Information Flow in the Brain: Ordered Sequences of Metastable States
Abstract
:1. Introduction
2. The Operational Architectonics (OA) Theory of Brain–Mind Functioning
3. Empirical Support
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
EEG | Electroencephalogram |
OA | Operational architectonics |
OM | Operational module |
RTP | Rapid transitional period |
OST | Operational space–time |
IPST | Internal physical space–time |
PST | Phenomenal (subjective) space-time |
HKB | Stands for Haken, Kelso and Bunz |
References
- Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behaviour; The MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Fingelkurts, A.A.; Fingelkurts, A.A. Timing in cognition and EEG brain dynamics: Discreteness versus continuity. Cogn. Process. 2006, 7, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, M.I.; Afraimovich, V.S.; Bick, C.; Varona, P. Information flow dynamics in the brain. Phys. Life Rev. 2012, 9, 51–73. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C. A mathematical theory of communication. Bell Syst. Techn. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Yarrow, S.; Challis, E.; Series, P. Fisher and Shannon information in finite neural populations. Neural Comput. 2012, 24, 1740–1780. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Dimitrov, A.G.; Lazar, A.A.; Victor, J.D. Information theory in neuroscience. J. Comput. Neurosci. 2011, 30, 1–5. [Google Scholar] [CrossRef] [PubMed]
- MacKay, D.M.; McCulloch, W.S. The limiting information capacity of a neuronal link. Bull. Math. Biophys. 1952, 14, 127–135. [Google Scholar] [CrossRef]
- Rapoport, A.; Horvath, W.J. The theoretical channel capacity of a single neuron as determined by various coding systems. Inf. Control 1960, 3, 335–350. [Google Scholar] [CrossRef]
- Werner, G.; Mountcastle, V.B. Neural activity in mechanoreceptive cutaneous afferents: Stimulus-response relations, weber functions, and information transmission. J. Neurophysiol. 1965, 28, 359–397. [Google Scholar] [PubMed]
- Attneave, F. Some information aspects of visual perception. Psychol. Rev. 1954, 61, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Barlow, H.B. Possible Principles Underlying the Transformation of Sensory Messages. In Sensory Communications; Rosenblith, W.A., Ed.; MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Shlens, J.; Field, D.G.; Gauthier, L.J.; Grivich, M.I.; Petrusca, D.; Sher, A.; Litke, A.M.; Chichilnisky, E.J. The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 2006, 26, 8254–8266. [Google Scholar] [CrossRef] [PubMed]
- Shlens, J.; Field, D.G.; Gauthier, J.L.; Greschner, M.; Sher, A.; Litke, A.M.; Chichilnisky, E.J. The structure of large-scale synchronized firing in primate retina. J. Neurosci. 2009, 29, 5022–5031. [Google Scholar] [CrossRef] [PubMed]
- Schneidman, E.; Berry, M.J., II; Segev, R.; Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 2006, 440, 1007–1012. [Google Scholar]
- Haken, H. Principles of Brain Functioning; Springer: Berlin, Germany, 1996. [Google Scholar]
- Rabinovich, M.I.; Varona, P. Robust transient dynamics and brain functions. Front. Comput. Neurosci. 2011, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A. Making complexity simpler: Multivariability and metastability in the brain. Int. J. Neurosci. 2004, 114, 843–862. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.M.; Fontanini, A.; Sadacca, B.F.; Miller, P.; Katz, D.B. Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc. Natl. Acad. Sci. USA 2007, 104, 18772–18777. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Nikolaev, A.R.; van Leeuwen, C. Dynamics of spontaneous transitions between global brain states. Hum. Brain Mapp. 2007, 28, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Kelso, J.A.S. Multistability and metastability: Understanding dynamic coordination in the brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A. Operational architectonics methodology for EEG analysis: Theory and results. Neuromethods 2015, 91, 1–59. [Google Scholar]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Neves, C.F.H. Natural world physical, brain operational, and mind phenomenal space-time. Phys. Life Rev. 2010, 7, 195–249. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Neves, C.F.H. Consciousness as a phenomenon in the operational architectonics of brain organization: Criticality and self-organization considerations. Chaos Solitons Fract. 2013, 55, 13–31. [Google Scholar] [CrossRef]
- Tognoli, E.; Kelso, J.A.S. Enlarging the scope: Grasping brain complexity. Front. Syst. Neurosci. 2014, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Freeman, W.J.; Holmes, M.D. Metastability, instability, and state transition in neocortex. Neural Netw. 2005, 18, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Transients, metastability and neuronal dynamics. Neuroimage 1997, 5, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Chialvo, D.R. Emergent complex neural dynamics. Nat. Phys. 2010, 6, 744–750. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A. Mind as a nested operational architectonics of the brain. Comment on “Neuroontology, neurobiological naturalism, and consciousness: A challenge to scientific reduction and a solution” by Todd E. Feinberg. Phys. Life Rev. 2012, 9, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Afraimovich, V.; Tristan, I.; Varona, P.; Rabinovich, M. Transient dynamics in complex systems: Heteroclinic sequences with multidimensional unstable manifolds. Nonlinearity Complex. 2013, 2, 21–41. [Google Scholar] [CrossRef]
- Freeman, W.J. Mass Action in the Nervous System; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Freeman, W.J.; Vitiello, G. Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys. Life Rev. 2006, 3, 93–118. [Google Scholar] [CrossRef]
- Beggs, J.M.; Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 2003, 23, 11167–11177. [Google Scholar] [PubMed]
- Plenz, D. Neuronal avalanches and coherence potentials. Eur. Phys. J. Spec. Top. 2012, 205, 259–301. [Google Scholar] [CrossRef]
- Haken, H. Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology; Springer: New York, NY, USA, 1983. [Google Scholar]
- Kelso, J.A.S.; Dumas, G.; Tognoli, E. Outline of a general theory of behaviour and brain coordination. Neural Netw. 2013, 37, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Kelso, J.A.S. Behavioral neural pattern generation: The concept of neurobehavioral dynamical system (NBDS). In Cardiorespiratory and Motor Coordination; Koepchen, H.P., Huopaniemi, T., Eds.; Springer: Berlin, Germany, 1991. [Google Scholar]
- Kelso, J.A.S.; DelColle, J.; Schöner, G. Action-perception as a pattern formation process. In Attention and Performance XIII; Jeannerod, M., Ed.; Erlbaum: Hillsdale, NJ, USA, 1990; pp. 139–169. [Google Scholar]
- Haken, H.; Kelso, J.A.S.; Bunz, H. A theoretical model of phase transitions in human hand movements. Biol. Cybern. 1985, 51, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.L.; Kelso, J.A.S. Cortical coordination dynamics and cognition. Trends Cogn. Sci. 2001, 5, 26–36. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A. Operational architectonics of the human brain biopotential field: Towards solving the mind-brain problem. Brain Mind 2001, 2, 261–296. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A. Mapping of the Brain Operational Architectonics. In Focus on Brain Mapping Research; Chen, F.J., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2005; pp. 59–98. [Google Scholar]
- Kaplan, A.Y. Nonstationary EEG: Methodological and experimental analysis. Uspekhi Fiziol. Nauk 1998, 29, 35–55. (In Russian) [Google Scholar]
- Kelso, J.A.S.; Tognoli, E. Toward a complementary neuroscience: Metastable coordination dynamics of the brain. In Neurodynamics of Higher-Level Cognition and Consciousness; Kozma, R., Perlovsky, L., Eds.; Springer: Heidelberg, Germany, 2007; pp. 39–59. [Google Scholar]
- Kelso, J.A.S.; Engstrøm, D. The Complementary Nature; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Rabinovich, M.I.; Huerta, R.; Varona, P.; Afraimovich, V.S. Transient cognitive dynamics, metastability and decision making. PLoS Comput. Biol. 2008, 4, e1000072. [Google Scholar] [CrossRef] [PubMed]
- Werner, G. Metastability, criticality and phase transitions in brain and its models. Biosystems 2007, 90, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Schwappach, C.; Hutt, A.; Beim Graben, P. Metastable dynamics in heterogeneous neural fields. Front. Syst. Neurosci. 2015, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Stratton, P.; Wiles, J. Global segregation of cortical activity and metastable dynamics. Front. Syst. Neurosci. 2015, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Basar, E.; Basar-Eroglu, C.; Karakas, S.; Schurmann, M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef]
- Freeman, W.J. Indirect biological measures of consciousness from field studies of brains as dynamical systems. Neural Netw. 2007, 20, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P.L. Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav. Brain Sci. 2000, 23, 371–398. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Neves, C.F.H. Phenomenological architecture of a mind and operational architectonics of the brain: The unified metastable continuum. New Math. Nat. Comput. 2009, 5, 221–244. [Google Scholar] [CrossRef]
- Sengupta, B.; Tozzi, A.; Cooray, G.K.; Douglas, P.K.; Friston, K.J. Towards a neuronal Gauge Theory. PLoS Biol. 2016, 14, e1002400. [Google Scholar] [CrossRef] [PubMed]
- Freeman, W.J. Brains create macroscopic order from microscopic disorder by neurodynamics in perception. In Disorder Versus Order in Brain Function Essays in Theoretical Neurobiology; Århem, P., Blomberg, C., Liljenström, H., Eds.; World Scientific Publishing Co.: Singapore, 2000; pp. 205–219. [Google Scholar]
- Suntola, T. The dynamic universe—Space as a spherically closed energy system. Int. J. Astrophys. Space Sci. 2014, 2, 66–85. [Google Scholar]
- Annila, A.; Kallio-Tamminen, T. Tangled in entanglement. Phys. Essays 2012, 25, 495–499. [Google Scholar] [CrossRef]
- Freeman, W.J.; Kozma, R.; Vitiello, G. Adaptation of the generalized Carnot cycle to describe thermodynamics of cerebral cortex. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; IEEE Press: Piscataway, NJ, USA, 2012; pp. 3229–3236. [Google Scholar]
- Cox, D. Renewal Theory; Methuen & Co. Ltd.: London, UK, 1962. [Google Scholar]
- Paradisi, P.; Cesari, R.; Donateo, A.; Contini, D.; Allegrini, P. Diffusion scaling in event-driven random walks: An application to turbulence. Rep. Math. Phys. 2012, 70, 205–220. [Google Scholar] [CrossRef]
- Paradisi, P.; Allegrini, P. Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency. Chaos Solitons Fract. 2015, 81, 451–462. [Google Scholar] [CrossRef]
- Allegrini, P.; Paradisi, P.; Menicucci, D.; Gemignani, A. Fractal complexity in spontaneous EEG metastable-state transitions: New vistas on integrated neural dynamics. Front. Physiol. 2010, 1, 128. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kaplan, A.Y. The regularities of the discrete nature of multi-variability of EEG spectral patterns. Int. J. Psychophysiol. 2003, 47, 23–41. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A. Short-term EEG spectral pattern as a single event in EEG phenomenology. Open Neuroimaging J. 2010, 4, 130–156. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, D.B. The reticular activation system and perceptual integration. In Electrical Stimulation of the Brain; Sheer, D.E., Ed.; University of Texas Press: Austin, TX, USA, 1961; pp. 331–349. [Google Scholar]
- Jansen, B.H.; Cheng, W.-K. Structural EEG analysis: An explorative study. Int. J. Biomed. Comput. 1988, 23, 221–237. [Google Scholar] [CrossRef]
- Sanderson, A.C.; Segen, J.; Richey, E. Hierarchical modeling of EEG signals. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 405–415. [Google Scholar] [CrossRef]
- Lopes da Silva, F.N. Analysis of EEG ongoing activity: Rhythms nonstationarities. In Resent Advances in EEG and EMG Data Processing; Vamaguchi, N., Fujisawa, K., Eds.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 95–115. [Google Scholar]
- Allegrini, P.; Menicucci, D.; Bedini, R.; Fronzoni, L.; Gemignani, A.; Grigolini, P.; West, B.J.; Paradisi, P. Spontaneous brain activity as a source of ideal 1/f noise. Phys. Rev. E 2009, 80, 061914. [Google Scholar] [CrossRef] [PubMed]
- Bianco, S.; Ignaccolo, M.; Rider, M.S.; Ross, M.J.; Winsor, P.; Grigolini, P. Brain, music, and non-poisson renewal processes. Phys. Rev. E 2007, 75, 061911. [Google Scholar] [CrossRef] [PubMed]
- Papo, D. Timescales in cognitive neuroscience. Front. Physiol. 2013, 4, 86. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. The labile brain. I. Neuronal transients and nonlinear coupling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A. Alpha rhythm operational architectonics in the continuum of normal and pathological brain states: Current state of research. Int. J. Psychophysiol. 2010, 76, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Bagnato, S.; Boccagni, C.; Galardi, G. Toward operational architectonics of consciousness: Basic evidence from patients with severe cerebral injuries. Cogn. Process. 2012, 13, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Bagnato, S.; Boccagni, C.; Galardi, G. DMN operational synchrony relates to self-consciousness: Evidence from patients in vegetative and minimally conscious states. Open Neuroimaging J. 2012, 6, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Bagnato, S.; Boccagni, C.; Galardi, G. Long-term (six years) clinical outcome discrimination of patients in the vegetative state could be achieved based on the operational architectonics EEG analysis: A pilot feasibility study. Open Neuroimaging J. 2016, 10, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kallio-Tamminen, T. Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state. Cogn. Process. 2016, 17, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Fingelkurts, A.A.; Fingelkurts, A.A.; Kallio-Tamminen, T. Trait lasting alteration of the brain default mode network in experienced meditators and the experiential selfhood. Self Identity 2016, 15, 381–393. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fingelkurts, A.A.; Fingelkurts, A.A. Information Flow in the Brain: Ordered Sequences of Metastable States. Information 2017, 8, 22. https://doi.org/10.3390/info8010022
Fingelkurts AA, Fingelkurts AA. Information Flow in the Brain: Ordered Sequences of Metastable States. Information. 2017; 8(1):22. https://doi.org/10.3390/info8010022
Chicago/Turabian StyleFingelkurts, Andrew A., and Alexander A. Fingelkurts. 2017. "Information Flow in the Brain: Ordered Sequences of Metastable States" Information 8, no. 1: 22. https://doi.org/10.3390/info8010022
APA StyleFingelkurts, A. A., & Fingelkurts, A. A. (2017). Information Flow in the Brain: Ordered Sequences of Metastable States. Information, 8(1), 22. https://doi.org/10.3390/info8010022