Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding
Abstract
:1. Introduction
2. Non-Negative Least-Squares Sparse Coding
Algorithm1. NNLS-based classifier |
Input: Am×n: the training set formed with m features and n samples, c: the class labels of the training set, Bm×n: p new samples Steps:
|
Output: p: the identified class labels for p new samples |
3. Facial Feature Extraction
4. Experiment verification
4.1. Facial Database
4.2. Experimental Results and Analysis
7-class facial expression recognition | |||
---|---|---|---|
NNLS type | Accuracy (%) | ||
Linear kernel | Polynomial kernel | RBF kernel | |
NNLS-AS | 79.52 | 84.28 | 84.28 |
l1 NNLS-AS | 78.09 | 80.95 | 85.24 |
NNLS-IP | 84.76 | 80.00 | 79.52 |
l1 NNLS-IP | 86.67 | 87.14 | 83.81 |
7-class facial expression recognition | |||
---|---|---|---|
NNLS type | Accuracy (%) | ||
Linear kernel | Polynomial kernel | RBF kernel | |
NNLS-AS | 83.33 | 81.90 | 83.80 |
l1 NNLS-AS | 82.38 | 82.86 | 82.38 |
NNLS-IP | 86.67 | 82.56 | 82.38 |
l1 NNLS-IP | 81.90 | 83.33 | 82.86 |
Methods | SRC | NSC | SVM | KNN | RBFNN | NNLS |
---|---|---|---|---|---|---|
Raw pixels | 80.32 | 80.78 | 80.45 | 81.24 | 70.62 | 87.14 |
LBP | 84.76 | 81.74 | 79.88 | 80.00 | 68.09 | 86.67 |
Anger (%) | Joy (%) | Sadness (%) | Surprise (%) | Disgust (%) | Fear (%) | Neutral (%) | |
---|---|---|---|---|---|---|---|
Anger | 96.67 | 0 | 0 | 3.33 | 0 | 0 | 0 |
Joy | 0 | 83.33 | 10.00 | 0 | 0 | 0 | 6.67 |
Sadness | 0 | 10.00 | 76.67 | 0 | 3.33 | 6.67 | 3.33 |
Surprise | 0 | 0 | 0 | 80.00 | 3.33 | 3.33 | 3.33 |
Disgust | 3.45 | 6.90 | 0 | 0 | 89.66 | 0 | 0 |
Fear | 0 | 0 | 0 | 3.13 | 9.38 | 84.38 | 3.13 |
Neutral | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 |
Anger (%) | Joy (%) | Sadness (%) | Surprise (%) | Disgust (%) | Fear (%) | Neutral (%) | |
---|---|---|---|---|---|---|---|
Anger | 96.67 | 0 | 0 | 0 | 3.33 | 0 | 0 |
Joy | 0 | 96.77 | 3.23 | 0 | 0 | 0 | 0 |
Sadness | 3.23 | 6.45 | 74.19 | 0 | 3.23 | 9.68 | 3.23 |
Surprise | 0 | 3.45 | 3.45 | 86.21 | 0 | 6.90 | 0 |
Disgust | 7.14 | 0 | 3.57 | 0 | 82.14 | 7.14 | 0 |
Fear | 0 | 0 | 3.23 | 3.23 | 3.23 | 90.32 | 0 |
Neutral | 0 | 0 | 10 | 10 | 0 | 0 | 80.00 |
5. Conclusions and Discussions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Paul, E.; Wallace, V.F. Unmasking the face; Prentice-Hill Inc.: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Perveen, N.; Gupta, S.; Verma, K. Facial expression recognition using facial characteristic points and Gini index. In Proceedings of International Conference on Engineering and Systems (SCES), Allahabad, Uttar Pradesh, India, 16–18 March 2012; pp. 1–6.
- Shan, C.; Gong, S.; McOwan, P. Robust facial expression recognition using local binary patterns. In Proceedings of IEEE International Conference on Image Processing (ICIP), Genoa, Italy, 11–14 September 2005; pp. 370–373.
- Tian, Y.; Kanade, T.; Cohn, J. Facial expression analysis. In Handbook of Face Recognition; Springer: New York, NY, USA, 2005; pp. 247–275. [Google Scholar]
- Whitehill, J.; Littlewort, G.; Fasel, I.; Bartlett, M.; Movellan, J. Toward practical smile detection. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2106–2111. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, X.; Lei, B. Robust facial expression recognition via compressive sensing. Sensors 2012, 12, 3747–3761. [Google Scholar] [CrossRef]
- Niu, Z.; Qiu, X. Facial expression recognition based on weighted principal component analysis and support vector machines. In Proceedings of 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; pp. V3:174–v3:178.
- Viola, P.; Jones, M. Robust real-time face detection. Int. J. Comput. Vision. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Chuang, H. Classifying Expressive Face Images with Expression Degree Estimation. Master’s Thesis, Department of Computer Science, National TsingHua University, Hsinchu, Taiwan, 2009. [Google Scholar]
- Xue, Y.; Mao, X.; Zhang, F. Beihang university facial expression database and multiple facial expression recognition. In Proceedings of International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; pp. 3282–3287.
- Hoai, M.; De la Torre, F. Max-margin early event detectors. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 2863–2870.
- El-Bakry, H. New fast principal component analysis for real-time face detection. Mach. Graph. Vis. 2009, 18, 405–425. [Google Scholar]
- Zheng, W.; Zhou, X.; Zou, C.; Zhao, L. Facial expression recognition using kernel canonical correlation analysis (kcca). IEEE Trans. Neural Netw. 2006, 17, 233–238. [Google Scholar] [CrossRef]
- Bashyal, S.; Venayagamoorthy, G.K. Recognition of facial expressions using Gabor wavelets and learning vector quantization. Eng. Appl. Artif. Intell. 2008, 21, 1056–1064. [Google Scholar] [CrossRef]
- Daugman, J.G. Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Audio Speech. 1988, 36, 1169–1179. [Google Scholar] [CrossRef]
- Xie, X.; Liu, W.; Lam, K.-M. Pseudo-Gabor wavelet for face recognition. J. Electron. Imag. 2013, 22, 023029. [Google Scholar] [CrossRef]
- Turk, M.A.; Pentland, A.P. Face recognition using eigenfaces. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, USA, 3–6 June 1991; pp. 586–591.
- Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikinen, M.; Menp, T. Multiresolution gray scale and rotation invariant texture analysis with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Shan, C.; Gong, S.; McOwan, P. Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis. Comput. 2009, 27, 803–816. [Google Scholar] [CrossRef]
- Huang, D.; Shan, C.; Ardabilian, M.; Wang, Y.; Chen, L. Local binary patterns and its applicationto facial image analysis: A survey. IEEE Trans. Syst. Man Cybern. C 2011, 41, 1–17. [Google Scholar]
- Zhao, X.; Zhang, S. Facial expression recognition based on local binary patterns and kernel discriminant isomap. Sensors 2011, 11, 9573–9588. [Google Scholar] [CrossRef]
- Ghimire, D.; Lee, J. Geometric feature-based facial expression recognition in image sequences using multi-class adaboost and support vector machines. Sensors 2013, 13, 7714–7734. [Google Scholar] [CrossRef]
- Sebe, N.; Lew, M.S.; Sun, Y.; Cohen, I.; Gevers, T.; Huang, T.S. Authentic facial expression analysis. Image Vis. Comput. 2007, 25, 1856–1863. [Google Scholar] [CrossRef]
- Yousefi, S.; Nguyen, M.P.; Kehtarnavaz, N.; Cao, Y. Facial expression recognition based on diffeomorphic matching. In Proceedings of 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 26–29 September 2010; pp. 4549–4552.
- Tian, Y.; Kanade, T.; Cohn, J. Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 23, 97–115. [Google Scholar] [CrossRef]
- Meng, H.; Bianchi-Berthouze, N. Naturalistic affective expression classification by a multi-stage approach based on hidden Markov models. In Affective Computing and Intelligent Interaction; Lecture Notes in Computer Science; Springer: New York, NY, USA, 2011; pp. 378–387. [Google Scholar]
- Dornaika, F.; Lazkano, E.; Sierra, B. Improving dynamic facial expression recognition with feature subset selection. Pattern Recogn. Lett. 2011, 32, 740–748. [Google Scholar] [CrossRef]
- Baraniuk, R.G. Compressive sensing [lecture notes]. IEEE Signal Process. Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, X.; Lei, B. Robust facial expression recognition via compressive sensing. Sensors 2012, 12, 3747–3761. [Google Scholar] [CrossRef]
- Olshausen, B.A.; Field, D.J. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef]
- Li, Y.; Ngom, A. Classification approach based on non-negative least squares. Neurocomputing 2013, 118, 41–57. [Google Scholar] [CrossRef]
- Li, Y.; Ngom, A. Supervised dictionary learning via non-negative matrix factorization for classification. In Proceedings of 11th International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 12–15 December 2012; pp. 439–443.
- Li, Y.; Ngom, A. Sparse representation approaches for the classification of high-dimensional biological data. BMC Syst. Biol. 2013, 7. [Google Scholar] [CrossRef]
- Lyons, M.J.; Kamachi, M.; Gyoba, J. Japanese Female Facial Expression (JAFFE), database of digital images (1997). Available online: http://www.kasrl.org/jaffe.html (accessed on 21 April 2014).
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef]
- Kim, S.J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An interior-point method for large-scale l1-regularized least squares. IEEE J. Sel. Top. Signal Process. 2007, 1, 606–617. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Computer Vision Using Local Binary Patterns; Computational Imaging and Vision Volume 40; Springer: Berlin/Heidelberg, Germany, 2011; pp. E1–E2. [Google Scholar]
- Lyons, M.J.; Budynek, J.; Akamatsu, S. Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 1357–1362. [Google Scholar] [CrossRef]
- Lee, K.C.; Ho, J.; Kriegman, D.J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 684–698. [Google Scholar] [CrossRef]
- Jabid, T.; Kabir, M.H.; Chae, O. Robust facial expression recognition based on local directional pattern. ETRI J. 2010, 32, 784–794. [Google Scholar] [CrossRef]
- Everingham, M.; Zisserman, A. Regression and classification approaches to eye localization in face images. In Proceedings of 7th International Conference on Automatic Face and Gesture Recognition, Southampton, UK, 10–12 April 2006; pp. 441–446.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, Y.; Zhang, S.; Zhao, X. Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding. Information 2014, 5, 305-318. https://doi.org/10.3390/info5020305
Chen Y, Zhang S, Zhao X. Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding. Information. 2014; 5(2):305-318. https://doi.org/10.3390/info5020305
Chicago/Turabian StyleChen, Ying, Shiqing Zhang, and Xiaoming Zhao. 2014. "Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding" Information 5, no. 2: 305-318. https://doi.org/10.3390/info5020305
APA StyleChen, Y., Zhang, S., & Zhao, X. (2014). Facial Expression Recognition via Non-Negative Least-Squares Sparse Coding. Information, 5(2), 305-318. https://doi.org/10.3390/info5020305