Dombi Aggregation Operators of Linguistic Cubic Variables for Multiple Attribute Decision Making
Abstract
:1. Introduction
2. Several Concepts of LCVs
- (a)
- If , then ;
- (b)
- If , then ;
- (c)
- If , then .
3. Some Dombi Operations of LCVs
4. Dombi Weighted Aggregation Operators of LCVs
4.1. Dombi Weighted Arithmetic Average Operator of LCVs
- (1)
- If n = 2, by the Equations (4) and (6) we can get:
- (2)
- Assume n = k, the result is as follows:
- (3)
- If n = k + 1, we have:
- (1)
- Idempotency: If there is LCVs collection for Vi = V (i = 1, 2, …, n) then LCVDWAA (V1, V2, …, Vn) = V.
- (2)
- Commutativity: Assume that the LCV set (V’1, V’2, V’3, …, V’n) is any permutation of (V1, V2, …, Vn). Then, there is LCVDWAA (V’1, V’2, …, V’n) = LCVDWAA (V1, V2, …, Vn).
- (3)
- Boundedness: If there is LCVs collection (i = 1, 2, …, n) , . Then, . ☐
- (1)
- Let , then we can get the result:
- (2)
- The proof is obvious.
- (3)
- Since . Then the following inequalities can be induced as:Hence, holds. ☐
4.2. Dombi Weighted Geometric Average Operator of LCVs
- (1)
- Idempotency: If there is LCVs collection for Vi = V (i = 1, 2, …, n). Then LCVDWGA (V1, V2, …, Vn) = V.
- (2)
- Commutativity: If the LCV set (V’1, V’2, …, V’n) is any permutation of (V1, V2, …, Vn). Then, there is LCVDWGA (V’1, V’2, …, V’n) = LCVDWGA (V1, V2, …, Vn).
- (3)
- Boundedness: If there is LCVs collection (i = 1,2, …, n) , . Then, .
5. MADM Method on Basis of the LCVDWAA or LCVDWGA Operator
6. Illustrative Examples and Discussions
6.1. Illustrative Examples
6.2. Discussion
6.2.1. Validity of the Method
6.2.2. The Influence of the Parameter ρ
6.2.3. The Sensitivity Analysis of Weights
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chatterjee, P.; Mondal, S.; Boral, S. A novel hybrid method for non-traditional machining process selection using factor relationship and Multi-Attributive Border Approximation Method. Facta Univ. Ser. Mech. Eng. 2017, 15, 439–456. [Google Scholar] [CrossRef]
- Petković, D.; Madić, M.; Radovanović, M. Application of the Performance Selection Index Method for Solving Machining MCDM Problems. Facta Univ. Ser. Mech. Eng. 2017, 15, 97–106. [Google Scholar] [CrossRef]
- Roy, J.; Adhikary, K.; Kar, S. A rough strength relational DEMATEL model for analysing the key success factors of hospital service quality. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–142. [Google Scholar] [CrossRef]
- Vasiljević, M.; Fazlollahtabar, H.; Stević, Ž. A rough multicriteria approach for evaluation of the supplier criteria in automotive industry. Decis. Mak. Appl. Manag. Eng. 2018, 1, 82–96. [Google Scholar] [CrossRef]
- He, X. Disaster assessment based on Dombi hesitant fuzzy information aggregation operators. Nat. Hazards 2017, 90, 1153–1175. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Yuen, K.K.F.; Lau, H.C.W. A linguistic possibility probability aggregation model for decision analysis with imperfect knowledge. Appl. Soft Comput. J. 2009, 9, 575–589. [Google Scholar] [CrossRef]
- Porcel, C.; Herrera-Viedma, E. Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries. Knowl. Based Syst. 2010, 23, 32–39. [Google Scholar] [CrossRef]
- Cabrerizo, F.J.; Pérez, I.J.; Herrera-Viedma, E. Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information. Knowl. Based Syst. 2010, 23, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Wei, G.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar 2-tuple linguistic aggregation operators in multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 1197–1207. [Google Scholar] [CrossRef]
- Gou, X.; Xu, Z.; Lei, Q. New operational laws and aggregation method of intuitionistic fuzzy information. J. Intell. Fuzzy Syst. 2016, 30, 129–141. [Google Scholar] [CrossRef]
- Wei, G. Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 2017, 33, 2119–2132. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute decision making method based on linguistic cubic variables. J. Intell. Fuzzy Syst. 2018, 34, 2351–2361. [Google Scholar] [CrossRef]
- Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 2004, 168, 171–184. [Google Scholar] [CrossRef]
- Wei, G.W. Uncertain linguistic hybrid geometric mean operator and its application to group decision making under uncertain linguistic environment. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2009, 17, 251–267. [Google Scholar] [CrossRef]
- Xu, Z.S. Induced uncertain linguistic OWA operators applied to group decision making. Inf. Fusion 2006, 7, 231–238. [Google Scholar] [CrossRef]
- Wei, G.W.; Zhao, X.F.; Lin, R.; Wang, H.J. Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 2013, 37, 5277–5285. [Google Scholar] [CrossRef]
- Park, J.H.; Gwak, M.G.; Kwun, Y.C. Uncertain linguistic harmonic mean operators and their applications to multiple attribute group decision making. Computing 2011, 93, 47–64. [Google Scholar] [CrossRef]
- Zhang, H. Uncertain linguistic power geometric operators and their use in multi attribute group decision making. Math. Probl. Eng. 2015, 2015, 948380. [Google Scholar] [CrossRef]
- Liu, P.; Qin, X. Power average operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision making. J. Intell. Fuzzy Syst. 2017, 32, 1029–1043. [Google Scholar] [CrossRef]
- Liu, P. Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making. J. Exp. Theor. Artif. Intell. 2017, 29, 1173–1202. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P. An extended VIKOR method for decision making problem with linguistic intuitionistic fuzzy numbers based on some new operational laws and entropy. J. Intell. Fuzzy Syst. 2017, 33, 1919–1931. [Google Scholar] [CrossRef]
- Ye, J. Some aggregation operators of interval neutrosophic linguistic numbers for multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2231–2241. [Google Scholar]
- Ye, J. Multiple Attribute Decision-Making Methods Based on the Expected Value and the Similarity Measure of Hesitant Neutrosophic Linguistic Numbers. Cogn. Comput. 2017, 10, 454–463. [Google Scholar] [CrossRef]
- Liu, P.; Shi, L. Some Neutrosophic Uncertain Linguistic Number Heronian Mean Operators and Their Application to Multi-Attribute Group Decision Making. Neural Comput. Appl. 2015, 28, 1079–1093. [Google Scholar] [CrossRef]
- Jun, Y.B.; Kim, C.S.; Yang, K.O. Cubic sets. Ann. Fuzzy Math. Inform. 2012, 4, 83–98. [Google Scholar]
- Dombi, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 1982, 8, 149–163. [Google Scholar] [CrossRef]
- Liu, P.D.; Liu, J.L.; Chen, S.M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 2017, 69, 1–24. [Google Scholar] [CrossRef]
ρ | E(V1) 2, E(V2) 3, E(V3) 4, E(V4) 5 | Ranking Order | The Best Candidate |
---|---|---|---|
1 | 0.6644, 0.6852, 0.7721, 0.7683 | V3 | |
2 | 0.6766, 0.7139, 0.7875, 0.7843 | V3 | |
3 | 0.6876, 0.7332, 0.7978, 0.7954 | V3 | |
4 | 0.6969, 0.7459, 0.8049, 0.8031 | V3 | |
5 | 0.7045, 0.7545, 0.8099, 0.8085 | V3 | |
10 | 0.7253, 0.7731, 0.8214, 0.8207 | V3 | |
15 | 0.7336, 0.7794, 0.8254, 0.8250 | V3 | |
20 | 0.7377, 0.7825, 0.8274, 0.8271 | V3 | |
30 | 0.7419, 0.7856, 0.8294, 0.8292 | V3 | |
50 | 0.7451, 0.7881, 0.8310, 0.8309 | V3 | |
100 | 0.7476, 0.7899, 0.8322, 0.8321 | V3 |
ρ | E(V1), E(V2), E(V3), E(V4) | Ranking Order | The Best Candidate |
---|---|---|---|
1 | 0.6402, 0.6113, 0.7299, 0.7262 | V3 | |
2 | 0.6300, 0.5827, 0.7143, 0.7076 | V3 | |
3 | 0.6219, 0.5633, 0.7039, 0.6929 | V3 | |
4 | 0.6155, 0.5503, 0.6968, 0.6816 | V3 | |
5 | 0.6106, 0.5414, 0.6918, 0.6730 | V3 | |
10 | 0.5980, 0.5213, 0.6800, 0.6509 | V3 | |
15 | 0.5932, 0.5143, 0.6756, 0.6424 | V3 | |
20 | 0.5907, 0.5107, 0.6734, 0.6381 | V3 | |
30 | 0.5883, 0.5071, 0.6711, 0.6337 | V3 | |
50 | 0.5863, 0.5043, 0.6693, 0.6303 | V3 | |
100 | 0.5848, 0.5021, 0.6680, 0.6276 | V3 |
ρ | E(V1), E(V2), E(V3) | Ranking Order | The Best Alterative |
---|---|---|---|
1 | 0.5117, 0.5795, 0.4804 | V2 | |
2 | 0.5280, 0.5932, 0.4927 | V2 | |
3 | 0.5404, 6005, 0.5016 | V2 | |
4 | 0.5490, 0.6052, 0.5084 | V2 | |
5 | 0.5551, 0.6085, 0.5135 | V2 | |
10 | 0.5688, 0.6165, 0.5267 | V2 | |
15 | 0.5736, 0.6193, 0.5317 | V2 | |
20 | 0.5761, 0.6208, 0.5342 | V2 | |
30 | 0.5785, 0.6222, 0.5367 | V2 | |
50 | 0.5804, 0.6233, 0.5387 | V2 | |
100 | 0.5819, 0.6242, 0.5402 | V2 |
ρ | E(V1), E(V2), E(V3) | Ranking Order | The Best Alterative |
---|---|---|---|
1 | 0.4750, 0.4826, 0.4393 | V2 | |
2 | 0.4598, 0.4353, 0.4144 | V1 | |
3 | 0.4488, 0.4078, 0.3946 | V1 | |
4 | 0.4414, 0.3907, 0.3810 | V1 | |
5 | 0.4364, 0.3796, 0.3718 | V1 | |
10 | 0.4262, 0.3563, 0.3523 | V1 | |
15 | 0.4229, 0.3486, 0.3459 | V1 | |
20 | 0.4213, 0.3447, 0.3427 | V1 | |
30 | 0.4197, 0.3409, 0.3395 | V1 | |
50 | 0.4185, 0.3379, 0.3370 | V1 | |
100 | 0.4176, 0.3356, 0.3352 | V1 |
Example | MADM 1 Method | Ranking Order | The Best Alterative |
---|---|---|---|
2 | LCVDWAA (ρ = 1 to 100) | V3 | |
LCVWAA 2 [13] | V3 | ||
LCVDWGA (ρ = 1 to 100) | V3 | ||
LCVWGA 3 [13] | V3 | ||
3 | LCVDWAA (ρ = 1 to 100) | V2 | |
LCVWAA [13] | V2 | ||
LCVDWGA (ρ = 1) LCVDWGA (ρ = 2 to 100) LCVWGA [13] | V2 V1 V2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Ye, J. Dombi Aggregation Operators of Linguistic Cubic Variables for Multiple Attribute Decision Making. Information 2018, 9, 188. https://doi.org/10.3390/info9080188
Lu X, Ye J. Dombi Aggregation Operators of Linguistic Cubic Variables for Multiple Attribute Decision Making. Information. 2018; 9(8):188. https://doi.org/10.3390/info9080188
Chicago/Turabian StyleLu, Xueping, and Jun Ye. 2018. "Dombi Aggregation Operators of Linguistic Cubic Variables for Multiple Attribute Decision Making" Information 9, no. 8: 188. https://doi.org/10.3390/info9080188
APA StyleLu, X., & Ye, J. (2018). Dombi Aggregation Operators of Linguistic Cubic Variables for Multiple Attribute Decision Making. Information, 9(8), 188. https://doi.org/10.3390/info9080188