TODIM Method for Single-Valued Neutrosophic Multiple Attribute Decision Making
Abstract
:1. Introduction
2. Preliminaries
2.1. NSs and SVNSs
- (1)
- if , then ;
- (2)
- if , then .
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- .
2.2. The TODIM Approach
- Step 1.
- Normalizing into .
- Step 2.
- Computing the dominance degree of over every alternative under attribute :
- Step 3.
- Deriving the overall dominance value of by the Equation (7):
- Step 4.
- Ranking all alternatives and selecting the most desirable alternative in accordance with . The alternative with minimum value is the worst. Inversely, the maximum value is the best one.
3. TODIM Method for SVN MADM Problems
- Step 1.
- Identifying the single-valued neutrosophic matrix in the MADM, where is a SVNN.
- Step 2.
- Calculating the relative weight of by using Equation (8).
- Step 3.
- Calculating the dominance degree of over each alternative under attribute by Equation (9).
- Step 4.
- Calculating the overall dominance degree of over each alternative by using Equation (12).
- Step 5.
- Deriving the overall value of each alternative using Equation (14).
- Step 6.
- Determining the order of the alternatives in accordance with .
4. TODIM Method for Interval Neutrosophic MADM Problems
- (1)
- if , then ;
- (2)
- if , .
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- .
- Step 1.
- Identifying the interval neutrosophic matrix in the MADM, where is an INN.
- Step 2.
- Calculating the relative weight of by using Equation (19).
- Step 3.
- Calculating the dominance degree of over each alternative under attribute by Equation (20).
- Step 4.
- Calculating the overall dominance degree of over each alternative by using Equation (23).
- Step 5.
- Deriving the overall value of each alternative using Equation (25).
- Step 6.
- Determining the order of the alternatives in accordance with .
5. Numerical Example and Comparative Analysis
5.1. Numerical Example 1
5.2. Comparative Analysis 1
5.3. Numerical Example 2
5.4. Comparative Analysis 2
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Buyukozkan, G.; Arsenyan, J.; Ruan, D. Logistics tool selection with two-phase fuzzy multi criteria decision making: A case study for personal digital assistant selection. Expert Syst. Appl. 2012, 39, 142–153. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.M.; Chen, J. Potential optimality and robust optimality in multiattribute decision analysis with incomplete information: A comparative study. Decis. Support Syst. 2013, 55, 679–684. [Google Scholar] [CrossRef]
- Xu, Z.S. The uncertain OWA operator. Int. J. Intell. Syst. 2002, 17, 569–575. [Google Scholar] [CrossRef]
- Ran, L.G.; Wei, G.W. Uncertain prioritized operators and their application to multiple attribute group decision making. Technol. Econ. Dev. Econ. 2015, 21, 118–139. [Google Scholar] [CrossRef]
- Van Laarhoven, P.J.M.; Pedrycz, W. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 1983, 11, 229–241. [Google Scholar] [CrossRef]
- Zhao, X.F.; Lin, R.; Wei, G.W. Fuzzy prioritized operators and their application to multiple attribute group decision making. Appl. Math. Model. 2013, 37, 4759–4770. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F.; Wang, H.J.; Lin, R. Fuzzy power aggregating operators and their application to multiple attribute group decision making. Technol. Econ. Dev. Econ. 2013, 19, 377–396. [Google Scholar] [CrossRef]
- Wei, G.W. FIOWHM operator and its application to multiple attribute group decision making. Expert Syst. Appl. 2011, 38, 2984–2989. [Google Scholar] [CrossRef]
- Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 2000, 8, 746–752. [Google Scholar]
- Herrera, F.; Martínez, L. An approach for combining linguistic and numerical information based on 2-tuple fuzzy linguistic representation model in decision-making. Int. J. Uncertain. Fuzziness 2000, 8, 539–562. [Google Scholar] [CrossRef]
- Herrera, F.; Martínez, L. A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making. IEEE Trans. Syst. Man Cybern. 2001, 31, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.S. A method for multiple attribute decision making with incomplete weight information in linguistic setting. Knowl.-Based Syst. 2007, 20, 719–725. [Google Scholar] [CrossRef]
- Wei, G.W. Some linguistic power aggregating operators and their application to multiple attribute group decision making. J. Intell. Fuzzy Syst. 2013, 25, 695–707. [Google Scholar]
- Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 2004, 168, 171–184. [Google Scholar] [CrossRef]
- Xu, Z.S. Induced uncertain linguistic OWA operators applied to group decision making. Inf. Fusion 2006, 7, 231–238. [Google Scholar] [CrossRef]
- Wei, G.W. Uncertain linguistic hybrid geometric mean operator and its Application to group decision making under uncertain linguistic environment. Int. J. Uncertain. Fuzziness 2009, 17, 251–267. [Google Scholar] [CrossRef]
- Wei, G.W. Interval-valued dual hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1881–1893. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W. Pythagorean uncertain linguistic aggregation operators for multiple attribute decision making. Int. J. Knowl.-Based Intell. Eng. Syst. 2017, 21, 165–179. [Google Scholar] [CrossRef]
- Wei, G.W. Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. Int. J. Mach. Learn. Cybern. 2016, 7, 1093–1114. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Lin, R.; Zhao, X.F.; Wei, G.W. Uncertain linguistic prioritized aggregation operators and their application to multiple attribute group decision making. Int. J. Uncertain. Fuzziness 2013, 21, 603–627. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F.; Lin, R.; Wang, H.J. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Xu, Z.S.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Zhao, X.F.; Wei, G.W. Some Intuitionistic Fuzzy Einstein Hybrid Aggregation Operators and Their Application to Multiple Attribute Decision Making. Knowl.-Based Syst. 2013, 37, 472–479. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F. Some induced correlated aggregating operators with intuitionistic fuzzy information and their application to multiple attribute group decision making. Expert Syst. Appl. 2012, 39, 2026–2034. [Google Scholar] [CrossRef]
- Wei, G.W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst. Appl. 2011, 38, 11671–11677. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Atanassov, K. Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1994, 64, 159–174. [Google Scholar] [CrossRef]
- Wei, G.W. Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. Int. J. Fuzzy Syst. 2015, 17, 484–489. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, H.J.; Lin, R. Application of correlation coefficient to interval-valued intuitionistic fuzzy multiple attribute decision making with incomplete weight information. Knowl. Inf. Syst. 2011, 26, 337–349. [Google Scholar] [CrossRef]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–356. [Google Scholar] [CrossRef]
- Bellman, R.; Zadeh, L.A. Decision making in a fuzzy environment. Manag. Sci. 1970, 17, 141–164. [Google Scholar] [CrossRef]
- Yager, R.R. Multiple objective decision-making using fuzzy sets. Int. J. Man-Mach. Stud. 1997, 9, 375–382. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy logic and approximate reasoning. Synthese 1975, 30, 407–428. [Google Scholar] [CrossRef]
- Pedrycz, W. Fuzzy sets in pattern recognition: Methodology and methods. Pattern Recognit. 1990, 23, 121–146. [Google Scholar] [CrossRef]
- Smarandache, F. A unifying field in logics. In Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, DE, USA, 1999. [Google Scholar]
- Smarandache, F. A unifying field in logics: Neutrosophic logic. In Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 3rd ed.; Xiquan: Phoenix, AZ, USA, 2003. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Majumdar, P.; Samant, S.K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 1245–1252. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Tian, Z.P.; Zhang, H.Y.; Wang, J.; Wang, J.Q.; Chen, X.H. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2016, 47, 3598–3608. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. World J. 2014, 2014, 645953. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. J. Intell. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 29, 2697–2706. [Google Scholar]
- Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. J. Intell. Fuzzy Syst. 2015, 28, 2443–2455. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex. 2016, 29, 681–697. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Ye, J. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods. Springerplus 2016, 5, 1488. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, P.; Chen, Y. Some Single Valued Neutrosophic Number Heronian Mean Operators and Their Application in Multiple Attribute Group Decision Making. Informatica 2016, 27, 85–110. [Google Scholar] [CrossRef]
- Mao, H.; Lin, G.-M. Interval neutrosophic fuzzy concept lattice representation and interval-similarity measure. J. Intell. Fuzzy Syst. 2017, 33, 957–967. [Google Scholar] [CrossRef]
- Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 2014, 38, 1170–1175. [Google Scholar] [CrossRef]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Ye, J. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 2015, 63, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Single valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput. 2017, 21, 817–825. [Google Scholar] [CrossRef]
- Ye, J. Single-valued neutrosophic clustering algorithms based on similarity measures. J. Classif. 2017, 34, 148–162. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute decision-making method based on the possibility degree ranking method and ordered weighted aggregation operators of interval neutrosophic numbers. J. Intell. Fuzzy Syst. 2015, 28, 1307–1317. [Google Scholar]
- Ye, J. Projection and bidirectional projection measures of single valued neutrosophic sets and their decision-making method for mechanical design schemes. J. Exp. Theor. Artif. Intell. 2016, 29, 731–740. [Google Scholar] [CrossRef]
- Ye, J. Interval neutrosophic multiple attribute decision-making method with credibility information. Int. J. Fuzzy Syst. 2016, 18, 914–923. [Google Scholar] [CrossRef]
- Ren, P.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econom. J. Econom. Soc. 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Abdellaoui, M.; Bleichrodt, H.; Paraschiv, C. Loss aversion under prospect theory: A parameter-free measurement. Manag. Sci. 2007, 53, 1659–1674. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.; Lima, M. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 1991, 16, 113–127. [Google Scholar]
- Chen, L.H.; Hung, C.C.; Tu, C.C. Considering the decision maker’s attitudinal character to solve multi-criteria decision-making problems in an intuitionistic fuzzy environ-ment. Knowl. Based Syst. 2012, 361, 29–38. [Google Scholar]
- Liu, H.C.; You, J.X.; Fan, X.J.; Chen, Y.Z. Site selection in waste management by the VIKOR method using linguistic assessment. Appl. Soft Comput. 2014, 214, 53–61. [Google Scholar] [CrossRef]
- Wu, J.; Chiclana, F. A risk attitudinal ranking method for interval-valued intuitionistic fuzzy numbers based on novel attitudinal expected score and accuracy functions. Appl. Soft Comput. 2014, 222, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Krohling, R.A.; de Souza, T.T.M. Combining prospect theory and fuzzy numbers to multi-criteria decision making. Exp. Syst. Appl. 2012, 39, 11487–11493. [Google Scholar] [CrossRef]
- Fan, Z.P.; Zhang, X.; Chen, F.D.; Liu, Y. Extended TODIM method for hybrid multiple attribute decision making problems. Knowl. Based Syst. 2013, 42, 40–48. [Google Scholar] [CrossRef]
- Lourenzutti, R.; Krohling, R.A. A study of TODIM in a intuitionistic fuzzy and random environment. Exp. Syst. Appl. 2013, 40, 6459–6468. [Google Scholar] [CrossRef]
- Krohling, R.A.; Pacheco, A.G.C.; Siviero, A.L.T. IF-TODIM: An intuitionistic fuzzy TODIM to multi-criteria decision making. Knowl. Based Syst. 2013, 53, 142–146. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.-Q.; Zhang, H.Y. A likelihood-based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics outsourcing. Comput. Ind. Eng. 2016, 99, 287–299. [Google Scholar] [CrossRef]
- Wei, C.; Ren, Z.; Rodríguez, R.M. A Hesitant Fuzzy Linguistic TODIM Method Based on a Score Function. Int. J. Comput. Intell. Syst. 2015, 8, 701–712. [Google Scholar] [CrossRef]
- Sang, X.; Liu, X. An interval type-2 fuzzy sets-based TODIM method and its application to green supplier selection. J. Oper. Res. Soc. 2016, 67, 722–734. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J. Extension of the TODIM Method to Intuitionistic Linguistic Multiple Attribute Decision Making. Symmetry 2017, 9, 95. [Google Scholar] [CrossRef]
- Liu, P.; Teng, F. An extended TODIM method for multiple attribute group decision-making based on 2-dimension uncertain linguistic Variable. Complexity 2016, 21, 20–30. [Google Scholar] [CrossRef]
- Tang, G. Approaches for Relational Multiple Attribute Decision Making with Interval Neutrosophic Numbers Based on Choquet Integral. Master Thesis, Shandong University of Finance and Economics, Jinan, China, 2016. [Google Scholar]
- Sahin, R. Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment. arXiv, 2014; arXiv:1412.5202. [Google Scholar]
- Wei, G.W. Picture 2-tuple linguistic Bonferroni mean operators and their application to multiple attribute decision making. Int. J. Fuzzy Syst. 2017, 19, 997–1010. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Pythagorean 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1129–1142. [Google Scholar] [CrossRef]
- Park, K.S. Mathematical programming models for charactering dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2004, 34, 601–614. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant bipolar fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1119–1128. [Google Scholar] [CrossRef]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant pythagorean fuzzy hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1105–1117. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z.S. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 2014, 29, 1061–1078. [Google Scholar] [CrossRef]
- Gou, X.; Xu, Z.; Ren, P. The Properties of Continuous Pythagorean Fuzzy Information. Int. J. Intell. Syst. 2016, 31, 401–424. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhang, N. A multiple criteria hesitant fuzzy decision making with Shapley value-based VIKOR method. J. Intell. Fuzzy Syst. 2014, 26, 1065–1075. [Google Scholar]
- Lu, M.; Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1197–1207. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 713–724. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. Int. J. Fuzzy Syst. 2017, 19, 607–614. [Google Scholar] [CrossRef]
- Wei, G.W.; Wang, J.M. A comparative study of robust efficiency analysis and data envelopment analysis with imprecise data. Expert Syst. Appl. 2017, 81, 28–38. [Google Scholar] [CrossRef]
- Garg, H. A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making. Int. J. Intell. Syst. 2016, 31, 886–920. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, J.; Li, X. A Hybrid Method for Pythagorean Fuzzy Multiple-Criteria Decision Making. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 403–422. [Google Scholar] [CrossRef]
- Garg, H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. J. Intell. Fuzzy Syst. 2016, 31, 529–540. [Google Scholar] [CrossRef]
- Wei, G.W. Picture fuzzy cross-entropy for multiple attribute decision making problems. J. Bus. Econ. 2016, 17, 491–502. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Iran. J. Fuzzy Syst. 2016, 13, 1–16. [Google Scholar]
- Wei, G.W.; Zhao, X.F.; Lin, R. Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making. Knowl.-Based Syst. 2013, 46, 43–53. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yang, S.Y.; Yue, Z.W. On inclusion measures of intuitionistic and interval-valued intuitionistic fuzzy values and their applications to group decision making. Int. J. Mach. Learn. Cybern. 2016, 7, 833–843. [Google Scholar] [CrossRef]
- Nayagam, V.L.G.; Sivaraman, G. Ranking of interval-valued intuitionistic fuzzy sets. Appl. Soft Comput. 2011, 11, 3368–3372. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in Multiple Attribute Decision Making. Int. J. Intell. Syst. 2016. [Google Scholar] [CrossRef]
- Wei, G.W.; Lu, M. Dual hesitant Pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch. Control Sci. 2017, 27, 365–395. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhao, X.F.; Wei, G.W. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 26, 2281–2290. [Google Scholar]
- Wei, G.W. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Projection models for multiple attribute decision making with picture fuzzy information. Int. J. Mach. Learn. Cybern. 2016. [Google Scholar] [CrossRef]
- Wei, G.W.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput. 2016. [Google Scholar] [CrossRef]
SVNWA | SVNWG | |
---|---|---|
A1 | (0.4591, 0.6307, 0.1473) | (0.4369, 0.6718, 0.1627) |
A2 | (0.7449, 0.2000, 0.1625) | (0.7384, 0.2000, 0.2124) |
A3 | (0.5627, 0.3868, 0.1692) | (0.5578, 0.4571, 0.1822) |
A4 | (0.5497, 0.3464, 0.1762) | (0.4799, 0.4381, 0.2067) |
A5 | (0.5822, 0.6389, 0.1741) | (0.5610, 0.6933, 0.2083) |
SVNWA | SVNWG | |
---|---|---|
A1 | 0.5604 | 0.5341 |
A2 | 0.7942 | 0.7753 |
A3 | 0.6689 | 0.6398 |
A4 | 0.6757 | 0.6117 |
A5 | 0.5898 | 0.5531 |
Order | |
---|---|
SVNWA | A2 > A4 > A3 > A5 > A1 |
SVNWG | A2 > A3 > A4 > A5 > A1 |
INWA | |
A1 | ([0.4591, 0.5611], [0.6307, 0.7342], [0.1116, 0.2144]) |
A2 | ([0.7449, 0.8928], [0.1866, 0.2881], [0.1625, 0.2742]) |
A3 | ([0.5627, 0.6634], [0.3868, 0.4925], [0.1692, 0.2734]) |
A4 | ([0.5497, 0.6674], [0.3464, 0.4657], [0.1762, 0.2844]) |
A5 | ([0.5822, 0.6863], [0.6389, 0.7421], [0.1741, 0.2825]) |
INWG | |
A1 | ([0.4369, 0.5395], [0.6718, 0.7805], [0.1223, 0.2227]) |
A2 | ([0.7384, 0.8895], [0.1905, 0.2906], [0.2124, 0.3144]) |
A3 | ([0.5578, 0.6581], [0.4571, 0.5685], [0.1822, 0.2825]) |
A4 | ([0.4799, 0.5851], [0.4381, 0.5440], [0.2067, 0.3077]) |
A5 | ([0.5610, 0.6624], [0.6933, 0.8082], [0.2083, 0.3097]) |
INWA | INWG | |
---|---|---|
A1 | 0.5549 | 0.5298 |
A2 | 0.7877 | 0.7700 |
A3 | 0.6507 | 0.6209 |
A4 | 0.6574 | 0.5948 |
A5 | 0.5718 | 0.5340 |
Ordering | |
---|---|
INWA | A2 > A4 > A3 > A5 > A1 |
INWG | A2 > A3 > A4 > A5 > A1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.-S.; Wei, C.; Wei, G.-W. TODIM Method for Single-Valued Neutrosophic Multiple Attribute Decision Making. Information 2017, 8, 125. https://doi.org/10.3390/info8040125
Xu D-S, Wei C, Wei G-W. TODIM Method for Single-Valued Neutrosophic Multiple Attribute Decision Making. Information. 2017; 8(4):125. https://doi.org/10.3390/info8040125
Chicago/Turabian StyleXu, Dong-Sheng, Cun Wei, and Gui-Wu Wei. 2017. "TODIM Method for Single-Valued Neutrosophic Multiple Attribute Decision Making" Information 8, no. 4: 125. https://doi.org/10.3390/info8040125
APA StyleXu, D. -S., Wei, C., & Wei, G. -W. (2017). TODIM Method for Single-Valued Neutrosophic Multiple Attribute Decision Making. Information, 8(4), 125. https://doi.org/10.3390/info8040125