Multi-Valued Neutrosophic Distance-Based QUALIFLEX Method for Treatment Selection
Abstract
:1. Introduction
2. MVNSs
3. Multi-Valued Neutrosophic Distance Measures
3.1. The Normalized Multi-Valued Neutrosophic Distance
- H1.;
- H2.;
- H3.iff;
- H4. If, thenand.
- (1) if , then ;
- (2) if, then.
- (1) ;
- (2) ;
- (3) ;
- (4).
3.2. The Normalized Multi-Valued Neutrosophic Distance Difference
- (1) ;
- (2) if , then ;
- (3) if , then ;
- (4) if , then ;
- (5) ifand, then.
4. The Multi-Valued Neutrosophic Distance-Based QUALIFLEX Approach
5. Illustrative Example
5.1. Illustration of the Developed Method
5.2. Sensitivity Analysis
5.3. Comparison Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smarandache, F. A Unifying Field in Logics: Neutrosophy Logic; American Research Press: Santa Fe, NM, USA, 1999; pp. 1–141. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrsophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability; Infinite Study; American Research Press: Santa Fe, NM, USA, 2005. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Mohamed, A.B.; Gunasekaran, M.; Abduallah, G. A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Des. Autom. Embed. Syst. 2018, 22, 257. [Google Scholar]
- Mohamed, A.B.; Mohamed, M.; Smarandache, F. An extension of neutrosophic AHP–SWOT analysis for strategic planning and decision-making. Symmetry 2018, 10, 116. [Google Scholar]
- Abdel-Basset, M.; Mohamed, M.; Hussien, A.N.; Sangaiah, A.K. A novel group decision-making model based on triangular neutrosophic numbers. Soft Comput. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Mohamed, A.B.; Mohamed, M.; Smarandache, F. A hybrid neutrosophic group ANP-TOPSIS framework for supplier selection problems. Symmetry 2018, 10, 226. [Google Scholar]
- Mohamed, A.B.; Zhou, Y.Q.; Mohamed, M.; Chang, V. A group decision making framework based on neutrosophic VIKOR approach for e-government website evaluation. J. Intell. Fuzzy Syst. 2018, 34, 4213–4224. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Deli, I. Interval-valued neutrosophic soft sets and its decision making. Int. J. Mach. Learn. Cybern. 2017, 8, 665–676. [Google Scholar] [CrossRef]
- Deli, İ.; Broumi, S.; Ali, M. Neutrosophic soft multi-set theory and its decision making. Neutrosophic Sets Syst. 2014, 5, 65–76. [Google Scholar]
- Broumi, S.; Deli, İ. Correlation measure for neutrosophic refined sets and its application in medical Diagnosis. Palest. J. Math. 2016, 5, 135–143. [Google Scholar]
- Torra, V.; Narukawa, Y. On hesitant fuzzy sets and decision. In Proceedings of the 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 20–24 August 2009; pp. 1378–1382. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Wang, J.Q.; Li, X.E. An application of the TODIM method with multi-valued neutrosophic set. Control Decis. 2015, 30, 1139–1142. [Google Scholar]
- Ye, J. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. J. Intell. Syst. 2015, 24, 23–36. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H.; Wang, J.; Chen, X.H. Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 345–363. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wu, X.H. An Extension of the ELECTRE approach with multi-valued neutrosophic information. Neural Comput. Appl. 2017, 28, 1011–1022. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Yang, W.E. A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems. Int. J. Syst. Sci. 2017, 48, 425–435. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Hu, J.H.; Tian, C. Multi-criteria decision-making approach based on single-valued neutrosophic hesitant fuzzy geometric weighted Choquet integral heronian mean operator. J. Intell. Fuzzy Syst. 2018, 35, 3661–3674. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, H.Y.; Wang, J.Q. A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput. Appl. 2018, 29, 221–234. [Google Scholar] [CrossRef]
- Peng, H.G.; Zhang, H.Y.; Wang, J.Q. Probability multi-valued neutrosophic sets and its application in multi-criteria group decision-making problems. Neural Comput. Appl. 2018, 30, 563–583. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q. Cross-entropy measures of multi-valued neutrosophic sets and its application in selecting middle-level manager. Int. J. Uncertain. Quantif. 2017, 7, 155–176. [Google Scholar] [CrossRef]
- Benayoun, R.; Roy, B.; Sussman, B. ELECTRE: Une Méthode pour Guider le Choix en Présence de Points de vue Multiples; Note de Travail; SEMA: Paris, France, 1996; p. 49. [Google Scholar]
- Roy, B. The outranking approach and the foundations of ELECTRE methods. Theory Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]
- Paelinck, J.H.P. Qualitative multiple criteria analysis, environmental protection and multiregional development. Pap. Reg. Sci. 1976, 36, 59–76. [Google Scholar] [CrossRef]
- Paelinck, J.H.P. Qualitative multicriteria analysis: An application to airport location. Environ. Plan. A 1977, 9, 883–895. [Google Scholar] [CrossRef]
- Paelinck, J.H.P. Qualiflex: A flexible multiple-criteria method. Econ. Lett. 1978, 1, 193–197. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]
- Lahdelma, R.; Miettinen, K.; Salminen, P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). Eur. J. Oper. Res. 2003, 147, 117–127. [Google Scholar] [CrossRef]
- Martel, J.-M.; Matarazzo, B. Other outranking approaches. In Multiple Criteria Decision Analysis: State of the art Surveys; Springer: Berlin/Heidelberg, Germany, 2005; pp. 197–259. [Google Scholar]
- Griffith, D.A.; Paelinck, J.H.P. Qualireg, a qualitative regression method. Adv. Geogr. Inf. Sci. 2011, 1, 227–233. [Google Scholar]
- Chen, T.Y.; Wang, J.C. Interval-valued fuzzy permutation method and experimental analysis on cardinal and ordinal evaluations. J. Comput. Syst. Sci. 2009, 75, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.Y. Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inf. Sci. 2014, 261, 149–169. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chang, C.H.; Lu, J.-F.R. The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. Eur. J. Oper. Res. 2013, 226, 615–625. [Google Scholar] [CrossRef]
- Chen, T.Y. A signed-distance-based approach to importance assessment and multi-criteria group decision analysis based on interval type-2 fuzzy set. Knowl. Inf. Syst. 2013, 35, 193–231. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Z.S. Hesitant fuzzy QUALIFILEX approach with a signed distance-based comparison method for multiple criteria decision analysis. Expert Syst. Appl. 2015, 42, 873–884. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, H.Y.; Wang, J.Q. Fuzzy decision-making framework for treatment selection based on the combined QUALIFLEX-TODIM method. Int. J. Syst. Sci. 2017, 48, 3072–3086. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.Q. An extended QUALIFLEX method under probability hesitant fuzzy environment for selecting green suppliers. Int. J. Fuzzy Syst. 2017, 19, 1866–1879. [Google Scholar] [CrossRef]
- Ngan, R.T.; Son, L.H.; Cuong, B.C.; Ali, M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl. Soft Comput. 2018, 69, 393–425. [Google Scholar] [CrossRef]
- Şahin, R.; Liu, P. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 2016, 27, 1–13. [Google Scholar] [CrossRef]
Criteria | Schemes | ||
---|---|---|---|
<{0.4,0.6,0.7},{0.1},{0.2}> | <{0.4,0.5},{0.1},{0.2}> | <{0.4,0.5,0.7},{0.3},{0.2}> | |
<{0.3},{0.3},{0.5,0.7}> | <{0.4},{0.1},{0.4}> | <{0.1,0.3},{0.2},{0.4,0.6}> | |
<{0.3},{0.2},{0.4,0.6}> | <{0.4},{0.1},{0.5,0.6,0.7}> | <{0.3},{0.2},{0.5}> | |
<{0.5,0.7},{0.2},{0.2}> | <{0.3,0.4},{0.2},{0.5}> | <{0.3,0.6},{0.1},{0.6}> | |
<{0.3},{0.2},{0.5}> | <{0.2},{0.3},{0.3,0.5}> | <{0.3},{0.2},{0.4}> | |
<{0.3},{0.1},{0.6,0.7}> | <{0.3},{0.2},{0.6}> | <{0.1},{0.2},{0.5,0.6,0.8}> | |
<{0.2},{0.1},{0.4,0.6,0.9}> | <{0.2},{0.4},{0.6,0.8}> | <{0.1},{0.2},{0.5,0.7,0.8}> | |
<{0.1},{0.3},{0.6,0.8}> | <{0.1},{0.2},{0.7,0.9}> | <{0.3},{0.1},{0.7}> | |
<{0.7,0.8,0.9},{0.1},{0.1}> | <{0.6,0.7,0.8},{0.2},{0.3}> | <{0.6,0.9},{0.2},{0.2}> |
Criteria | Schemes | ||
---|---|---|---|
<{0.4,0.6,0.7},{0.1},{0.2}> | <{0.4,0.5},{0.1},{0.2}> | <{0.4,0.5,0.7},{0.3},{0.2}> | |
<{0.5,0.7},{0.3},{0.3}> | <{0.4},{0.1},{0.4}> | <{0.4,0.6},{0.2},{0.1,0.3}> | |
<{0.4,0.6},{0.2},{0.3}> | <{0.5,0.6,0.7},{0.1},{0.4}> | <{0.5},{0.2},{0.3}> | |
<{0.5,0.7},{0.2},{0.2}> | <{0.3,0.4},{0.2},{0.5}> | <{0.3,0.6},{0.1},{0.6}> | |
<{0.5},{0.2},{0.3}> | <{0.3,0.5},{0.3},{0.2}> | <{0.4},{0.2},{0.3}> | |
<{0.6,0.7},{0.1},{0.3}> | <{0.6},{0.2},{0.3}> | <{0.5,0.6,0.8},{0.2},{0.1}> | |
<{0.4,0.6,0.9},{0.1},{0.2}> | <{0.6,0.8},{0.4},{0.2}> | <{0.5,0.7,0.8},{0.2},{0.1}> | |
<{0.6,0.8},{0.3},{0.1}> | <{0.7,0.9},{0.2},{0.1}> | <{0.7},{0.1},{0.3}> | |
<{0.7,0.8,0.9},{0.1},{0.1}> | <{0.6,0.7,0.8},{0.2},{0.3}> | <{0.6,0.9},{0.2},{0.2}> |
c1 | −0.08 | −0.04 | −0.04 | c1 | −0.04 | −0.08 | −0.04 |
c2 | −0.12 | −0.04 | 0.08 | c2 | −0.04 | −0.12 | −0.08 |
c3 | 0.06 | −0.02 | −0.08 | c3 | −0.02 | 0.06 | 0.08 |
c4 | −0.22 | −0.14 | 0.08 | c4 | −0.14 | −0.22 | −0.08 |
c5 | −0.04 | −0.06 | −0.02 | c5 | −0.06 | −0.04 | 0.02 |
c6 | −0.06 | 0.04 | 0.10 | c6 | 0.04 | −0.06 | −0.1 |
c7 | −0.06 | −0.02 | 0.04 | c7 | −0.02 | −0.06 | −0.04 |
c8 | 0.08 | −0.02 | −0.1 | c8 | −0.02 | 0.08 | 0.10 |
c9 | −0.12 | −0.06 | 0.06 | c9 | −0.06 | −0.12 | −0.06 |
c1 | 0.08 | 0.04 | −0.04 | c1 | 0.04 | 0.08 | 0.04 |
c2 | 0.12 | 0.08 | −0.04 | c2 | 0.08 | 0.12 | 0.04 |
c3 | −0.06 | −0.08 | −0.02 | c3 | −0.08 | −0.06 | 0.02 |
c4 | 0.22 | 0.08 | −0.14 | c4 | 0.08 | 0.22 | 0.14 |
c5 | 0.04 | −0.02 | −0.06 | c5 | −0.02 | 0.04 | 0.06 |
c6 | 0.06 | 0.10 | 0.04 | c6 | 0.10 | 0.06 | −0.04 |
c7 | 0.06 | 0.04 | −0.02 | c7 | 0.04 | 0.06 | 0.02 |
c8 | −0.08 | −0.10 | −0.02 | c8 | −0.10 | −0.08 | 0.02 |
c9 | 0.12 | 0.06 | −0.06 | c9 | 0.06 | 0.12 | 0.06 |
c1 | 0.04 | −0.04 | −0.08 | c1 | −0.04 | 0.04 | 0.08 |
c2 | 0.04 | −0.08 | −0.12 | c2 | −0.08 | 0.04 | 0.12 |
c3 | 0.02 | 0.08 | 0.06 | c3 | 0.08 | 0.02 | −0.06 |
c4 | 0.14 | −0.08 | −0.22 | c4 | −0.08 | 0.14 | 0.22 |
c5 | 0.06 | 0.02 | −0.04 | c5 | 0.02 | 0.06 | 0.04 |
c6 | −0.04 | −0.10 | −0.06 | c6 | −0.10 | −0.04 | 0.06 |
c7 | 0.02 | −0.04 | −0.06 | c7 | −0.04 | 0.02 | 0.06 |
c8 | 0.02 | 0.10 | 0.08 | c8 | 0.10 | 0.02 | −0.08 |
c9 | 0.06 | −0.06 | −0.12 | c9 | −0.06 | 0.06 | 0.12 |
−0.2688 | −0.1707 | 0.0981 | −0.1707 | −0.2688 | −0.0981 | ||
0.2688 | 0.0981 | −0.1707 | 0.0981 | 0.2688 | 0.1707 | ||
0.1707 | −0.0981 | −0.2688 | −0.0981 | 0.1707 | 0.2688 |
−0.3414 | −0.5377 | 0.1963 | 0.5377 | −0.1963 | 0.3414 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.-J.; Tian, C. Multi-Valued Neutrosophic Distance-Based QUALIFLEX Method for Treatment Selection. Information 2018, 9, 327. https://doi.org/10.3390/info9120327
Peng J-J, Tian C. Multi-Valued Neutrosophic Distance-Based QUALIFLEX Method for Treatment Selection. Information. 2018; 9(12):327. https://doi.org/10.3390/info9120327
Chicago/Turabian StylePeng, Juan-Juan, and Chao Tian. 2018. "Multi-Valued Neutrosophic Distance-Based QUALIFLEX Method for Treatment Selection" Information 9, no. 12: 327. https://doi.org/10.3390/info9120327
APA StylePeng, J. -J., & Tian, C. (2018). Multi-Valued Neutrosophic Distance-Based QUALIFLEX Method for Treatment Selection. Information, 9(12), 327. https://doi.org/10.3390/info9120327