
Academic Editor: Sokratis Katsikas

Received: 20 December 2024

Revised: 19 January 2025

Accepted: 26 January 2025

Published: 31 January 2025

Citation: Alorainy, W. Unveiling XSS

Threats: A Bipartite Graph Approach

with Ensemble Deep Learning for

Enhanced Detection. Information 2025,

16, 97. https://doi.org/10.3390/

info16020097

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Unveiling XSS Threats: A Bipartite Graph Approach with
Ensemble Deep Learning for Enhanced Detection
Wafa Alorainy

Durma College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia;
w.al3rini@hotmail.com or waloraini@su.edu.sa

Abstract: Cross-Site Scripting (XSS) attacks are a common source of vulnerability for web
applications, necessitating scalable mechanisms for detection. In this work, a new method
based on bipartite graph-based feature extraction and an ensemble learning classifier
containing CNN, LSTM, and GRU is introduced. Our proposed bipartite graph model is
novel as the payloads constitute the first set, while the words constructing the payloads
comprise the second set. This representation allows structural and contextual dependencies
to be extracted so the model can recognize complex and obfuscated XSS payloads. Our
method surpasses state-of-the-art methods by having 99.97% detection accuracy. It has
a significantly increased ability to detect complicated payload variations by utilizing co-
occurrence patterns and interdependence between smaller payload parts through the
adoption of these bipartite features. In addition to improving the F1-score, recall, and
precision associated with such methods, it also demonstrates the adaptability of graph-
based representation in cybersecurity applications. Our findings highlight the possibility
of integrating ensemble classifiers and refined feature engineering into a scalable, precise
XSS detection system.

Keywords: cross-site scripting attacks; bipartite graph; machine learning; deep learning;
artificial neural networks; web vulnerabilities; cybersecurity; attack detection

1. Introduction
In the contemporary digital landscape, web applications have become essential for

delivering various services. However, this has led to a concurrent surge in cyberattacks.
Among the most common cybersecurity vulnerabilities is Cross-Site Scripting (XSS), which
presents significant risks not only to end users but also to service providers. Recently, ma-
chine learning and deep learning (ML/DL) techniques have been employed to detect XSS
attacks. Online statistics indicate that approximately 68% of websites may harbor XSS vul-
nerabilities [1]. High-profile local and international companies, such as Facebook, Twitter,
Baidu, and Sohu, have suffered substantial financial setbacks due to XSS-related attacks.

Code injection-based assaults, or XSS attacks, insert malicious scripts known as vul-
nerabilities that compromise trusted online apps and their associated plugins or hosting
servers. Through the exploration of compromised web applications on users’ browsers,
attackers can gain elevated access privileges and expose private user data, including user-
names and passwords. XSS attacks generally occur when proper control measures for user
inputs in input forms are lacking. The Open Web Application Security Project (OWASP) has
been reporting vulnerabilities since 2003, and according to the most recent report released
in 2021, XSS attacks are among the top 10 vulnerabilities.

Information 2025, 16, 97 https://doi.org/10.3390/info16020097

https://doi.org/10.3390/info16020097
https://doi.org/10.3390/info16020097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1342-0317
https://doi.org/10.3390/info16020097
https://www.mdpi.com/article/10.3390/info16020097?type=check_update&version=1


Information 2025, 16, 97 2 of 24

Current XSS detection methods frequently depend on ML models, static rules, or
regular expressions and may not work well with highly obfuscated or unique payloads.
Usually, these techniques fall short when capturing the structural connections between
various payload components, a process that is essential for spotting minute patterns
that indicate an assault. The ignorance of the structural and relational aspects of the
payloads is a major drawback of current methods. For example, many detection models
handle each token separately or do not consider the interdependence between various
payload elements, such as the way HTML tags work with JavaScript functions or how
special characters are concatenated to move beyond sanitization. These relational patterns
are frequently the distinguishing characteristics of XSS payloads in sophisticated attacks
intended to circumvent conventional detection methods. As the complexity of modern
software systems has increased, XSS attacks have become more sophisticated, leading to an
increasing number of newly identified vulnerabilities. Given that XSS payloads consist of
different tokens (such as HTML tags, JavaScript keywords, symbols, etc.), their detection
can be handled as a text analysis problem. However, the contextual and relationship
structures of tokens in a payload are missed by typical text analysis techniques, which treat
tokens as independent or sequential entities. Thus, a detection framework that handles the
information about the relationships between tokens in XSS payloads is needed.

To address this gap, an approach that explicitly models the relationships between
tokens within and across payloads is required. The complexity of disguised payloads,
where the relationships between tokens may reveal more information than the tokens
alone, may be managed with graph-based representations that outperform linear token
analysis, improving detection accuracy. It has been demonstrated that graph-based tech-
niques greatly increase the detection accuracy and have become a potent weapon in XSS
detection. Graphs are excellent for simulating intricate dependencies and structural links
by representing data as nodes and edges, which is often crucial for differentiating between
malicious and benign payloads. Graph-based approaches have been used in XSS detection
to examine the relationships between different elements, including HTML tags, JavaScript
keywords, and special characters. Such approaches can identify context and patterns that
conventional approaches miss [2–5]. However, current graph-based methods frequently
do not pay enough attention to the relationship between individual payloads and their
constituent tokens [6].

Therefore, in this study, bipartite graphs were leveraged to model XSS payloads for
detection. In this approach, one set of nodes in the bipartite graph represents the payloads
and the other represents the tokens (e.g., HTML tags, attributes, special characters) extracted
from the payloads. The edges between the two sets encode the occurrence of tokens in a
given payload. This representation captures the relationships between payloads and their
constituent tokens, enabling the analysis of both token-level and payload-level patterns.
By analyzing the structure of the bipartite graph, the system can identify anomalous
relationships or frequently co-occurring patterns indicative of XSS payloads. The author
tries to answer the following question: How effective is the bipartite graph representation
for identifying obfuscated or novel XSS payloads compared to traditional text analysis
methods? The ensemble classifier of three DL models—CNN, LSTM, and GRU—is also
employed, which may enhance the detection process. The proposed models provide
significant performance improvements compared to other existing state-of-the-art methods,
as they can detect XSS-based attacks while simultaneously showing increased accuracy
and precision values. The remainder of this paper is organized as follows: Section 2
presents different XSS attack detection methods; Sections 3 and 4 presents the dataset and
the proposed research methodology; Sections 5 and 6 present the results and discussion,
respectively; and Section 7 presents the conclusion.



Information 2025, 16, 97 3 of 24

Statement of Contribution

This work presents a novel method for detecting XSS in which bipartite graph model-
ing is used to capture the structural links between payloads and their constituent tokens.
Our approach integrates structural insights from the bipartite graph with semantic fea-
tures produced using Word2Vec and Doc2Vec embeddings. This is in contrast to other
approaches that mainly concentrate on textual analysis or feature engineering. We use an
ensemble learning architecture that combines the Convolutional Neural Network (CNN),
LSTM, and GRU classifiers to improve the detection performance, thereby utilizing the
advantages of recurrent and CNNs. Through thorough testing, we show that this integrated
strategy performs better than current techniques in terms of its detection accuracy.

2. Literature
ML is a viable method for detecting XSS attacks in web applications. It has advantages

over conventional techniques, including the capacity to learn from data and adjust to
changing attack patterns [5]. One interesting field that is used for applying XSS attack
detection techniques is supervised ML. In addition to boosting methods, researchers use
Decision Trees (DTs) such as Random Forests (RFs), ADTree, and J48. Other popular
supervised modes are Support Vector Machines (SVMs), Principal Component Analysis,
kNN, mutual information, and Naïve Bayes.

Several studies have explored various ML algorithms for XSS detection. Kaur et al. [7]
proposed an ML-based model that can recognize a malevolent attack path on a victim’s
device before the browser even parses it. They used the Linear Support Vector classification
to detect cached and blind XSS attacks. During the feature generation phase, the authors
pulled the scripts and JS events inserted by the hackers to execute attacks on the website.
The experiment used a linear separable dataset, and the vulnerability web Mutillidae was
used as the simulation platform. The detection accuracy was 95.4% with a recall value of
0.951 and a false positive rate of 0.111. Sharma et al. [8] focused on feature set extraction
as a significant factor in identifying web-based assaults. This led the authors to propose a
feature set extraction approach, which can significantly improve the results when applied
with an ML-based intrusion detection model. They carried out an experiment using the
Weka tool and CSIC HTTP 2010 dataset that consisted of three steps: (1) preprocessing of
the dataset using a Python script before feeding it to the Weka for data modeling; (2) the
extraction of features containing keywords such as GET, POST, DROP, DELETE, MODIFY,
UNION DROP, etc., from the dataset; and (3) feeding of the data into the three ML models:
Weka J48, OneR, and Naïve Bayes. J48 provided the best results among the classifiers.
The effectiveness of J48 classifiers was also demonstrated by Alam and Pachauri [9], who
employed the Weka tool to detect credit card payment fraud. J48 Decision Trees produce
more correctly classified examples and require less time for model development.

For web threat detection, Yang et al. [10] created a convolutional gated-recurrent-
unit (GRU) neural network for the detection of harmful URLs using characters as text
classification features in order to increase the dependability and security of web appli-
cations by precisely identifying dangerous URLs. Given that dangerous keywords are
exclusive to URLs, a feature representation approach to URLs based on malicious key-
words was suggested. To acquire features on the time dimension, a GRU was utilized
instead of the original pooling layer. The experimental findings demonstrate that the
detection model, with an accuracy rate of over 99.6%, is very appropriate for high-precision
classification tasks.

Research on OAuth vulnerabilities is also gaining traction. Munonye et al. [11] ad-
dressed OAuth vulnerabilities by performing a factor and Principal Component Analysis.
They extracted the features most likely to influence the outcome. Various domain issues



Information 2025, 16, 97 4 of 24

and OAuth workflow issues were identified using the Finite State Machine model. Fea-
tures were extracted manually as there was no existing dataset available. The successful
workflows were identified using the Gradient Boost Classifier (GBC), yielding an accuracy
of 0.82 and an ROC curve value of 0.71. Wang et al. [12] proposed an approach that
detects XSS worms on Online Social Network websites. Scripting functions on benign
and malicious web pages cannot have the same frequency, as systems on these pages can
be used for (punctuating) these pages. The researchers chose to use ADTree, as it has
higher accuracy than other DTs and AdaBoost, and they decided to combine ADTree with
AdaBoost. For classification, they used M1 (Adaptive Boosting) techniques, which act as
a very potent classifier. Moreover, a feature extractor model was developed to learn the
attributes from the web pages for automatic learning, since feature extraction and database
generation play important roles in classification model generation. Benign and harmful
samples were extracted from XXSed’s Database and DMOZ. The researchers extracted
four categories of characteristics from the web pages: (1) keyword features; (2) JavaScript
features; (3) HTML tag features; and (4) URL features. They also identified sub-features
within each category. The classification model was developed and evaluated with the
Weka tool, and measurement was based on the tenfold cross-validation method. However,
the proposed approach achieved a low detection rate with a high false-positive rate of
4.20%. The values were higher for M1, with a precision value of 0.941, recall of 0.939, and
F-measure of 0.939 versus ADTree’s precision value of 0.938, recall value of 0.936, and
F-measure of 0.936.

Kascheev et al. [13] provided supervised ML approaches to detect XSS attacks using
30% and 70% of the test and training datasets generated based on the cross-validation
method. To evaluate the model’s performance, the following metrics were applied: F-
measure, accuracy, completeness, and accurate responses. Their collection contains 200,000
lines of benign code and 40,000 pieces of malware. The more complex of the two libraries
works with every request by first parsing it into Unicode characters and then splitting
the query’s arguments with regular expressions. However, searches that are deviant in
many aspects are removed from the dataset. The original dataset was represented with the
help of Word2Vec. Four ML techniques were compared: the SVM, DT, Logistic Regression
(LR), and Naïve Bayes classifiers. The DT was the most effective. The metrics used were
F-measure, recall, accuracy and precision. Banerjee et al. [14] explored the potential use of
four ML algorithms (SVM, KNN, RF, and LR) in detecting cross-site scripting (XSS) attacks.
They mapped True and False values in the dataset with the LR model. The experiment,
carried out on a dataset with 24 attributes based on JavaScript and URL features, was
performed with the Python and Scikit library. Of the four classifiers, the RF classifier was
the most promising in terms of its low false positive rate and high accuracy.

The XSSClassifer was introduced in [15] to detect XSS attacks on social media plat-
forms, e.g., Twitter and Facebook. An ML classifier was used for assault detection. Feature
extraction was first performed with HTML text, SNSs, and URLs. During the evaluation
phase, it was found that a higher accuracy occurred when the detection model employed
the classifier after receiving SNS features. Out of the ten ML classifiers used to evaluate
the detection model, tree classifiers such as the RF and ADTree yielded the best results
with an accuracy of 97.2% and a false positive rate of 0.87 in real time. For XSS attack
detection, Khan et al. [16] used four different ML classifiers, including the SVM, KNN,
J48, and Naïve Bayes. The J48 achieved the highest accuracy (99.22%) when the dataset
was divided into training and testing data. This work considered that the HTTP GET
response passes to the server via the interceptor. If the JavaScript code is found to contain
any malicious activity, the web page is disabled automatically before reaching the browser.
XSS attacks are successfully detected in real time, no browser or platform is required. There



Information 2025, 16, 97 5 of 24

is a low runtime overhead, and the model is lightweight. Features are extracted from the
static analysis for the classifier’s input. For the detection model, a yacc parser is used to
turn the website’s source code into a list of tokens. Lexical analysis is also performed to
remove any code that has been obfuscated by hackers to obscure malicious behavior. As
a component of security scanning, lexical analysis splits a source code into tokens before
parsing. A study carried out by Alhamyani et al. [17] compared ensemble learning, RF,
LR, SVMs, DTs, Extreme Gradient Boosting (XGBoost), Convolutional Neural Networks
(CNNs), and Artificial Neural Networks (ANNs) with Multi-Layer Perceptron (MLP). To
test the performance levels of the models, they were trained using a real-world dataset that
was labeled as benign or malicious traffic. This was performed using the Information Gain
(IG) and Analysis of Variance (ANOVA) feature selection approaches. The models were
found to be very accurate: the accuracy level of the RF model was 99.78% and that of the
ensemble models was over 99.64%. The results exceeded those of both previously proposed
methods, showing that the proposed approach can efficiently protect web applications
with reductions in FPs and FNs. Overall, this study presents an efficient, highly reliable,
accurate ML-based system that significantly contributes to XSS detection.

Furthermore, several recent studies have introduced novel approaches to XSS attack
detection that leverage advanced techniques such as graph-based models. Liu et al. [2]
proposed a graph Convolutional Network-based Cross-Site Scripting payload detection
model that can localize the payload in user-submitted content, which was referred to as the
GraphXSS. They preprocessed the sample, put the processed data into a graph structure,
and trained the Cross-Site Scripting detection model with the residual network and the
Graph Convolutional Network (GCN). The AUC value of the GCN-based model in trials
was 0.997 for small sample conditions. By adding the residual network structure to the
detection model, the model stabilized and converged under the multi-layer and reached an
accuracy rate of 0.996. Wang et al. [18] proposed the IGXSS (XSS payload detection model
based on the inductive GCN), an XSS payload detection model based on inductive Graph
Neural Networks. They considered the words and samples obtained through segmentation
to be nodes and drew lines between them to form a graph. This allowed them to obtain a
feature matrix of nodes and edges using only the information between nodes and not using
other solutions such as pretrained word vectors. The obtained feature matrix was finally
passed to a two-layer GCN to be trained and tested on multiple datasets with different
sample distributions. Using real datasets, extensive experiments have shown that IGXSS
outperforms other models across a range of sample distributions.

Tan et al. [1] proposed a detection technique based on a paths-attention-based sequence
embedding model, named the PATS model, that is applied after sample-based construction
at the model level for reflected XSS vulnerabilities. The model first converts vulnerability
information into an intermediate representation of abstract syntax trees. It then enumerates
all trees in the abstract syntax tree using syntactic routes, and these are transformed into
vector representations via word embedding matrices. As it learns with Neural Networks,
the model transforms passive defense into active defense by allocating correct weights
arbitrarily to many sets of syntactic paths, where semantic features are extracted through
attention processes to improve the training efficiency. Based on the experimental results,
the paths-attention-based technique achieved an accuracy rate of 90.25% and an F1-score of
81.62% while halving the training time compared to conventional ML models to 30 min.

To improve the anti-phishing strategy, a hybrid classifier-based model using firm
and flexible voting was proposed by Karim et al. [19]. A feature selection method that
integrated the grid searching optimization and the canopy algorithm was employed. For
reference, they achieved an accuracy level of 98.12% and an F1-score of 95.89%. They
suggested a feature-rich, ML-based anti-phishing detection technique with an architecture



Information 2025, 16, 97 6 of 24

supported by Shuk et al. [20]. When applied to the pretreatments used by the model to put
the MM into a unique position, an accuracy value of 97.8% and an F1-score of 98.2% were
achieved. However, the diversity of XSS load types was not considered, and the dataset
was partitioned using Uniform Random Sampling. Bacha et al. [21] introduced a novel
hybrid ensemble learning framework that utilizes various state-of-the-art ML algorithms
such as Deep Neural Networks (DNNs), Extreme Gradient Boosting (XGBoost), SVMs, LR,
and Categorical Boosting (CatBoost). By employing the XSS-Attacks-2021 dataset, which
contains 460 samples of real-world traffic covering a wide range of materials, this system
significantly enhances XSS attack detection. Beyond its boosting accuracy, the approach,
which combines detailed feature crafting and model adjustment, unsurprisingly lowered
the FP (0.13%) and FN (0.19%) rates and demonstrated a high accuracy rate of 99.87% during
rigorous testing. Bakir et al. [22] introduced a new approach to XSS attack detection with
the goal of providing efficient detection by using the strengths of Word2Vec embeddings as
the feature extractor along with the Universal Sentence Encoder (USE), which can greatly
improve the performance of ML and DL techniques. Using word-level representations
from Word2Vec and the semantic understanding of sentences from USE, a comprehensive
feature representation for XSS attack payloads was obtained. Their proposed technique
examines both intricate word meanings for extreme feature extraction and more general
phrase contexts for enhanced model performance. The obtained results demonstrate that
their mixed embeddings method performs better than traditional XSS attack detection
methods in terms of its recall, accuracy, precision, ROC, and F1-score. Table 1 summarizes
previous studies, showing the study, the model used, and the performance level.

Table 1. Summary of Literature on Machine Learning (ML) for Cross-Site Scripting (XSS) Detection.

Study Model Performance

Kaur et al. [7] Linear SVM Accuracy: 95.4%, Recall: 0.951, FPR: 0.111

Sharma et al. [8] J48, OneR, Naïve Bayes Best results with J48

Munonye et al. [11] Gradient Boosting Classifier (GBC) Accuracy: 0.82, ROC: 0.71

Wang et al. [12] ADTree + AdaBoost Precision: 0.941, Recall: 0.939, F-Measure: 0.939

Yang et al. [10] GRU Accuracy: 0.996

Kascheev et al. [13] SVM, Decision Tree, Logistic Regression, Naïve
Bayes Best results with Decision Tree

Banerjee et al. [14] SVM, KNN, Random Forest, Logistic Regression Random Forest: Low FPR, Good accuracy

Rathore et al. [15] Tree Classifiers (Random Forest, ADTree) Accuracy: 97.2%, FPR: 0.87

Khan et al. [16] SVM, KNN, J48, Naïve Bayes J48: Accuracy: 99.22%

Alhamyani et al. [17] Random Forest, SVM, XGBoost, CNN, MLP Random Forest: Accuracy: 99.78%

Liu et al. [2] Graph Convolutional Network (GCN) Accuracy: 0.996

Wang et al. [18] Inductive GCN (IGXSS) Outperforms other models

Tan et al. [1] Paths-Attention (PATS) Accuracy: 90.25%, F1-Score: 81.62%

Karim et al. [19] Hybrid Classifier Accuracy: 98.12%, F1-Score: 95.89%

Bacha et al. [21] Hybrid Ensemble (DNN, XGBoost, SVM, etc.) Accuracy: 99.87%, FP: 0.13%, FN: 0.19%

Bakir et al. [22] Word2Vec + USE Embeddings Improved performance (Accuracy, Recall, F1-score)

These methods experience overfitting problems for the XSS load type with few labeled
samples. To alleviate this problem, this work contributes to the body of research on XSS
attack detection. Many researchers have developed models based on state-of-the-art ML
methods. Hence, work in the field of XSS attack detection has matured. These models show
great accuracy and recall scores on some datasets, ranging from text embedding and com-



Information 2025, 16, 97 7 of 24

binations with DL methods to complex architectures that mix GCNs and residual networks.
However, such approaches often suffer from disadvantages, such as bad generalization,
reduced FP rates, and poor detection of complex attack patterns. In addition, the latest
survey research [23–25] highlights the need for innovative feature extraction and models
that detect more complex data. To address these challenges, this research introduces a novel
feature set that extracts valuable information from XSS payloads. Moreover, we propose a
lightweight attack detection model powered by an advanced DLarchitecture, with the aim
of enhancing the effectiveness and efficiency of XSS vulnerability detection.

3. Dataset
This investigation utilized the XSS DL dataset, which was published on the Kaggle

repository by SYED SAQLAIN HUSSAIN SHAH. This is a comprehensive dataset that was
obtained from the OWASP and PortSwigger XSS attack cheat sheets, containing a total of
13,685 entries. It was employed for our tests and assessments of XSS attack detection. It
served as a comprehensive web content collection, encompassing both XSS attack examples
and secure samples. We included a diverse range of XSS attack vectors to assess the
performance of our models in multiple attack scenarios. Using this dataset, we were able
to perform extensive testing and capture informative results regarding the efficiency and
efficacy of our XSS attack detection methods. Figure 1 shows the distribution of the dataset.

Figure 1. The distribution of the XSS dataset.

4. Methods
4.1. The Proposed Model

The four primary processes in the suggested model are preprocessing, bipartite cre-
ation and projection, embedding extraction, and classification using the ensemble learner.
Figure 2 provides a general illustration of our model. Further information on the methods
used can be found in the following subsections.



Information 2025, 16, 97 8 of 24

Figure 2. An overview of the proposed model.

4.2. Pre-Processing
4.2.1. Removing Noisy Data/Normalization

In order to confuse the detection models and ultimately lead them to categorize such
vectors as innocuous scripts, the attacker purposefully added noise data. An example of
noise data is when an attacker uses a newline symbol to split the attack vector into multiple
lines. They can also use many other disturbing symbols, such as closing tags >, starting
tags <, **, /, ", ’, uppercasing the letters, or using numbers, many URI links, or IP addresses
to circumvent the detection system and carry out the attack once the browsers’ parsers
have executed it. It is important to remember that this step might be used following the
decoding procedure. This is due to the possibility of the attacker adding noisy data to the
payload prior to the encoding process, which would make them more difficult to identify.

4.2.2. Decoding

The most popular technique used by attackers to produce evolved or modified XSS
attacks is encoding. Since the browser automatically decodes and escapes the scripts to
be parsed, this mechanism gives the attacker the ability to avoid detection by traditional
systems such as the Web Application Firewall (WAF). The attacker uses this feature to
effectively conceal and carry out evolved XSS attacks. Because the payload is converted
back into its original context form during the decoding phase, XSS attacks can be detected
with more precision. Decoding methods were implemented using URL decoding, HTML
entity decoding, Unicode decoding, and Base64 decoding. An example of XSS decoding is
as follows:

%3Cscript%3Ealert(’XSS’)%\C/script%3E → <script>alert(’XSS’)</script>



Information 2025, 16, 97 9 of 24

4.2.3. Tokenization

In XSS detection, tokenization is used to break down the payloads into smaller units
for analysis when working with payloads with no spacing. This is because payloads with
no spacing can be difficult to analyze as a whole, and tokenizing them allows for a more
detailed analysis of the individual words or phrases that make up the payload. In this
study, the word level was applied. An example of the tokenization process is as follows:

Example Tokens:
<script>, alert, (’XSS’), </script>

The decoding and tokenization procedure is illustrated in Figure 3.

Figure 3. Decoding and tokenization procedure.

4.3. Feature Extraction
4.3.1. Graph Construction

To construct the graph nodes, we used the bipartite model. In the field of graph
theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two
disjoint and independent sets, U and V, that is, every edge connects a vertex in U to one in
V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a bipartite
graph is a graph that does not contain any odd-length cycles. In generic networks (one
mode, simple network), node one is connected to node two by a tie that represents the
relationship (e.g., token/token). Mathematically, we let P = {p1, p2, . . . , pm} represent
the set of XSS payloads and W = {w1, w2, . . . , wn} represent the unique words extracted
from these payloads. A bipartite graph G = (P ∪W, E) is constructed, where E ⊆ P×W
represents the relationships between the payloads and their constituent words.

An edge (pi, wj) ∈ E exists if and only if wj ∈ pi. The adjacency matrix A of the
bipartite graph is defined as

Aij =

1 if wj ∈ pi,

0 otherwise.

In a bipartite network, node one is connected to node two by an affiliation relationship,
e.g., node A and node B belong to the same payload. Two sets of nodes are defined: In
sentence nodes (payload nodes), each sentence in the dataset represents a node in one set.
In word nodes, each unique word or ‘token’ across the dataset represents a node in the
second set. In the second set, the edges connect each sentence node to the word nodes
that are present in the sentence. These connections create edges in the bipartite graph and
represent the relationship between sentences and words. The steps of constructing the
bipartite network are explained in Algorithm 1.



Information 2025, 16, 97 10 of 24

Algorithm 1 Constructing a Bipartite Graph from XXS Payloads

1. Input: Set of XXS payloads P = {p1, p2, . . . , pn}, set of tokens T = {t1, t2, . . . , tm}
2. Output: Bipartite graph G = (V, E), where V is the set of nodes and E is the set of

edges.
3. Initialize:

(a) V ← {P ∪ T} ▷ Initialize the set of nodes as the union of payloads and tokens
(b) E← {} ▷ Initialize the set of edges as empty

4. For each payload pi ∈ P:
(a) For each token tj ∈ T:

i. If token tj appears in payload pi, add an edge:

E← E ∪ {(pi, tj)}

▷ Connect payload pi to token tj

5. Optional: Add additional edges based on other relationships between payloads:
(a) For each pair of payloads pi, pj ∈ P, if they share common tokens:

E← E ∪ {(pi, pj)}

▷ Connect payloads that share common tokens, if needed
6. Return: Bipartite graph G = (V, E) ▷ Return the constructed bipartite graph

4.3.2. Bipartite Graph Projection

For the convenience of directly showing the relations among a particular set of nodes,
the bipartite network is typically compressed by one-mode projecting. The one-mode
projection onto the X projection indicates a network containing only X nodes, where two X
nodes are connected when they have at least one common neighboring Y node.

A bipartite graph’s projection stage is essential because it reduces a complicated two-
layer structure to a single-layer graph that emphasizes relevant relationships, making sub-
sequent tasks (such as classification and embeddings) more effective and understandable.

To illustrate, we let G = (P ∪W, E) represent a bipartite graph, where P is the set of
XSS payloads, W is the set of words, and E ⊆ P×W is the edge set.

Adjacency Matrix of the Bipartite Graph

The adjacency matrix A of G is defined as

Aij =

1 if there is an edge between pi and wj,

0 otherwise.

Projection onto Payloads (P)

The projection of G onto the set P is a graph GP = (P, EP), where

EP = {(pi, pk) : ∃wj ∈W such that (pi, wj) ∈ E and (pk, wj) ∈ E}.

The adjacency matrix for the projection onto P is given by

AP = A · AT ,

where AT is the transpose of A.



Information 2025, 16, 97 11 of 24

Projection onto Words (W)

Similarly, the projection of G onto the set W is a graph GW = (W, EW), where

EW = {(wj, wl) : ∃pi ∈ P such that (pi, wj) ∈ E and (pi, wl) ∈ E}.

The adjacency matrix for the projection onto W is given by

AW = AT · A.

Figure 4 shows the resulting networks of the X and Y projections. The simplest method
is to project the bipartite network onto an unweighted network, as we are not considering
the frequency with which a collaboration is repeated. After the projection, we obtain the
tokens following a new relationship, which is an affiliation relationship. Assuming that the
payloads’ phrases are Y and their words are X, the Ys is discarded.

Figure 4. Illustration of a bipartite network (a) and its X projection (b) and Y projection (c). In this
example, the Ys are the XSS payloads, and the Xs are the tokens that belong to the payloads. This
Figure was produced in [26].

We used the igraph package v1.3.0 for the bipartite graph generation and analysis
because of its effectiveness with large-scale graph topologies. In addition, the following
hardware setup was used to guarantee scalability and effective computing for the graph
with approximately 100,000 payloads and the words that correspond to them: Processor,
2.50 GHz 12th Gen Intel® Core™ i9-12900H; memory, no less than 32 GB of RAM to avoid
memory bottlenecks and support huge graph structures; and operating System, Ubuntu
20.04.

4.3.3. Embedding Extraction

Two embedding techniques were used to capture the text’s syntactic and semantic
relationships:

Word2Vec:

Individual words were transformed into dense vector representations with fixed
dimensionality using a pretrained Word2Vec model. Better feature representation for
sequential models was made possible by these embeddings’ retention of the contextual



Information 2025, 16, 97 12 of 24

meaning. To guarantee the availability of relevant word embeddings, we employed a
Word2Vec model that was pretrained on a sizable corpus of text data in our implementation.
We used the ‘XSS dataset’ (https://github.com/fawaz2015/XSS-dataset?utm_source=
chatgpt.com (accessed on 27 December 2024) created by Fawaz et al. [27] to train the
Word2Vec model. This dataset is made up of 138,569 records that were carefully selected
for AI-based XSS detection, containing both malicious and benign examples. To provide a
varied web content depiction, the data were gathered using a powerful Python scraping
framework that used a revolutionary random walk and random jumping technique. Of
the 150,000 crawled pages in the dataset, 100,000 were chosen at random, and 38,569 of
the malicious samples came from sites such as XSSed and Open Bug Bounty. A complete
collection of 167 characteristics was obtained by employing dynamic feature extraction
techniques. This dataset offers a diverse and comprehensive corpus of text that can be used
to train algorithms that are intended to identify XSS vulnerabilities.

Words with comparable meanings were placed closer to one another in the vector
space after the model transformed each word into a fixed-size vector of 100. The text was
tokenized into individual words, and each word’s presence in the pretrained Word2Vec
model’s vocabulary was examined in order to obtain word embeddings for the XSS attack
payload. The relevant word embedding was extracted if a word was found. Words that were
absent from the model’s vocabulary were either left out or had zero vectors initialized in
their embeddings. In order to help the model to identify important patterns and contextual
information, Word2Vec was used to capture the semantic meanings of words within the
XSS attack payload. The sentence-level (Doc2vec) semantic understanding was enhanced
by these word-level embeddings, which were a crucial part of the feature representation.
By combining these two methods, a thorough and potent feature representation was
produced, facilitating the efficient detection of XSS threats. Here, an explanation of Doc2vec
is presented.

Doc2Vec:

Doc2Vec was used to create sentence-level or document-level embeddings in addition
to word embeddings to offer a high-level semantic summary of the entire text. Algorithm 2
explains the process.

The following parameters were derived from earlier research [28–31] and are summa-
rized in Table 2.

Table 2. Common Settings for Embedding Methods in XSS Detection Research.

Parameter Word2Vec Doc2Vec

Vector Size 200 (common range: 100–300) 200 (common range: 100–300)
Window Size 5 (common range: 3–10) 10 (common range: 5–15)

Min Count 1 (to capture rare XSS-related words) 1 (to capture rare XSS patterns)
Algorithm Skip-Gram PV-DM (Distributed Memory)
Training Negative Sampling (5–10 samples) Negative Sampling (5–10 samples)
Epochs 20 (range: 10–50) 20 (range: 10-50)

Learning Rate 0.025 (range: 0.01–0.05) 0.025 (range: 0.01–0.05)
Workers 4–8 threads 4–8 threads

https://github.com/fawaz2015/XSS-dataset?utm_source=chatgpt.com
https://github.com/fawaz2015/XSS-dataset?utm_source=chatgpt.com


Information 2025, 16, 97 13 of 24

Algorithm 2 Extracting Features from the Bipartite Graph with Concatenation

1. Input: Bipartite graph G, Pre-trained Word2Vec model W2V, Doc2Vec model D2V
2. Output: Feature matrix F
3. Initialize: F ← {} ▷ Initialize feature matrix
4. For each payload node payload ∈ GETPAYLOADNODES(G):

(a) tokens← GETCONNECTEDTOKENS(G, payload) ▷ Tokens linked to this
payload

(b) token_vectors← {} ▷ Initialize the list to store Word2Vec embeddings for
tokens

(c) For each token token ∈ tokens:
i. If token ∈W2V:

A. Append W2V[token] to token_vectors
ii. Else:

A. Append ZeroVector to token_vectors ▷ Fallback for unknown
tokens

(d) payload_vector ← D2V[payload] ▷ Get Doc2Vec representation of the payload
(e) graph_ f eatures← COMPUTEGRAPHFEATURES(G, payload) ▷ Compute

graph-based features, e.g., degree, edge weights, etc.
(f) token_embedding← MEAN(token_vectors) ▷ Compute the average of

Word2Vec embeddings of tokens
(g) combined_ f eatures← CONCATENATE(payload_vector, token_embedding) ▷

Concatenate all features into one final feature vector for the payload
(h) Append (payload, combined_ f eatures) to F ▷ Store the final feature vector for

the payload
5. Return: F ▷ Return the feature matrix

4.4. Classification
4.4.1. Machine Learning

ML techniques are essential for the categorization methods used for XSS attack detec-
tion. These methods make it possible to create predictive algorithms that can accurately
and automatically categorize web material as either benign or possibly harmful. Labeled
training data are used by ML algorithms to identify patterns and relationships that can be
used to improve categorization. To categorize and identify XSS attacks, we investigated a
number of ML methods, such as LR, SVMs, RFs, DTs, Extreme Gradient Boosting (XGBoost),
and MLP. Word2vec and Doc2vec feature vectors were used to train the aforementioned
algorithms. Classical ML algorithms are used more often than other learning techniques
such as DL and ensemble learning, possibly because ML algorithms are often simpler to
deploy and develop than other methods [5]. A variety of classifiers, such as DT, RF, SVM,
KNN, and LR, were used by Thajeel et al. [5] to evaluate the feature selection decisions
made by a multi-agent reinforcement learning-based dynamic feature selection model
intended for XSS attack detection. The DT classifier performed better than the other models
evaluated. Moreover, XGBoost is widely utilized for both classification and regression
problems and is a reliable approach. XGBoost was used as an XSS detection framework
by Rozi et al. [32]. Additionally, Mokbal et al. [27] introduced a web-based framework
for XSS attack detection utilizing XGBoost alongside an extreme parameter optimization
strategy that employs the grid-search technique. The classifiers examined in this study
were thoroughly tested for XSS detection purposes, prompting us to evaluate them using
our proposed feature set. The hyperparameters associated with the selected ML algorithms
are detailed in Table 3. Most of these parameters were used by Bakir et al. [22].



Information 2025, 16, 97 14 of 24

Table 3. ML Classifier Hyperparameter Settings.

Classifier Hyperparameter Setting

RF (Random Forest)

• n_estimators: 100
• max_depth: None
• min_samples_split: 2
• min_samples_leaf: 1
• max_features: ‘auto’

DT (Decision Tree)
• max_depth: None
• min_samples_split: 2
• min_samples_leaf: 1

MLP (Multi-Layer Perceptron)

• hidden_layer_sizes: 100
• activation: relu
• solver: adam
• alpha: 0.0001

SVM (Support Vector Machine) • gamma: scale
• degree: 3

LR (Logistic Regression)

• penalty: l2
• C: 1.0
• solver: lbfgs
• max_iter: 100

XGBoost

• n_estimators: 100
• max_depth: 6
• learning_rate: 0.1
• subsample: 0.8
• colsample_bytree: 0.8

KNN (K-Nearest Neighbors)

• n_neighbors: 5
• weights: ‘uniform’
• algorithm: ‘auto’
• leaf_size: 30
• metric: ‘minkowski’
• p: 2

4.4.2. DeepLearning

Because DL techniques can learn complex structures and representations from data,
they have become effective tools for XSS attack detection. These deep Neural Network-
based methods can automatically extract hierarchical features and capture complex rela-
tionships in web material. CNNs and Recurrent Neural Networks (RNNs) are two basic
DL architectures that were used in our study to categorize online content and identify XSS
attacks. Feature representations from the Word2vec, and Doc2vec models were used to
train these architectures. We improved the model’s ability to recognize minor signs of
XSS attacks by utilizing DL, which improved the reliability and accuracy of detection. DL
models can defend against XSS attacks and strengthen web application security because
of their capacity to learn from vast amounts of data and identify complex patterns. We
aimed to highlight the XSS attack detection speed by using straightforward DL architec-
tures and reduce the computational steps required to detect and stop XSS attacks without
sacrificing performance by choosing simpler architectures. These architectures were created
to quickly identify XSS assaults in real-time scenarios by striking a balance between the
accuracy and computing efficiency [22]. In this study, we used CNN, LSTM, and GRU for
classification purposes.

CNN is an artificial neural network (ANN) that uses a convolutional kernel to slide
over input characteristics. Convolutional, pooling, and fully linked layers make up CNNs.
The pooling layer minimizes the size of convolved data while preserving significant features,
whereas the convolutional layer computes various feature maps. CNNs introduce the
nonlinearity needed to handle nonlinearly separable problems/features using a variety of



Information 2025, 16, 97 15 of 24

activation functions, including ReLu, Maxout, Tanh, and Sigmoid. The fully connected layer
uses the softmax function to classify the target classes after determining the associations
between features [33]. According to Dong et al. [34], CNNs perform well in computer vision
and intrusion detection systems, lowering the computational complexity and accelerating
training and prediction times through the extraction of local features. By suggesting CNN
models with various network architectures and hyperparameters, numerous studies have
successfully used CNNs in the security area to identify XSS threats. The CNN model is the
most well-known and widely used algorithm for XSS attack detection [35–38]. According
to Hochreiter et al. [39], LSTM is an RNN that can learn and train long-range temporal
dynamics in sequences of any length. By employing a gate function that selectively permits
the flow through of a subset of the data, LSTM was developed to address gradient vanishing
in conventional RNNs [40]. Before sending the long-term and short-term information to the
next cell, the input, output, and forget gates in the LSTM model serve as filters to determine
which information should be kept or discarded. Unwanted and unnecessary information
can be eliminated by the gates. For classification and prediction using time-series data,
LSTM has emerged as one of the most popular RNN variations.

Web application and XSS threats have been identified using the GRU. A CNN-GRU
model was used by Niu and L as a combination technique for web attack detection. The
GRU captures the serialization relationship of the context in the web event sentence. A
detection approach was proposed by W. Yang et al. [10] in which a CNN is used to extract
features from the abstract level of the URL, and a GRU is used as a pooling layer to retain
the important characteristics while preserving the context correlation. Each level’s char-
acteristics are fully extracted using a mixture of convolution windows of varying lengths.
To make the most of the extracted features, the features obtained from the convolution
windows must be integrated.

Three convolutional layers make up the CNN model. Each layer has 128, 64, and
32 filters with a relu activation function, accordingly. A max pooling layer comes after each
convolutional layer. After that, a flatten layer and a fully connected layer are applied. An
output layer that makes use of the sigmoid activation function rounds out the model. The
LSTM model is made up of an output layer with the 123 sigmoid activation function after a
single LSTM layer with 20 units and the relu activation function. This is part of our quest to
obtain a streamlined model with optimal performance to allow quick detection. Similarly,
the GRU models were composed of an output layer with the sigmoid activation function
after a single GRU layer with 20 units and a relu activation function. Every model was
trained with a batch size of 128 over 100 epochs. A uniform feature representation was
created by concatenating the outputs of the CNN, GRU, and LSTM models. The strengths of
each model were merged in this representation: CNN was used for local feature extraction,
and LSTM and GRU were used for sequential dependency modeling. The final prediction
was mapped from the combined features using a dense layer and a sigmoid activation
function. Optimal feature fusion was ensured by training the architecture end to end. This
approach can be considered an integrated ensemble where models are not independently
trained but collaborate to form a unified network [41,42]. The following Algorithm 3
explains the ensemble classifier:



Information 2025, 16, 97 16 of 24

Algorithm 3 Integrated Ensemble Approach

1: Input: Text data as sequences of word indices (word_sequences).
2: Output: Trained ensemble model for classification.
3: Step 1: Shared Embedding Layer
4: Convert word_sequences into dense vector representations using a shared embedding

layer (embedding_layer).
5: Step 2: Individual Neural Networks
6: Pass embedding_layer to:

• LSTM: Extract sequential features (lstm_features).
• GRU: Extract sequential features (gru_features).
• CNN:

– Apply 1D convolution with activation (ReLU).
– Use Global Max Pooling to extract features (cnn_features).

7: Step 3: Feature-Level Fusion
8: Concatenate lstm_features, gru_features, and cnn_features into a single feature vector

(combined_features).
9: Step 4: Classification Layer

10: Pass combined_features through:
• A dense layer with activation (ReLU).
• A final dense layer with sigmoid activation to generate predictions (output).

11: Step 5: Model Compilation and Training
12: Define loss function (e.g., binary_crossentropy).
13: Use an optimizer (e.g., Adam) to minimize the loss.
14: Train the model using word_sequences and corresponding labels (train_labels).

The parameters used for DL classifiers are shown in Table 4. Note that these parameters
were used by Bakir et al. [22].

Table 4. DL Classifier Hyperparameter Settings.

Classifier Hyperparameter Setting

GRU (Gated Recurrent Unit)

• Loss: binary crossentropy
• Optimizer: adam
• Activation function: Sigmoid
• Learning rate: 0.001
• Epoch: 100
• Batch_size: 128

LSTM (Long Short-Term Memory)

• Loss: binary crossentropy
• Optimizer: adam
• Activation function: Sigmoid
• Learning rate: 0.001
• Epoch: 100
• Batch_size: 128

CNN (Convolutional Neural Network)

• Filters in Convolution Layers: 128, 64, 32
• kernel_size: 4
• padding: same
• Activation functions: Relu, Relu, Relu, Sig-

moid
• Learning rate: 0.001
• Epoch: 100
• Loss: binary crossentropy
• Optimizer: adam
• Batch_size: 128



Information 2025, 16, 97 17 of 24

4.5. Optmization

The models were trained using the Adam optimizer with a learning rate of 0.001,
and binary crossentropy was used as the loss function for classification tasks. To reduce
overfitting, dropout regularization and early halting were used. With 20% set aside for
validation, the training dataset was divided into training and validation sets.

4.6. Experiment Evaluation

A set of thorough evaluation metrics were used to evaluate the efficacy and perfor-
mance of our XSS attack detection models based on their accuracy, precision, recall, and
F1-scores, giving us a comprehensive picture of their performance. To identify any biases or
imbalances in performance, the confusion matrix was also used to display the distribution
of TP, TF, FP, and FN predictions.

Some typical evaluation metrics are presented. Accuracy: this widely used indicator
determines the percentage of accurate predictions made by the model, as shown in Equation
(1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision (sensitivity): the true positive rate of prediction, which is the proportion of
accurately recognized real positives, as shown in Equation (2).

Precision =
TP

TP + FP
(2)

Recall (specificity): the proportion of positive examples accurately expected to be
positive is measured by the recall, as shown in Equation (3).

Recall =
TP

TP + FN
(3)

F1 score: a harmonic-based mean of recall and precision, as shown in Equation (4).

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

We employed a Repeated Stratified K-Fold Cross-Validation technique to strengthen
the validation even more. In order to achieve this, the data had to be divided into 10 folds,
each of which was utilized as a training set, with one fold used as a validation set. To avoid
biases related to the ordering of data points, this process was performed three times with a
random data shuffle in between each cycle [21].

5. Results
Here, the performance features of various models used to detect XSS attacks are

reviewed, with a focus on certain statistical metrics, including accuracy, precision, recall,
and F1-score. These metrics provide a comprehensive understanding of each model’s ability
to identify and classify XSS attacks, which is crucial for robust cybersecurity measures.
The analysis is based on performance data from the deployed models, including LR, SVM,
RF, DT, MLP, KNN, XGBoost, LR, and a Deep Neural Network (CNN, LSTM, and GRU
models), as well as the integrated ensemble technique.

5.1. Evaluation of Different Models

In the process of determining the most effective ML model for detecting XSS vulnera-
bilities, we conducted a comparative analysis using several well-known algorithms. Table
5 summarizes the performance of each model across multiple metrics to assess their effec-



Information 2025, 16, 97 18 of 24

tiveness in real-world scenarios. The purpose of this step was to identify the most effective
model for our proposed futureset. Among the ML and DL models, the ensemble learner
had the highest accuracy and F-score (99.9% for both). The LSTM model also worked
effectively with an accuracy of 99.2% and F-score of 98.7%. However, coordination between
the CNN, LSTM, and GRU (ensemble) models produced a better XSS detecton rate. For
some models, such as the RF and XGBoost model, the evaluation metrics for the proposed
feature dataset showcased a robust performance, with an accuracy of 97.62%, precision of
98.3%, recall of 69.7%, and an F1-score of 97.5%. However, the ensemble classifiers showed
an improved detection rate compared to using the ML and DL models alone. Figure 5
shows the differences between the individual models and the ensemble classifier. These
results are discussed in the Discussion section ( Section 6).

Table 5. Performance Metrics for Different Models (Presented as Ratios).

Model
Proposed Feature (Raw + Bipartite)

Accuracy Precision Recall F-Score

SVM 0.946 0.927 0.942 0.957
RF 0.967 0.967 0.984 0.965
DT 0.943 0.92 0.958 0.939

MLP 0.96 0.947 0.966 0.956
KNN 0.90 0.90 0.90 0.90

XGBoost 0.966 0.952 0.975 0.963
LR 0.935 0.916 0.944 0.93

CNN 0.982 0.975 0.985 0.98
LSTM 0.992 0.987 0.993 0.988
GRU 0.972 0.967 0.973 0.97

CNN-GRU 0.975 0.979 0.971 0.975
CNN-LSTM 0.984 0.989 0.981 0.984
LSTM-GRU 0.979 0.983 0.977 0.979

Ensemble
(CNN, LSTM, GRU)

0.9997 0.9995 0.9998 0.9997

Figure 5. Evaluation metrics for different models with our proposed dataset.



Information 2025, 16, 97 19 of 24

5.2. Comparison with State-of-the-Art Models

Table 6 provides a detailed comparison of the efficacy of several (XSS) detection
models. At the forefront is the proposed model, representing an innovative approach that
combines a bipartite and raw text as features. The results of this study’s experiments and
those of previous studies are listed in Table 6.

Table 6. Comparison with state-of-the-art methods (metrics presented as ratios).

Reference Model Accuracy Precision Recall F-Score

Mokbal et al. [27] XGboost 0.995 0.995 0.99 0.995
Wu et al. [43] TextCNN 0.997 0.997 0.997 0.997

Chaudhary et al.
[44]

Self-organizing-map
(SOM)

0.9904 0.993 0.991 0.9938

Pan et al. [45] FSXSS 0.9 NA NA 0.79

Bach et al. [21] Stacking ensemble
learning

0.9987 0.998 0.997 0.9987

Bakir et al. [22] Vanilla NN 2 0.9916 0.9922 0.9899 0.9946
Luu et al. [46] XSShield 0.9927 0.9965 0.9561 0.9759

Odeh et al. [47] Hybrid RNN-CNN 0.967 0.977 0.956 0.967

Proposed model Bipartite feature
+ Ensemble classifier

0.9997 0.9995 0.9998 0.9997

This novel proposal (bipartite feature set and ensemble learner) was shown to have a
remarkable accuracy of 99.97%, signifying its ability to make correct predictions. Moreover,
the proposed model exhibited an impressive precision score of 99.95%, underscoring its
proficiency in correctly identifying positive instances with minimal FPs. By achieving a
substantial recall score of 99.98%, the model demonstrated a commendable capacity to
capture a significant portion of the positive cases. Consequently, its F1-score of 99.97%
indicates its balanced precision and recall. This result outperforms those shown in the
studies listed in Table 6. Note that the raw text in the used dataset was recently examined
by Bkir et al. [22], who demonstrated an accuracy level of 99.16% and an F-score of 99.46%.
Our proposed feature set with the ensemble DL classifier improved the detection accuracy
by about 0.8%, which is a substantial improvement in the XSS detection field.

When assessing the robustness of the model and ruling out overfitting, a standard
deviation of 0.01% and an average F1 score of 99.97% were shown over 10 folds. Thus, the
model demonstrated minimal variance in its predictions and consistent performance across
data splits.

6. Discussion
This section discusses the results and presents the advantages associated with using

bipartite features. Table 6 shows that the proposed model achieved a 99.9% accuracy
rate, a higher accuracy value than those shown in previously reported studies. A novel
representation of the payloads and the words within them is introduced by the bipartite
feature set. This method records both local and global interactions, which are essential for
comprehending the composition of possible XSS payloads. The use of a bipartite feature
set and the combination of CNNs, GRUs, and LSTMs is also innovative. By combining
these elements, the model may learn sequential and structural patterns in a manner that
his impossible for conventional methods. Bipartite representation takes advantage of the
malicious payloads’ inherent structures rather than relying solely on raw-text features.
Consequently, the bipartite network captures the contextual relevance and dependencies
between payload components. Bipartite graphs a more comprehensive representation of



Information 2025, 16, 97 20 of 24

text data by capturing relationships between sentences and words. This can assist with the
identification of patterns and anomalies that conventional approaches might overlook [48].
For instance, the model can precisely detect even complicated or ambiguous scenarios,
since the network can recognize several co-occurring phrases or sequences that define
an XSS attack. In addition, by projecting the bipartite network onto a single mode, the
dimensionality is reduced while meaningful relationships between features are preserved,
making the data display more compact and less noisy. This is especially important when
dealing with high-dimensional text data. Furthermore, embeddings from bilateral networks
are expressive, because they encode the payload’s structural arrangement as well as the
semantic connections among its elements. These embeddings increase the model’s capacity
to identify micropatterns suggestive of XSS payloads by acting as different inputs to the
corresponding models, such as LSTM and GRU.

In addition to the binary feature set, the ensemble model also combines CNN, GRU,
and LSTM to promote the detection capability. Each cluster element plays a specific role:
CNN extracts local patterns and n-gram-like features, GRU records short-term dependen-
cies, and LSTM manages long-term relationships within the input. When these models are
combined, the clusters leverage each other’s strengths, building a classifier where both
spatial and sequential feature learning are used to achieve excellence. Combining raw
text features with bilateral embeddings improves this coordination further by providing a
holistic display of information.

In summary, the bipartite feature set’s enhanced value is illustrated by the improve-
ment in accuracy over that shown in previous studies (99.7%). The bipartite representation
adds a structural perspective, which lessens the reliance on noisy characteristics and
improves the generalization, whereas older models might mostly rely on sequential depen-
dencies in the raw text. Additionally, a key component of this method’s effectiveness is
the bipartite network’s ability to recognize complex relationships within payloads, which
helps to locate patterns specific to malicious inputs.

7. Conclusions
This work introduces a novel approach for detecting XSS threats by merging bipartite

graph-based feature extraction with an ensemble DL classifier composed of CNN, LSTM,
and GRU models. The approach creatively uses bipartite graphs, which are represented
as two distinct sets, to reflect the intricate affiliation ties between payloads and their
constituent words. By overcoming the limitations of traditional methods, this unique
representation enhances the detection of complex and obfuscated XSS payloads. The
results demonstrate the effectiveness of the proposed approach, which surpasses state-
of-the-art models with a remarkable accuracy of 99.97%. The significant improvements
in the precision, recall, and F1-score significantly support the model’s adaptability and
resilience. By exploiting the contextual relationships and co-occurrence patterns found in
the bipartite graph, the proposed method provides a scalable and precise XSS detection
method. It is concluded that the combination of ensemble DL classifiers and advanced
feature engineering through bipartite graphs could enhance online application security.

Practical Implications of the Bipartite Network for XSS Detection

One of the most significant practical implications of this approach is its potential
for real-time web application security. In contemporary web applications, XSS attacks
frequently target user inputs. Using the relationships between the payloads and the words
they include, the bipartite network model can be incorporated into real-time security
systems to evaluate incoming data and identify dangerous payloads. This enables on-



Information 2025, 16, 97 21 of 24

line applications to stop assaults before they can be carried out, avoiding exploitation,
defacement, and data theft.

In addition to securing web applications, the bipartite network model can be applied
to automated threat detection in APIs. Since many businesses use APIs to communicate
online, they are often the focus of XSS attacks. To ensure that fraudulent requests are
identified and stopped before they reach crucial backend services, the bipartite approach
may be easily integrated into API gateways to monitor and filter payloads based on lexical
and structural patterns.

Another significant advantage of this model is its ability to reduce FPs and FNs, which
are common challenges in traditional XSS detection methods. Conventional XSS detection
techniques sometimes have trouble with FPs and FNs, either overlooking complex attack
attempts or blocking valid user inputs. By analyzing the interaction between payloads and
their constituent words, the bipartite network improves the detection precision and lowers
the FP and FN rates. This guarantees that web apps can continue to be both safe and easy
to use.

The model also has notable applications in user-generated content platforms. XSS at-
tacks frequently target platforms such as blogs and social media that permit user-generated
material. These platforms can automatically identify and stop dangerous payloads in user
inputs before they are published by using the bipartite network concept, protecting users
and the application itself.

In addition, by highlighting odd or unique combinations that can point to new attack
types, the model makes anomaly identification easier by detecting new payloads with
components that mimic established XSS payloads.

Finally, the bipartite network model’s adaptability and scalability are essential for
managing the increasing intricacy of online applications and changing security risks. The
bipartite network-based model can be retrained to identify novel patterns and tactics as
attack methods change. Its scalability ensures that it can adjust to the increasing complexity
of XSS attacks and makes it appropriate for a broad range of applications, from small-scale
web apps to huge enterprise-level systems.

Although the bipartite network-based method for XSS detection has shown encourag-
ing results, a number of issues must be resolved before its full potential can be realized in
practical applications. The complexity of model training is one of the main obstacles. Large
volumes of labeled data are needed to train the bipartite network. However, obtaining
these can be challenging, especially for more complex or unique XSS attacks. Significant
computational expenses could also be incurred during the training process, particularly
when working with big datasets or high-dimensional feature spaces. This may prevent
the concept from being widely adopted, especially by smaller or less well-funded groups.
However, the computational overhead could be greatly decreased by employing tech-
niques such as parallel processing, effective data partitioning, and approximate graph
methods. The scalability may also be improved by investigating alternate representations
that strike a balance between the detection accuracy and computing economy, such as
hybrid approaches that combine lightweight sequence-based models with bipartite graphs.

Data imbalance in training datasets is another problem. Datasets used to train XSS
detection models in real-world applications are frequently extremely unbalanced, contain-
ing considerably more benign inputs than dangerous ones. Similar to many ML models,
the bipartite network may have trouble detecting these imbalances, which could result in
biases when identifying uncommon or unique XSS payloads. To rectify this imbalance,
specific methods such as cost-sensitive learning, undersampling, or oversampling need to
be used, complicating the training procedure. It is also necessary to consider the model’s
scalability and performance in high-traffic settings. Large volumes of incoming payloads



Information 2025, 16, 97 22 of 24

can be resource-intensive to process and analyze in real time, even if the bipartite network
can be extended to handle larger datasets. Enormous-scale web applications, e-commerce
websites, or social media platforms that need to process enormous amounts of traffic
quickly may find this especially problematic. To guarantee the model’s survival under
these kinds of settings, performance optimization without sacrificing detection accuracy is
crucial.

Although the method successfully captures structural links in payloads, addressing
heavily obfuscated payloads containing rare or unseen tokens is difficult due to its reliance
on observed co-occurrence patterns. These payloads, which are frequently made to avoid
detection, can interfere with the graph’s capacity to generalize to attack vectors that have
not been seen before.

Future research should concentrate on improving the model’s generalizability and
robustness in order to overcome these constraints. To capture semantic similarities between
uncommon or novel tokens and well-known patterns, this may entail the use of contextual
embeddings such as BERT or token embeddings such as Word2Vec and GloVe. Furthermore,
the model may detect abnormal structures in disguised payloads by diversifying the co-
occurrence patterns through the use of synthetic or adversarial samples during the training
phase. Additionally, future researchers could broaden this approach to find additional
web-based vulnerabilities, optimize the computational efficiency, and adapt the model for
real-time detection scenarios. In future work, we intend to assess our model’s resilience
by injecting noise into the test payloads. Through this evaluation, we will determine how
well the model responds to input differences, such as modest payload perturbations or
obfuscation strategies. In order to increase the model’s generalization and resistance to
adversarial attacks, we will also investigate adversarial training techniques. Through these
tests, we can ensure that our model works well under a variety of uncertain settings, which
will increase its suitability for XSS detection duties in the real world.

Funding: The author extend their appreciation to Shaqra University, Saudi Arabia, for supporting
this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study makes use of the publicly available XSS dataset, which is
located in [22].

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Tan, X.; Xu, Y.; Wu, T.; Li, B. Detection of reflected XSS vulnerabilities based on paths-attention method. Appl. Sci. 2023, 13, 7895.
2. Liu, Z.; Fang, Y.; Huang, C.; Han, J. GraphXSS: An efficient XSS payload detection approach based on graph convolutional

network. Comput. Secur. 2022, 114, 102597.
3. Liu, Z.; Fang, Y.; Huang, C.; Xu, Y. MFXSS: An effective XSS vulnerability detection method in JavaScript based on multi-feature

model. Comput. Secur. 2023, 124, 103015.
4. van de Bijl, E.P. Towards Graph-Based Intrusion Detection in Cybersecurity. Master’s Thesis, Vrije Universiteit Amsterdam,

Amsterdam, Netherlands, 2020.
5. Thajeel, I.K.; Samsudin, K.; Hashim, S.J.; Hashim, F. Machine and deep learning-based xss detection approaches: A systematic

literature review. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101628.
6. Liu, M.; Zhang, B.; Chen, W.; Zhang, X. A survey of exploitation and detection methods of XSS vulnerabilities. IEEE Access 2019,

7, 182004–182016.
7. Kaur, J.; Garg, U.; Bathla, G. Detection of cross-site scripting (XSS) attacks using machine learning techniques: A review. Artif.

Intell. Rev. 2023, 56, 12725–12769.
8. Sharma, S.; Zavarsky, P.; Butakov, S. Machine learning based intrusion detection system for web-based attacks. In Proceedings of

the 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance



Information 2025, 16, 97 23 of 24

and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May
2020; pp. 227–230.

9. Alam, F.; Pachauri, S. Comparative study of J48, Naive Bayes and One-R classification technique for credit card fraud detection
using WEKA. Adv. Comput. Sci. Technol 2017, 10, 1731–1743.

10. Yang, W.; Zuo, W.; Cui, B. Detecting malicious URLs via a keyword-based convolutional gated-recurrent-unit neural network.
IEEE Access 2019, 7, 29891–29900.

11. Munonye, K.; Péter, M. Machine learning approach to vulnerability detection in OAuth 2.0 authentication and authorization flow.
Int. J. Inf. Secur. 2022, 21, 223–237.

12. Wang, R.; Jia, X.; Li, Q.; Zhang, S. Machine learning based cross-site scripting detection in online social network. In Proceedings
of the 2014 IEEE Intl Conf on High Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety
and Security, 2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS), Paris, France, 20–22 August 2014;
pp. 823–826.

13. Kascheev, S.; Olenchikova, T. The detecting cross-site scripting (XSS) using machine learning methods. In Proceedings of the
2020 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, 17–19 November 2020; pp. 265–270.

14. Banerjee, R.; Baksi, A.; Singh, N.; Bishnu, S.K. Detection of XSS in web applications using Machine Learning Classifiers. In
Proceedings of the 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech),
Kolkata, India, 2–4 October 2020; pp. 1–5.

15. Rathore, S.; Sharma, P.K.; Park, J.H. XSSClassifier: An efficient XSS attack detection approach based on machine learning classifier
on SNSs. J. Inf. Process. Syst. 2017, 13, 1014–1028.

16. Khan, N.; Abdullah, J.; Khan, A.S. Defending malicious script attacks using machine learning classifiers. Wirel. Commun. Mob.
Comput. 2017, 2017, 5360472.

17. Alhamyani, R.; Alshammari, M. Machine Learning-Driven Detection of Cross-Site Scripting Attacks. Information 2024, 15, 420.
18. Wang, Q.; Li, C.; Wang, D.; Yuan, L.; Pan, G.; Cheng, Y.; Hu, M.; Ren, Y. IGXSS: XSS payload detection model based on inductive

GCN. Int. J. Netw. Manag. 2024, 34, e2264.
19. Karim, A.; Shahroz, M.; Mustofa, K.; Belhaouari, S.B.; Joga, S.R.K. Phishing detection system through hybrid machine learning

based on URL. IEEE Access 2023, 11, 36805–36822.
20. Shukla, S.; Misra, M.; Varshney, G. HTTP header based phishing attack detection using machine learning. Trans. Emerg.

Telecommun. Technol. 2024, 35, e4872.
21. Bacha, N.U.; Lu, S.; Ur Rehman, A.; Idrees, M.; Ghadi, Y.Y.; Alahmadi, T.J. Deploying Hybrid Ensemble Machine Learning

Techniques for Effective Cross-Site Scripting (XSS) Attack Detection. Comput. Mater. Contin. 2024, 81, 707.
22. Bakır, R.; Bakır, H. Swift Detection of XSS Attacks: Enhancing XSS Attack Detection by Leveraging Hybrid Semantic Embeddings

and AI Techniques. Arab. J. Sci. Eng. 2024, 50, 1191–1207.
23. Ade, M. A Review of Modern Techniques for Detecting Cross-Site Scripting (XSS) in Web Applications. 2024.
24. Hannousse, A.; Yahiouche, S.; Nait-Hamoud, M.C. Twenty-two years since revealing cross-site scripting attacks: A systematic

mapping and a comprehensive survey. Comput. Sci. Rev. 2024, 52, 100634.
25. Rodríguez-Galán, G.; Torres, J. Personal data filtering: A systematic literature review comparing the effectiveness of XSS attacks

in web applications vs cookie stealing. Ann. Telecommun. 2024, 79, 763–802.
26. Ramoa, L.; Campos, P. Recommendation Systems in E-commerce: Link Prediction in Multilayer Bipartite Networks. In Digital

Transformation and Enterprise Information Systems; CRC Press: Boca Raton, FL, USA, 2024; pp. 55–78.
27. Mokbal, F.M.M.; Dan, W.; Xiaoxi, W.; Wenbin, Z.; Lihua, F. XGBXSS: An extreme gradient boosting detection framework for

cross-site scripting attacks based on hybrid feature selection approach and parameters optimization. J. Inf. Secur. Appl. 2021,
58, 102813.

28. Gniewkowski, M.; Maciejewski, H.; Surmacz, T.; Walentynowicz, W. Section 2vec: Anomaly detection in HTTP traffic and
malicious URLs. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, 27–31 March
2023; pp. 1154–1162.

29. Gniewkowski, M.; Maciejewski, H.; Surmacz, T.R.; Walentynowicz, W. Http2vec: Embedding of http requests for detection of
anomalous traffic. arXiv 2021, arXiv:2108.01763.

30. Abu, T.N.A.; Doh, K.G. An Analysis of Machine-Learning Feature-Extraction Techniques using Syntactic Tagging for Cross-site
Scripting Detection. J. Softw. Assess. Valuat. (한국소프트웨어감정평가학회논문지) 2022, 18, 107–118.

31. de Albuquerque Oliveira, M.C. A Hybrid Machine Learning System for Vulnerability Detection in Web Applications. Master’s
Thesis, Universidade de Lisboa, Lisbon, Portugal, 2023.

32. Rozi, M.F.; Ban, T.; Ozawa, S.; Yamada, A.; Takahashi, T.; Inoue, D. Securing Code with Context: Enhancing Vulnerability
Detection through Contextualized Graph Representations. IEEE Access 2024, 12, 142101–142126.



Information 2025, 16, 97 24 of 24

33. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53.

34. Dong, Y.; Wang, R.; He, J. Real-time network intrusion detection system based on deep learning. In Proceedings of the 2019 IEEE
10th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20 October 2019; pp. 1–4.

35. Chaudhary, P.; Gupta, B.B.; Chang, X.; Nedjah, N.; Chui, K.T. Enhancing big data security through integrating XSS scanner into
fog nodes for SMEs gain. Technol. Forecast. Soc. Chang. 2021, 168, 120754.

36. Kuppa, K.; Dayal, A.; Gupta, S.; Dua, A.; Chaudhary, P.; Rathore, S. ConvXSS: A deep learning-based smart ICT framework
against code injection attacks for HTML5 web applications in sustainable smart city infrastructure. Sustain. Cities Soc. 2022,
80, 103765.

37. Maurel, H.; Vidal, S.; Rezk, T. Statically identifying XSS using deep learning. Sci. Comput. Program. 2022, 219, 102810.
38. Shahid, W.B.; Aslam, B.; Abbas, H.; Khalid, S.B.; Afzal, H. An enhanced deep learning based framework for web attacks detection,

mitigation and attacker profiling. J. Netw. Comput. Appl. 2022, 198, 103270.
39. Hochreiter, S. Long Short-term Memory. In Neural Computation; MIT-Press: Cambridge, MA, USA, 1997.
40. Gao, C.; Yan, J.; Zhou, S.; Varshney, P.K.; Liu, H. Long short-term memory-based deep recurrent neural networks for target

tracking. Inf. Sci. 2019, 502, 279–296.
41. Guan, D.; Yuan, W.; Lee, Y.K.; Najeebullah, K.; Rasel, M.K. A review of ensemble learning based feature selection. IETE Tech. Rev.

2014, 31, 190–198.
42. Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022,

115, 105151.
43. Wu, A.; Feng, Z.; Li, X.; Xiao, J. ZTWeb: Cross site scripting detection based on zero trust. Comput. Secur. 2023, 134, 103434.
44. Chaudhary, P.; Gupta, B.; Singh, A.K. Adaptive cross-site scripting attack detection framework for smart devices security using

intelligent filters and attack ontology. Soft Comput. 2023, 27, 4593–4608.
45. Pan, H.; Fang, Y.; Guo, W.; Xu, Y.; Wang, C. Few-shot graph classification on cross-site scripting attacks detection. Comput. Secur.

2024, 140, 103749.
46. Luu, G.H.; Duong, M.K.; Pham-Ngo, T.P.; Ngo, T.S.; Nguyen, D.T.; Nguyen, X.H.; Le, K.H. XSShield: A Novel Dataset and

Lightweight Hybrid Deep Learning Model for XSS Attack Detection. Results Eng. 2024, 24, 103363.
47. Odeh, A.; Taleb, A.A. XSSer: Hybrid deep learning for enhanced cross-site scripting detection. Bull. Electr. Eng. Inform. 2024,

13, 3317–3325.
48. Reka, R.; Karthick, R.; Ram, R.S.; Singh, G. Multi head self-attention gated graph convolutional network based multi-attack

intrusion detection in MANET. Comput. Secur. 2024, 136, 103526.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Literature
	Dataset
	Methods
	The Proposed Model
	Pre-Processing
	Removing Noisy Data/Normalization
	Decoding
	Tokenization

	Feature Extraction
	Graph Construction
	Bipartite Graph Projection
	Embedding Extraction

	Classification
	Machine Learning
	DeepLearning

	Optmization
	Experiment Evaluation

	Results
	Evaluation of Different Models
	Comparison with State-of-the-Art Models

	Discussion
	Conclusions
	 References 

