handle cross-shard transactions is similar
to the broker in [9], where the original transaction Txraw is split into two parts: Tx1 (the first
part) and Tx2 (the second part). All accounts, including LinkAgents, have an incrementing
nonce field. This field is included in transactions, and after a transaction is sent, the nonce
is incremented by 1. Combined with the token locking mechanism, this prevents double-
spending attacks. EquiFlowShard also monitors nonce updates; if a malicious LinkAgent
attempts a double-spending or replay attack, the cross-shard transaction will be forced into
failure, rolling back the transaction and returning the tokens to the sender.

For the third scenario, under high congestion situation, LinkAgents may engage in the
following three types of malicious behavior:

(a). Sending meaningless requests: Malicious LinkAgents may generate a large number
of invalid cross-shard transaction requests, increasing inter-shard communication
overhead. This can cause transaction queues in the pools to grow rapidly, leading to
system performance degradation or even congestion. To address this, the system can
employ real-time monitoring to identify accounts generating frequent invalid requests
and impose penalties, such as revoking LinkAgent status, confiscating collateral,
or expelling the account. Additionally, request frequency limits can be established
to flag and penalize accounts exceeding thresholds. Nodes can further prioritize
economically valuable transactions when generating blocks, effectively filtering out
invalid requests to optimize system throughput.

(b). Delay attacks: Malicious LinkAgents may intentionally delay processing cross-shard
transaction requests during periods of high congestion, creating cascading delays that
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increase transaction confirmation times and degrade user experience. To mitigate
this, the system can dynamically adjust the distribution of LinkAgents, introducing
additional agents to alleviate congestion. Real-time monitoring of transaction process-
ing times can identify and penalize LinkAgents causing abnormal delays. However,
defining and adapting delay thresholds dynamically based on network conditions
remains challenging, and future work will explore effective solutions in this area.

(c). Malicious exit or offline behavior: Malicious LinkAgents may intentionally exit or go
offline at critical moments, disrupting the completion of cross-shard transactions. As
previously explained, even if a LinkAgent exits or goes offline, token lock mechanisms
and timeout rollback mechanisms ensure the atomicity of cross-shard transactions.
However, such behavior increases the system’s resource burden for handling rollbacks
and amplifies the load on other LinkAgents, further degrading performance under
high congestion. To counteract this, the system can pre-configure backup global
LinkAgents to automatically take over transaction processing when primary Link-
Agents fail. Furthermore, designing improved cross-shard transaction mechanisms
to penalize malicious LinkAgents by confiscating their collateral while completing
transactions without triggering rollbacks will be prioritized in future research. These
measures aim to enhance the robustness and reliability of the sharding system under
adverse scenarios.

6.3. Future Prospects

First, a proper incentive mechanism should be designed. In EquiFlowShard, Link-
Agents take on the additional task of processing cross-shard transactions. Without an
effective incentive system, accounts may lack the motivation to become LinkAgents. The
Broker2Earn protocol [25] has already implemented an incentive scheme that maximizes
intermediary rewards.

Second, the setup of LinkAgents should be decoupled from account segmentation.
Most hot accounts can be segmented, but only a small portion of them will be selected as
LinkAgents. The primary purpose of LinkAgents is to ensure the atomicity and security of
cross-shard transactions, with limited impact on blockchain throughput. By segmenting hot
accounts, the proportion of cross-shard transactions can be effectively reduced, balancing
the workload between shards and improving overall throughput.

Third, we plan to extend the EquiFlowShard protocol to optimize the allocation of
smart contract accounts, addressing their inherent complexity and operational constraints.
Unlike regular accounts, smart contract accounts often involve multiple interconnected
transactions and dependencies, requiring precise execution order and dependency res-
olution. This complexity makes direct application of community detection algorithms
insufficient. To address these challenges, we may explore integrating a dependency-aware
scheduling mechanism into EquiFlowShard, which could accommodate the execution order
of contract calls. Additionally, we might design state allocation strategies that potentially
cluster interdependent contracts within the same shard, thereby reducing cross-shard inter-
actions. These efforts could enhance the protocol’s adaptability to the dynamic and complex
nature of smart contract operations, broadening its potential applications in real-world
blockchain scenarios.

Lastly, future efforts may focus on integrating EquiFlowShard into existing blockchain
networks and adapting it for IoT environments, with an emphasis on optimizing efficient
state management in dynamic settings. Additionally, a comprehensive security analysis
will be conducted to ensure its robustness against real-world attack scenarios.
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7. Conclusions
This paper presents EquiFlowShard, a novel sharding protocol that addresses scal-

ability and performance challenges in blockchain systems. By employing the OSADA,
EquiFlowShard dynamically optimizes account state distribution to balance workloads
and minimize cross-shard transactions. The SFlow mechanism ensures secure and con-
sistent state management, while the Smooth Transition scheme reduces the performance
impact of state reconfiguration. Experimental results, based on Ethereum transaction data,
demonstrate significant improvements in throughput, transaction confirmation latency,
and cross-shard transaction ratios, outperforming existing protocols.

Beyond its technical contributions, EquiFlowShard holds promising potential for real-
world adoption, particularly in dynamic blockchain environments such as the IoT. Its
ability to adapt to high-volume and heterogeneous transaction patterns makes it a strong
candidate for scalable blockchain applications in industries requiring robust data handling
and real-time operations.

Future research will prioritize several areas to expand EquiFlowShard’s capabilities:
(1). Enhanced adaptability: Developing intelligent mechanisms for LinkAgent selection and
workload allocation to address dynamic changes in transaction patterns. (2). Diversified
validation: Evaluating the protocol using larger, more varied datasets to further validate
its robustness and generalizability in diverse blockchain use cases. (3). IoT integration:
Exploring seamless integration with IoT-based blockchain applications, focusing on efficient
data processing and scalable consensus mechanisms.
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