Low-Complexity Synchronization Scheme with Low-Resolution ADCs
Abstract
:1. Introduction
2. OFDM Equivalent Signal Model
2.1. Principle of OFDM
2.2. Effect of Synchronization Bias on OFDM System
3. Analysis of Synchronization Algorithm
3.1. Training Sequence Design
3.2. Low-Resolution Quantization Scheme
3.3. Feedback-Based Synchronization Scheme with Low-Resolution ADCs
4. System Analysis and Simulation Results
4.1. Simulation System Parameters
4.2. Quantization Effects of Timing Synchronization
4.3. BER and MSE with Low-Resolution ADCs
4.4. Constellation Comparison
4.5. Performance Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.E.; Soong, A.C.K.; Zhang, J. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Shen, X.; Guizani, M.; Qiu, R.C.; Le-Ngoc, T. Ultra-Wideband Wireless Communications and Networks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Lee, J.S.; Su, Y.W.; Shen, C.C. A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007. [Google Scholar]
- Porcino, D.; Hirt, W. Ultra-wideband radio technology: Potential and challenges ahead. IEEE Commun. Mag. 2003, 41, 66–74. [Google Scholar] [CrossRef]
- Tatsis, G.; Votis, C.; Raptis, V.; et al. Performance of UWB-Impulse Radio Receiver Based on Matched Filter Implementation with Imperfect Channel Estimation. In American Institute of Physics Conference Series; American Institute of Physics: College Park, MD, USA, 2010. [Google Scholar]
- Tatsis, G.; Christofilakis, V.; Votis, C.; et al. BER Performance of an Ultra-Wideband Impulse Radio Correlator Receiver. Wseas Trans. Inf. Sci. Appl. 2011, 8, 401–406. [Google Scholar]
- Ranjan, M.; Larson, L.E. A Low-Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems. IEEE J. Solid-State Circuits 2007, 42, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.; Ge, L.; Li, S. Analysis of ultra wideband signal interference to DSSS receiver. In Proceedings of the IEEE Workshop on Signal Processing Advances in Wireless Communications, Rome, Italy, 15–18 June 2003. [Google Scholar]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef] [Green Version]
- Angelis, C.T.; Chronopoulos, S.K. System Performance of an LTE MIMO Downlink in Various Fading Environments. In Ambient Media and Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T. Massive MIMO for Next Generation Wireless Systems. IEEE Commun. Mag. 2013, 52, 186–195. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, Y. An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals. IEEE Trans. Broadcast. 2008, 54, 257–268. [Google Scholar] [CrossRef]
- Lim, J.; Myung, H.G.; Oh, K.; Goodman, D.J. Channel-Dependent Scheduling of Uplink Single Carrier FDMA Systems. In Proceedings of the Vehicular Technology Conference, Montreal, QC, USA, 25–28 September 2006; pp. 1–5. [Google Scholar]
- Tsiropoulou, E.E.; Kapoukakis, A.; Papavassiliou, S. Energy-efficient subcarrier allocation in SC-FDMA wireless networks based on multilateral model of bargaining. In Proceedings of the IFIP Networking Conference, Brooklyn, NY, USA, 22–24 May 2013; pp. 1–9. [Google Scholar]
- Chronopoulos, S.K.; Tatsis, G.; Raptis, V.; Kostarakis, P. Enhanced PAPR in OFDM without Deteriorating BER Performance. Int. J. Commun. Netw. Syst. Sci. 2011, 4, 164–169. [Google Scholar] [CrossRef]
- Chronopoulos, S.K.; Christofilakis, V.; Tatsis, G.; Kostarakis, P. Reducing Peak-to-Average Power Ratio of a Turbo Coded OFDM. Wirel. Eng. Technol. 2012, 3, 195–202. [Google Scholar] [CrossRef]
- Murmann, B. ADC Performance Survey 1997–2013. Available online: https://web.stanford.edu/~murmann/adcsurvey.html (accessed on 7 December 2018).
- Singh, J.; Madhow, U. Phase-Quantized Block Noncoherent Communication. IEEE Trans. Commun. 2013, 61, 2828–2839. [Google Scholar] [CrossRef]
- Sobel, D.A.; Brodersen, R.W. A 1 Gb/s Mixed-Signal Baseband Analog Front-End for a 60 GHz Wireless Receiver. IEEE J. Solid-State Circuits 2009, 44, 1281–1289. [Google Scholar] [CrossRef]
- Wadhwa, A.; Madhow, U. Near-Coherent QPSK Performance with Coarse Phase Quantization: A Feedback-Based Architecture for Joint Phase/Frequency Synchronization and Demodulation. IEEE Trans. Signal Process. 2016, 64, 4432–4443. [Google Scholar] [CrossRef]
- Chronopoulos, S.K.; Votis, C.; Raptis, V.; Tatsis, G.; Kostarakis, P. In depth analysis of noise effects in orthogonal frequency division multiplexing systems, utilising a large number of subcarriers. In Proceedings of the AIP Conference Proceedings, La Herradura, Spain, 13–17 September 2010; Volume 1203, pp. 967–972. [Google Scholar]
- Sklar, B. Digital Communications: Fundamentals and Applications; Publishing House of Electronics Industry: Beijing, China, 2006. [Google Scholar]
- Xuejian, T.; Tao, L. Principle and Application of OFDM Mobile Communication Technology; People’s Post and Telecommunications Press: Beijing, China, 2003. [Google Scholar]
- Tsiligkaridis, T.; Forsythe, K.W. A sequential Bayesian inference framework for blind frequency offset estimation. In Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing, Boston, MA, USA, 17–20 September 2015. [Google Scholar]
- Xu, G.Y. Research and Implementation of Synchronization in OFDM-UWB System. Master’s Thesis, Southeast University, Nanjing, China, 2010. (In Chinese). [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Q.; Xu, F. Impact of integer carrier frequency offset on the performance of frequency-domain contention. Electron. Lett. 2017, 53, 970–972. [Google Scholar] [CrossRef]
- Minn, H. On Timing Offset Estimation for OFDM Systems. IEEE Commun. Lett. 2000, 4, 242–244. [Google Scholar] [CrossRef]
- Chronopoulos, S.; Christofilakis, V.; Tatsis, G.; Kostarakis, P. Performance of Turbo Coded OFDM under the Presence of Various Noise Types. Wirel. Pers. Commun. Int. J. 2016, 87, 1319–1336. [Google Scholar] [CrossRef]
- Mollen, C.; Choi, J.; Larsson, E.G.; Heath, R.W. Performance of the Wideband Massive Uplink MIMO with One-Bit ADCs. IEEE Trans. Wirel. Commun. 2016, 16, 87–100. [Google Scholar] [CrossRef]
- Schmidl, T.M.; Cox, D.C. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 2002, 45, 1613–1621. [Google Scholar] [CrossRef]
- Cho, Y.S.; Kim, J.; Yang, W.Y.; Cho, Y.S. MIMO-OFDM Wireless Communications with MATLAB; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Chiu, Y.; Nikolic, B.; Gray, P.R. Scaling of analog-to-digital converters into ultra-deep-submicron CMOS. In Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 21 September 2005. [Google Scholar]
Subcarrier | 1024 (1 K Model) |
---|---|
Modulation | QPSK |
Quantization bits | 1/2/3/4/5 |
Superframe length | 559 |
FFT-points | 128 |
OFDM symbol length | 128 |
Guard interval | 32 |
Training sequence length | 32/64 |
SNR | 10 dB |
Frequency offset | 0.2 |
Channel delay | 1 |
Sampling point number | 8 |
Roll-off factor | 0.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, L.; Zhongqiang, L.; Xingzhong, X. Low-Complexity Synchronization Scheme with Low-Resolution ADCs. Information 2018, 9, 313. https://doi.org/10.3390/info9120313
Jun L, Zhongqiang L, Xingzhong X. Low-Complexity Synchronization Scheme with Low-Resolution ADCs. Information. 2018; 9(12):313. https://doi.org/10.3390/info9120313
Chicago/Turabian StyleJun, Liu, Luo Zhongqiang, and Xiong Xingzhong. 2018. "Low-Complexity Synchronization Scheme with Low-Resolution ADCs" Information 9, no. 12: 313. https://doi.org/10.3390/info9120313
APA StyleJun, L., Zhongqiang, L., & Xingzhong, X. (2018). Low-Complexity Synchronization Scheme with Low-Resolution ADCs. Information, 9(12), 313. https://doi.org/10.3390/info9120313