
Citation: Jangabylova, A.;

Krassovitskiy, A.; Mussabayev, R.;

Ualiyeva, I. Greedy Texts Similarity

Mapping. Computation 2022, 10, 200.

https://doi.org/10.3390/

computation10110200

Academic Editor: Xinwei Cao

Received: 6 October 2022

Accepted: 4 November 2022

Published: 8 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Greedy Texts Similarity Mapping
Aliya Jangabylova 1,*, Alexander Krassovitskiy 1,* , Rustam Mussabayev 1,* and Irina Ualiyeva 2,*

1 Institute of Information and Computational Technologies, Pushkin Str., 125, Almaty 050010, Kazakhstan
2 Faculty of Information Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave.,

Almaty 050040, Kazakhstan
* Correspondence: ajangabylova@gmail.com (A.J.); akrassovitskiy@gmail.com or a.krassovitskiy@ipic.kz (A.K.);

rmusab@gmail.com or rustam@iict.kz (R.M.); i.ualiyeva@gmail.com or ualiyeva.irina@kaznu.kz (I.U.)

Abstract: The documents similarity metric is a substantial tool applied in areas such as determining
topic in relation to documents, plagiarism detection, or problems necessary to capture the semantic,
syntactic, or structural similarity of texts. Evaluated results of the similarity measure depend on the
types of word represented and the problem statement and can be time-consuming. In this paper,
we present a problem-independent algorithm of the similarity metric greedy texts similarity mapping
(GTSM), which is computationally efficient to be applied for large datasets with any preferred word
vectorization models. GTSM maps words in two texts based on a decision rule that evaluates word
similarity and their importance to the texts. We compare it with the well-known word mover’s
distance (WMD) algorithm in the k-nearest neighbors text classification problem and find that it
leads to similar or better results. In the correlation evaluation task of similarity measures with
human-judged scores, we demonstrate its higher correlation scores in comparison with WMD and
sentence mover’s similarity (SMS) and show that GTSM is a decent alternative for both word-level
and sentence-level tasks.

Keywords: text similarity; word mover distance; k-nearest neighbors; word embedding; text classification

1. Introduction

Similarity is the primary element that shows the relation between two objects, nu-
merical or categorical, and gives an interpreted result for human perception and machine
processing. The concept of similarity measure is widely used in many scientific and inter-
disciplinary fields such as decision making, cognitive science, natural language processing
(NLP), recommender systems, and many other areas [1–3]. In NLP, the similarity metric is
used to capture the semantic relation of words in a given context that shows to what extent
words express the same meaning.

Semantic similarity measures the strength of interactions between words and cap-
tures any direct or indirect semantic relations, Harispe et al. [4]. Textual semantic simi-
larity is utilized to identify common characteristics between cases, such as word–word,
word–document, document–document, or query–document. Semantic similarity is es-
sentially helpful for topic modeling analysis and semantic information retrieval systems
where it identifies the most optimal match of two objects. Generally speaking, different
approaches to semantic measurements should be used, depending on the type of data, task
formulation, and algorithm structure in which it is applied [5,6]. Given the words that can
be represented in vector forms, one can use a distance measure to decide if their numerical
representations are similar based on the decision rule: “the words are semantically similar
if the distance between them is less than some threshold".

The success of any similarity measure metrics relies on the vector representation
of words. Zhang et al. [7] show that bag of words (BOW) counts the frequency of
a word appearing in a sentence or document without considering the order, syntac-
tic or semantic of words, where the dimension of a vector space is the number of all

Computation 2022, 10, 200. https://doi.org/10.3390/computation10110200 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10110200
https://doi.org/10.3390/computation10110200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-2948-374X
https://orcid.org/0000-0001-7283-5144
https://orcid.org/0000-0003-3853-8896
https://doi.org/10.3390/computation10110200
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10110200?type=check_update&version=2

Computation 2022, 10, 200 2 of 16

unique words in the corpus. Term frequency-inverse document frequency (TF-IDF)
works in the same manner, but instead of giving more importance to common words,
it reduces its weight as the word appears more often in other documents, as stated in
Ramos et al. [8]. Two different word2vec methods proposed in Mikolov et al. [9], con-
tinuous bag-of-words and skip-gram model, obtain weights of shallow neural network
based on proximity probability in its surrounding context to use it as vectors for each
word with the dimension of a predefined number of neurons. To bypass the issue of
uninterpreted word vectors, Pennington et al. [10] introduced global vectors for word
representation (GloVe) which is based on statistical calculations of corpus’ word occur-
rences and generates numerical representation of words, regardless of their location in
the sentence or possibility of homonym pair. In 2019, Devlin et al. [11] introduced a bidi-
rectional encoder representations from transformer (BERT) which is a context-dependent
embedding where the same word apple will have different vectors in juicy apple and
apple juice. These vectors are coordinates of words in vector space, and by calculating the
distance between them, the similarity of words can be found.

Kusner et al. [12] proposed a new metric, denoted as word mover distance (WMD),
which measures the distance between texts in a semantic way based on the word2vec
model. The intuition behind the WMD method is that it minimizes the cumulative traveling
distance between sets of words in two documents, D and T.

However, WMD relies on the minimization of the total traveling distance between
all document’s words, including low relevancy ones. It implies limitations of WMD
to certain embedding types and has low relevancy for many NLP tasks. In [13], the
author stresses the need to incorporate word importance regarding their syntactic level
of connectivities into WMD.

In our work, we develop such a text similarity metric, denoted as greedy texts sim-
ilarity mapping (GTSM), that combines the semantics of word embeddings with word
weights and assembles by meta-heuristics into a reasonably practical estimator. Hence,
the estimator can be used with preferable vectorization models, word weights, and distance
metrics. We construct a heuristic that is simple enough, has a small number of parameters,
and can still handle the semantic features of words.

The benchmarked algorithm which will be used to compare the performance of
GTSM is WMD, sentence mover similarity (SMS), which is identical to WMD with
averaged sentence embeddings introduced by Clark et al. [14] and the cosine similarity
metric. The choice of WMD method is justified by its low retrieval error rate as stated
by Kusner et al. [12] and the error rate estimation by k-NN document classification task
that outperformed other similarity measurements, such as BOW, TF-IDF, latent semantic
indexing, latent Dirichlet allocation, and others. The full list and their descriptions can
be found in Kusner et al. [12].

2. Related Work

In 2015, Kusner et al. [12] published a paper on WMD that inflamed the NLP society
with its impressive results on similarity metrics. The main engine on which WMD is
constructed is earth mover distance (EMD), also known as Wasserstein distance, that
minimizes the total work needed to change one probability distribution into the form
of another. EMD was mainly applied in cases such as content-based image retrieval,
Rubner et al. [15], histogram comparisons, Ling and Okada [16], phishing web pages,
Fu et al. [17], and recently in vector-based text similarity, Kusner et al. [12].

Kusner et al. [12] assign each word i in document D the weight Di = count(i)/|D|,
where |D| is the word count of document D.

The semantic similarity for the WMD metric between a pair of words can be captured
through Euclidean distance denoted as a “travel cost” between word i and word j:

c(i, j) = ||xi − xj|| (1)

where || · || is L2 norm in Euclidean space.

Computation 2022, 10, 200 3 of 16

The transportation problem below states that from each word in document D it finds
the closest word in document T and aggregates to a total distance that D needs to travel to
exactly match T.

min
Tij≥0

n

∑
i=1

n

∑
j=1

Tij c(i, j) (2)

n

∑
j=1

Tij = Di (3)

n

∑
i=1

Tij = Tj (4)

where Tij ≥ 0 denotes what ’amount’ of word i in the document D transfers to word j
in the document T, and n is the size of vocabulary. Equations (3) and (4) ensure that the
amounts transformed from word i to words in T is Di and that the total amount of words i
in D transformed into j is Tj.

Although the results of WMD are very promising, this method is computationally
inefficient with average complexity time O(p3logp), where p is the number of unique
words in documents. As Kusner et al. [12] states, it is “prohibitive” to use this method for
high-dimensional datasets. As an alternative, to speed up the process, they also proposed
the word centroid method or relaxing boundaries WMD with the tradeoff in the error
rate reduction.

The sentence mover’s similarity (SMS) introduced by Clark et al. [14] circumvented
complexity issues by averaging word embeddings so that the similarity evaluation performs
only on sentence-levels which significantly saves computational time. That is, sentence to
documents is equivalent to word to sentences. The weight of each sentence embedding is
estimated by the number of words in the document Di = |i|/|D|, where in this case i is the
sentence in document D, and |i| is the word count in the corresponding sentence. As was
suggested in Kilickaya et al. [18], we transform WMD to word mover similarity (WMS) as
WMS(D, D′) = exp(-WMD(D, D′)).

3. Greedy Texts Similarity Mapping
3.1. Vector Representation of Words
3.1.1. Co-Occurrence

The co-occurrence matrix, also known as the word–context matrix, was presented
in Leydesdorff and Vaughan [19]. It preserves the idea that similar words tend to have
similar contexts. The co-occurrence matrix of words counts the number of times each
word pair appears inside the fixed context window of a particular size and is capable of
capturing the semantic relation between words. It might not be the best choice to use a
co-occurrence matrix for a very small corpus since it is more accurate if more samples are
given. Compression techniques can be applied for extremely large datasets to present every
word in a smaller dimension, as shown in Levy et al. [20].

We employ a co-occurrence matrix as a base for the calculation of a pairwise similarity
matrix. This distance matrix of size n × n will be used as a vector representation for
each word.

3.1.2. Weights of Words

We assign to every term in a text a unique weight that reflects its importance to the
text. There are various ways to calculate a word’s contribution level to the text’s general
meaning. We have considered several ways of calculating weights.

3.1.3. Centroid

Centroid-based word weightings find the coordinate in a vector space such that it is
the average of all word embeddings in a document D as was presented in Radev et al. [21].
Leaning on this centroid point C, ||C − vi|| is a distance from the vector representation

Computation 2022, 10, 200 4 of 16

of word i to the centroid; the terms having a larger distance are assigned to a smaller
weight value.

C = ∑
i

vi
|D|

Wi = 1− ||C− vi||
∑j ||C− vj||

3.1.4. TF-IDF Weights

It is a simple algorithm yet beneficial at effectively embracing content that is un-
dervalued. TF-IDF is broadly used in search engines since it allows extracting unique
keywords among huge datasets of documents. Term frequency TFid measures how fre-
quently the term is met in a document. Inverse document frequency, IDF, is a measure of
how important the term is regarding the whole corpus. The weight of term i in document
d is Salton and Buckley [22]:

Wid = TFid · IDFi (5)

where TFid = |i|/|d|, IDFi = log(N/ni), N is the total number of documents in the corpus,
ni is the number of documents containing the word i, and |d| is the length of document d.

According to Beel et al. [23], “TF-IDF was the most frequently applied weighting
scheme”. TF-IDF’s output can be used for further semantic analysis as was shown in our
document similarity metric.

3.1.5. Latent Dirichlet Analysis (LDA)

LDA, presented in Blei et al. [24], is a topic modelling algorithm that generates topics
and evaluates the topic distribution for every document in the corpus. It assigns a topic to
every word and finds the combination of topics that best describes a certain document.

Let us say given a number of topics such that {t1, . . . , tn}, we obtain the probability
distribution of every document to all topics and distribution of words to topics (obtained
by LDA). Given a document d, we choose a topic with a maximum probability such that
t∗ = argmaxt P(t|d), and to obtain a weight for the word w in document d, we select the
value that belongs to the topic t∗ in the word to topics probability distribution.

Wwd = P(w|t∗) (6)

3.2. Algorithm

The basic idea of GTSM is to estimate the mapping of words in two documents and
normalize it by filtering out essential word relations and taking into account corresponding
word importance. It consists of the two following parts: truncated mapping and normal-
ization part. The truncated mapping (nominator) estimates all possible relations between
word pairs and is truncated by introduced rigging parameters. For the normalization
part (denominator), we develop a general form of the ”ideal” relation between any two
texts/documents. Hence, if the calculated truncated mapping is substantially more signif-
icant than the ideal mapping, then the obtained similarity score is significant and >> 1.
Appendix A.4 illustrates the GTSM procedure.

3.2.1. Ideal Relations

First, we demonstrate how to calculate the normalization factor of the similarity
score. Let us say we are given two documents D and T where D = {mother, lasagna} and
T = {dinner, quantum, cheese}. The pairwise similarities of words in D to words in T are

Computation 2022, 10, 200 5 of 16

known. From every word in D, we choose the maximum similarity with the word in T and
vice versa, as shown in Equations (7) and (8) and Figure 1:

mDi = arg max
wTj

S(wDi , wTj) for all i = 1, . . . , |D| (7)

mTj = arg max
wDi

S(wDi , wTj) for all j = 1, . . . , |T| (8)

where mD is a distribution of maximum similarity values for words in D, and mT is a
distribution for words in T.

Figure 1. A graph with the significant relations between documents D and T. For a detailed
explanation refer to Appendix A.4.

We obtained distributions of maximum similarity value for each word in two doc-
uments, mD = (0.6, 0.8) and mT = (0.7, 0.2, 0.8), keeping the records of indices for what
words they joined idD = [1, 3] and idT = [2, 1, 2]. We assume that these distributions are
normal and want to find the words whose similarity values are out of the bounds of one
sigma µ − σ, so that we eliminate ’outliers’ (see Equation (9)). Attention is paid to the
lower bounds, the values that are less than mean, since a higher similarity means a stronger
relation.

decisionDi = mDi −mean(mD) + std(mD)

decisionTj = mTj −mean(mT) + std(mT) (9)

where i = 1, . . . , |D|, and j = 1, . . . , |T|
Corresponding values in (9) allow us to decide whether the corresponding words

would contribute to the similarity score or not (see Equation (10)). Back to our example, us-
ing the above equation we obtain decisionD = (0, 0.2) and decisionT = (0.477,−0.123, 0.577).
The values in decisionD are within 1σ and, thus, accept all words in D. There is a negative
value in decisionT , and that is why we reject the corresponding word quantum and con-
clude that it is not significant enough to contribute to the true similarity value between D
and T. Note that as more words are considered, the higher the similarity.

gDi =

{
1, if decisionDi ≥ 0
0, otherwise.

(10)

Computation 2022, 10, 200 6 of 16

3.2.2. Implementation Procedure

Consider a set of documents D and T are from the set. Then, wDi and wTj represent the
word i ∈ D and word j ∈ T. The GTSM metric calculates the similarity between documents
in the following way:

1. Obtain vector representation of words.
2. The similarity of two words is S(wDi , wTj) = SDiTj = 1− d(wDi , wTj), provided d is

normalized. Calculate a matrix of pairwise similarities.
3. Estimate word weights using one of the preferred methods (e.g., TF-IDF, etc.).
4. Calculate a truncated mapping (nominator in Equation (12)).
5. Set up a threshold, ε, by looking at which we decide whether a certain pair of words

has a significant connection. Set the decision function of whether a pair of words is
considered to be significant or not as:

f (wDi , wTj) =

{
1, if SDiTj ≥ ε

0, otherwise.
(11)

6. Evaluate Equation (12), where we conclude whether a pair of words coming from two
documents have a significant relation or not decided by f (wDi , wTj). Then, considering
their connection strength and weights, we normalize by ”standard” true relation of
all possible pairs from two documents which already knows what words contribute
to the similarity value.

GTSM(D, T) =
∑
|D|
i=1 ∑

|T|
j=1 f (wDi , wTj)kDi kTj(P + SDiTj)

∑
|D|
i=1 gDi kDi kT∗i

SDiT∗i
+ ∑

|T|
j=1 gTj kTj kD∗j

SD∗j Tj

(12)

where kDi and kTj are weights of word i in document D and word j in document T,
subscripts T∗i

and D∗j
denote indices i in idD and j in idT , and P is a regularization parameter.

In addition, note that if significant relations obtained by Equation (10) are dual, such
as in Figure 1 where lasagna is connected to cheese and vice versa, then we ignore one of
these connections while calculating the denominator in GTSM(D, T).

Assuming that all significant relations between documents are obtained, the intuition
of Step 6 is that the words with larger weights are much stronger representatives of their
documents, and those with smaller distances strengthen their relations. On the other hand,
if one of the words is essential and the second has a small contribution to its document, then
the distance should be larger since their significant alliance is supposed to reflect similar
relative importance. So, the multiplication of weights to the similarity value regularizes
the alliance likeness. The computation complexity of GTSM is O(n2), as pairwise word
similarities have to be calculated.

4. Evaluation

To examine the performance of GTSM, we set up two different tasks and tested them
in the context of (i) k-NN classification problem by comparing the F1 scores of every
method and (ii) correlation between metric benchmarks to learn if the GTSM’s results are
more significant. For both tasks, we used TF-IDF word weight in the GTSM metric. All
hyperparameters of GTSM were optimized with the Bayesian optimization Python library
provided by Martinez-Cantin [25].

4.1. Word Vectors

A shortage of data is one of the main challenges in NLP. Thus, it is popular and
convenient to use embeddings that are already pre-trained on millions or billions of data
and allow us to extract useful vector information. However, it underestimates the power

Computation 2022, 10, 200 7 of 16

of the regular co-occurrence matrix learned on a given dataset. We compared four word
representation baselines:

4.1.1. Co-Occurrence

Co-occurrence (cooc) is a statistical matrix that is trained on the entire corpus. First,
we calculated the BOW and multiplied the output of its transpose to count the frequency of
a word in every document.

4.1.2. Word2vec

Word2vec is a three-layer neural network-based model that, through n-grams of words,
predicts every word. We used a model (https://code.google.com/archive/p/word2vec/
accessed on 1 October 2022) trained on Google News dataset with 300-dimensional vectors.
Words that are not contained in a pre-trained word2vec model are dropped.

4.1.3. GloVe

Glove builds a co-occurrence matrix by estimating the probability of a word co-
occurring with the others. Since it is trained on a gigantic matrix, it factorizes a matrix
to a lower dimensional representation. The implementation procedure is the same as
for Word2vec with a pre-trained GloVe model (https://nlp.stanford.edu/projects/glove/
accessed on 3 October 2022).

4.1.4. BERT

BERT masks 15% of words in the document, and the Transformer generates a predic-
tion on erased words based on known words. It is a bidirectional language representation,
so it keeps the order of words. To extract word embeddings, we sum the vectors from the
last four layers, as was suggested in Alammar [26], and for texts/documents that have
more than 512 tokens (it is a limit), we keep the first and last 256 tokens as it is assumed
that they are most informative.

In Appendix A.1, you can find the combination of baselines we used to compare
against our algorithm.

4.2. Classification Task
4.2.1. Datasets

For the classification task, we evaluated all methods on supervised datasets: BBCSPORT [27]
is a sports article from 2004 to 2005 labeled by categories {athletics, cricket, football, rugby, ten-
nis}, CLASSIC is a set of extracts from academic papers labeled by names of publishers, AMA-
ZON—a set of labeled reviews that are categorized into five product groups {arts and crafts,
brands, games, hobbies, party supplies}, and RECIPE is recipe description documents classified
by region of origin.

All four datasets were obtained from Kusner et al. [12] with ready preprocessed
steps that are described in more detail (https://github.com/mkusner/wmd accessed on 6
October 2022). The data characteristics are shown in Appendix A.2.

4.2.2. Test Results

Document similarity metrics are applicable in various tasks, and our choice falls on
k-NN to compare with the results presented in Kusner et al. [12]. To assess the effectiveness
of GTSM as an evaluation metric, we compared k-NN results with the aforementioned
word representation vectors and metric baselines.

It is fair to say that GTSM requires some additional tests to fine-tune its parameters.
However, we consider it to be an advantage as it allows our model to be more flexible and
adapt to certain datasets. Through tests and observations, we share some insights on its
effect on metric performance.

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://github.com/mkusner/wmd

Computation 2022, 10, 200 8 of 16

4.2.3. Epsilon ε Parameter

Figure 2 depicts how the change in the ε parameter affects the trends of the F1
score, where all other parameters are fixed. For word2vec, if we assume the similarity
threshold to be less than 0.5, then it adds a lot of noise with false connections and leads
to the deterioration at the final similarity value. The peak for CLASSIC is ε from 0.50 to
0.52 where if less or more, then the F1 score decreases, while BBC and AMAZON rapidly
increase at ε > 0.60. We observe interesting trends when the vectorization method is a
co-occurrence matrix. There is a steep increase for BBC at ε = 0.96 and moderate increase
when ε > 0.80 for the rest data.

We see that for any dataset, tuning an ε parameter plays a key role in the GTSM
metric’s success, and considering its fast computational performance, it is quite easy to find
the threshold that suits some specific dataset best.

Figure 2. Representation of GTSM method’s ε parameter behaviour: (left) for word2vec; (right) for
co-ocurrence matrix.

4.2.4. P Parameter

Parameter P is a free parameter that can increase the similarity measure slightly to
some extent. It is important to note that the denominator that describes ”ideal” relations
for every pair of documents will have some errors since it is just a generalization and does
not consider every possible case. Thus, the parameter P compensates for this miscarriage.
The improvement resulted from sharpening word-to-word similarities and, hence, can be
regarded as the normalization of this pairwise metric. Figure 3 depicts how the change in P
parameter affects the trends of the F1 score.

For word2vec, there are peaks at range [−0.7,−0.5] followed by steady lines with some
improvements from 1% to 5% in comparison with P = 0, whereas for co-occurrence-based
vectors, the increase in the F1 score is only for AMAZON.

P parameter is helpful when there is a need to obtain as accurate results as possible,
but if it is not critically important, then P can be set to 0 by default.

Figure 3. Representation of the GTSM method’s P parameter behaviour: (left) for word2vec; (right)
for co-ocurrence matrix.

Computation 2022, 10, 200 9 of 16

4.2.5. Sigma σ Parameter

We construct a generalized ideal case of word relations (Equation (7)) by deciding if
the maximum similarity values of pairs are within 1σ. By putting rigid boundaries in 1σ,
we allow some minor error to appear that can be offset by narrowing or expansion of these
boundaries depending on a particular dataset and its peculiar properties. However, tuning
its boundaries might be insignificant and without a need to obtain a highest possible result it
can be set up automatically to 1σ.

Table 1 represents the k-NN results of the aforementioned methods on four docu-
ment classification datasets. Surprisingly, the co-occurrence matrix performs almost as
well as word2vec when combined with WMD and outperforms GTSM. The word2vec
is a probabilistic model that tries to maximize the probability of words occurring to-
gether that shows a resemblance with the co-occurrence matrix. While the word2vec is
trained on global information, the co-occurrence represents local information based on the
counts of co-occurred word pairs which is the first order co-occurrence relation defined in
Zhuang et al. [28]. Thus, the estimation based only on the given corpus might be the reason
why co-occurrence vectors have higher results than other embeddings.

Table 1. F1 score for k-NN compared to baseline methods.

BBC Amazon Classic Recipe

GTSM-cooc 98.2 92.6 96.9 61.0
GTSM-w2v 96.8 91.4 97.0 61.6
GTSM-BERT 96.4 87.1 95.6 57.3
Cos-BERT 90.5 88.7 94.8 46.9
WMD-w2v 95.4 92.6 97.2 57.0
WMD-cooc 95.0 91.8 96.4 54.8

There are various ways of extracting the vector representations, so there are several
ways to examine the best approach for the particular dataset. Moreover, even a small corpus
such as BBC is enough for co-occurrence-based vectors to capture the semantic relationship
of words. Regarding the BERT, we intended to show that it can be used not only as a metric
itself (see cos+BERT), but rather it can be improved with the GTSM similarity metric as
shown on BBC, CLASSIC and RECIPE datasets, even though it is not always the case as for
AMAZON. The possible reason why BERT shows slightly lower results than other word
representation vectors is that it was not fine-tuned to a specific dataset.

In these results, we withdraw that WMD as the slowest metric to compute,
Kusner et al. [12], and rather focus on its quality evaluation metric. In general, we see that
WMD performs better than GTSM with a difference of 0.2% on CLASSIC, the same as for
AMAZON. On RECIPE, it shows a 1.6% worse result and a considerable 2.8% difference for
BBC with respect to GTSM.

4.2.6. Weights

We evaluated three approaches that allow extracting the importance of words in
a document described in more detail in Section 3 and examined how each affects the
metric performance.

Figure 4 represents the comparison of TF-IDF, LDA, and centroid-based weights.
TF-IDF received the highest value in the F1 score with the number of neighbors k = 7,
and as k increases, its score slowly reduces. Approximately the same results are for
centroid-based weights, even though this method averages all words in the document
and uses this measure as a centroid to evaluate every word. LDA-based weights have
slightly lower evaluation results. Note that we choose only the highest value of the topic
assigned to the document, whereas there is a combination of the best topics that can be
taken into account.

We note that the proposed GTSM algorithm is general and is not limited to only the
suggested weighting methods.

Computation 2022, 10, 200 10 of 16

Figure 4. Comparison of weighting methods’ F1 scores in k-NN task for BBC dataset.

4.3. Correlation Task

For the correlation evaluation task, we considered a collection of student essays at
the Hewlett Foundation’s Automated Student Assessment Prize that was uploaded on
Kaggle (https://www.kaggle.com/c/asap-sas/data accessed on 6 October 2022). We used
a set of student responses to Question #3 from the exam where graders assigned responses
with scores from 0 to 3. All evaluators had a reference essay to compare and evaluate
student-authored essays. The reference essay is available in Appendix A.3.

The basic text preprocessing steps were to remove (i) punctuation, (ii) stopwords, (iii)
numeric strings, and (iv) tokens with length = 1, (v) normalize words to lowercase, (vi) apply
lemmatization, and (vi) tokenize. The dataset statistics are presented in Appendix A.2.

Table 2 presents the Spearman correlation, Myers and Sirois [29], results of listed
benchmarks with the human evaluated scores. The Spearman correlation test assesses the
strength of the monotonic relationship between two variables. In order to make it strong,
we tested all possible combinations of mentioned similarity metrics in Appendix A.1 and
word representations. Note that the purpose of these comparisons was not only to see what
vector models are better suited but rather to evaluate how they behave in various similarity
metrics. The results are quite interesting, and it can be concluded that not all combinations
of vectors and metrics have a sense of fitting together.

However, in a general view, the best results are shown by the GTSM metric that
can be suited to all given vector models. The highest correlation with human-graded
scores is provided by the cosine-BERT-based model, where the cosine metric averages
all word vectors to obtain sentence vectors and then calculates their cosine similarity; its
advantage of 0.9% over GTSM is not substantial. At the same time, the cosine metric has
the worst results with the co-occurrence-based vectors. In the real case, instead of using
a co-occurrence matrix with the cosine metric, it might be better to decompose the word–
context matrix into factors. The word–context matrix does not fit with WMS and SMS
well. In Clark et al. [14], it is reported that SMS with GloVe has better performance than
WMS with GloVe, while we obtained the opposite. The dataset size and preprocessing
steps could play a crucial role.

The WMS minimizes the distances between words in two texts; that is, it goes through
all the word pairs calculating Euclidean distances. Every vector in word2vec is 300-
dimensional, in BERT is 768-dimensional, and in co-occurrence there are 6177 dimensions;
let us remember that in high-dimensional space, points become uniformly distant, and the

https://www.kaggle.com/c/asap-sas/data

Computation 2022, 10, 200 11 of 16

ratio of nearest or farthest points to a given target approaches one Aggarwal et al. [30];
thus, the distinction might be meaningless.

The WMS and SMS are based on the minimization of pure distance measurements,
while the GTSM approach is trying to find a suitable mapping by adjusting its algorithm to
a particular dataset.

Table 2. Spearman correlation of metrics with human evaluations for different vector representations.

Cooc W2V GloVe BERT

GTSM 0.658 0.640 0.648 0.701
WMS 0.206 0.607 0.559 0.483
SMS 0.338 0.431 0.427 0.160
Cosine 0.097 0.633 0.557 0.709

We have also obtained p-values of the Williams test to estimate the significance of
vector models in the GTSM metric, where the null hypothesis states that the vectors’ scores
in the row are not significant over the column vectors. According to these results, there
was no significant difference in the choice of vector model.

5. Conclusions

We propose a text similarity measure, GTSM that can be applied in various tasks of
different corpus sizes using a preferred vectorization method. The proposed algorithm
intends to capture the essential word relations between two texts and evaluate their sim-
ilarity according to the weightings of words. The attractiveness of this algorithm is its
simplicity of implementation, the flexibility of tuning for specific data, relatively cheap
computations (average complexity time is O(n2) regarding the number of unique words in
documents), the ability of easy parallelization, and its acceptable F1 score. It is also self-
sufficient and does not need additional resources or computationally expensive steps (such
as in the preliminary calculation of word2vec or BERT), so it is not bonded to languages
with pre-trained vector models and can handle low-resource languages. We showed that a
co-occurrence matrix could be a good alternative for other vectorization models such as
BERT. As an advantage of the presented algorithm, it is possible to state that it relies on
vectorized word representations and, assuming such exist, no further concerns regarding
linguistic properties of the analyzed dataset.

The algorithm provides a unified way of using word embeddings and word weighting
to find a relation between two bags of words. It is worth noting that this method is flexible
enough to be used as a feature generating mechanism, e.g., in graph analysis. Nevertheless,
the feature representation and the number of classes strongly impact the classification
quality, as it is seen on the RECIPE dataset.

The GTSM algorithm has plenty of room for further expansions: e.g., regarding
the selection of advanced heuristic models for computing “ideal” relations or applying
alternative vectorizations and weightings (as discussed in Ibrahim and Landa-Silva [31] for
TF-IDF) in order to obtain more efficient training and lower error rate results.

Author Contributions: Conceptualization, A.J., A.K., R.M. and I.U.; methodology, A.J., A.K., R.M.
and I.U.; software, A.J., A.K., R.M. and I.U.; validation, A.J., A.K., R.M. and I.U.; formal analysis,
A.J., A.K., R.M. and I.U.; investigation, A.J., A.K., R.M. and I.U.; resources, A.J., A.K., R.M. and
I.U.; data curation, A.J., A.K., R.M. and I.U.; writing—original draft preparation, A.J., A.K., R.M.
and I.U.; writing—review and editing, A.J., A.K., R.M. and I.U.; visualization, A.J., A.K., R.M. and
I.U.; supervision, A.J., A.K., R.M. and I.U.; project administration, A.J., A.K., R.M. and I.U.; funding
acquisition, A.J., A.K., R.M. and I.U. All authors have read and agreed to the published version of
the manuscript.

Funding: The work was funded by the Committee of Science of Ministry of Education and Science of
the Republic of Kazakhstan under the grants AP08856034, AP09259324, AP09058174.

Institutional Review Board Statement: Not applicable.

Computation 2022, 10, 200 12 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets and vectorization models used in experiments are freely
available at Kusner et al. [12] and https://github.com/mkusner/wmd (accessed on 6 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GTSM Greedy texts similarity mapping
WMD Word Mover’s Distance
SMS Sentence Mover’s Similarity
cooc Co-occurrence (matrix)

Appendix A

Appendix A.1. List of used vectorization models and similarity metrics.

Table A1. Baselines.

Task Metric Vector Form

GTSM Cooc/W2V/BERT
Classification WMD Cooc/W2V/BERT

Cosine BERT

GTSM Cooc/W2V/GloVe/ BERT

Correlation WMD Cooc/W2V/GloVe/ BERT
SMS Cooc/W2V/GloVe/ BERT

Cosine Cooc/W2V/GloVe/ BERT

Appendix A.2. Datasets and Results

Table A2. Classification task dataset statistics.

Train Test Vocab Avg Document Num
Size Size Size Size Classes

BBCSPORT 517 220 10,076 116.5 5
CLASSIC 4965 2128 18,070 38.7 4

AMAZON 5600 2400 30,183 197 4
RECIPE 3059 1311 5202 48.3 15

Table A3. Correlation task dataset statistics.

Essays

Corpus size 1727
Vocabulary size 6177

Avg # tokens per sentence 8.6
Avg # tokens per document 52.4

Avg # sentences per document 5.9

https://github.com/mkusner/wmd

Computation 2022, 10, 200 13 of 16

Table A4. Parameters of GTSM obtained by Bayesian Optimization.

ε P x × σ Result

Cooc

BBC 0.9803 −0.6 0.8226 98.2
AMAZON 0.8637 −0.6 0.9195 92.6
CLASSIC 0.92 −0.7 0.8954 96.9
RECIPE 0.9999 0.0 0.9801 60.9

w2v

BBC 0.9049 −0.7 1.438 96.8
AMAZON 0.7024 −0.7 0.7757 91.4
CLASSIC 0.4858 −0.5 0.8994 97.0
RECIPE 0.9994 −0.6 2 61.6

BERT

BBC 0.8059 −0.5 0.1462 96.4
AMAZON 0.81 −0.5 0.6235 87.1
CLASSIC 0.7981 −0.8 0.6997 95.6
RECIPE 0.84 0 0.99 57.3

Appendix A.3. Reference Essay

The setting seems to be as formidable an opponent as the actual workout. It seems
as if everything is against the cyclist, including nature. As the day progresses,
and the cyclist’s journey continues, the setting becomes harsher and harsher.
After passing the first “town”, the “sun was beginning to beat down.” In need of
water, all a cruel pump gives him is “a tarlike substance.” His sufferings continue,
increasingly pummeled by his surroundings and his thirst for water. If dehydra-
tion was not enough, the flat terrain gave way to “rolling hills”, which would only
punish his legs more. Reaching possible salvation, his hopes are crushed when
the “Welch’s Grape Juice Factory” turns out to be abandoned. All these events
are enough to destroy anyone’s spirit. The cyclist almost gives up hope to accept
certain death. He has become ferociously beaten by his very surroundings. It
appears as if he is fated to die alone in the blistering heat. Although he hangs his
head in despair, he still continues on the path of disappointment. In a twist of fate,
he encounters a thriving store where he halts and drinks. Finally encountering
his salvation, this particular setting brings new hope and relief to the cyclist who
has finally survives his trek through nature.

Computation 2022, 10, 200 14 of 16

Appendix A.4. GTSM illustration

Figure A1. Illustrative representation of the GTSM algorithm. It is assumed that we already
performed vectorization of words at this stage, obtained weights, and calculated similarities
between words. Orange dashed line (denominator): (a) relations between all words in two
documents, (b) set up a threshold ε and ignore all relations that are less than ε, (c) consider
weights of words. Then multiply similarities to the corresponding weights of words. Blue
solid line (numerator): (a) relations between all words in two documents, (b) leave only those
similarities that are maximum in respect to each word where dashed line denotes to ignore the
link and orange line to consider that there is a repeated relation, (c) record them in lists mD and
mT , (d) calculate mean and standard deviation for each list, estimate values of which words are
out 1σ and ignore those words and their relations. We note, that in case ε is selected such that
the majority of relations between wD1 and wT1 are included (e.g., ε = 0.1), then GTSM algorithm
takes into account even non-essential word relations. The evaluated similarity score can be
greater than one. In order to normalize the obtained value to (0, 1)-range, it is possible to use
elementary mapping, such as f (s) = 1− exp(−s). However, since obtained similarity score is
used in k-NN (or other evaluation methods) and only relative values matter(i.e., whether two
documents are more similar than the others), such normalization can be omitted. From this
example it is clear that ε parameter (as well as P parameter) of the GTSM can be used as rigging
parameters for specific problem domains.

Computation 2022, 10, 200 15 of 16

References
1. Veisi, H.; Golchinpour, M.; Salehi, M.; Gharavi, E. Multi-level text document similarity estimation and its application for

plagiarism detection. Iran J. Comput. Sci. 2022, 5, 143–155. [CrossRef]
2. Arabi, H.; Akbari, M. Improving plagiarism detection in text document using hybrid weighted similarity. Expert Syst. Appl. 2022,

207, 118034. [CrossRef]
3. Mishra, S.; Panda, S.K. Asymmetrically weighted cosine similarity measure for recommendation systems. In Proceedings of the

Advances in Distributed Computing and Machine Learning; Rout, R.R., Ghosh, S.K., Jana, P.K., Tripathy, A.K., Sahoo, J.P., Li, K.C., Eds.;
Springer Nature Singapore: Singapore, 2022; pp. 489–500.

4. Harispe, S.; Ranwez, S.; Janaqi, S.; Montmain, J. Semantic similarity from natural language and ontology analysis. In Synthesis
Lectures on Human Language Technologies; Morgan & Claypool: San Rafael, CA, USA, 2015; Volume 8, p. 433. [CrossRef]

5. Wang, J.; Dong, Y. Measurement of Text Similarity: A Survey. Information 2020, 11, 421. [CrossRef]
6. Mudgil, P.; Gupta, P.; Mathur, I.; Joshi, N. A novel similarity measure for context-based search engine. In Proceedings of the

International Conference on Innovative Computing and Communications, New Delhi, India, 17–18 February 2023; Gupta,
D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.; Springer Nature Singapore: Singapore, 2023;
pp. 791–808.

7. Zhang, Y.; Jin, R.; Zhou, Z.H. Understanding bag-of-words model: A statistical framework. Int. J. Mach. Learn. Cybern. 2010,
1, 43–52. [CrossRef]

8. Ramos, J. Using tf-idf to determine word relevance in document queries. In Proceedings of the First Instructional
Conference on Machine Learning, Piscataway, NJ, USA, 21–24 August 2003; Volume 242, pp. 133–142. Available online:
https://www.researchgate.net/file.PostFileLoader.html?id=587340a5dc332da8fc3aaae3&assetKey=AS%3A448525403201536
%401483948197307 (accessed on 1 October 2022).

9. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

10. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 26–28 October 2014; Association for Computational
Linguistics: Doha, Qatar, 2014; pp. 1532–1543. [CrossRef]

11. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational
Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [CrossRef]

12. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K. From word embedding to document distances. In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 957–966.

13. Wei, C.; Wang, B.; Kuo, C.C.J. SynWMD: Syntax-aware Word Mover’s Distance for Sentence Similarity Evaluation. arXiv 2022,
arXiv:2206.10029. [CrossRef]

14. Clark, E.; Celikyilmaz, A.; Smith, N.A. Sentence mover’s similarity: Automatic evaluation for multi-sentence texts. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association
for Computational Linguistics: Florence, Italy, 2019; pp. 2748–2760. [CrossRef]

15. Rubner, Y.; Tomasi, C.; Guibas, L.J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 2000, 40, 99–121.
[CrossRef]

16. Ling, H.; Okada, K. An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal.
Mach. Intell. 2007, 29, 840–853. [CrossRef] [PubMed]

17. Fu, A.Y.; Wenyin, L.; Deng, X. Detecting phishing web pages with visual similarity assessment based on earth mover’s distance
(EMD). IEEE Trans. Dependable Secur. Comput. 2006, 3, 301–311. [CrossRef]

18. Kilickaya, M.; Erdem, A.; Ikizler-Cinbis, N.; Erdem, E. Re-evaluating automatic metrics for image captioning. arXiv 2016,
arXiv:1612.07600.

19. Leydesdorff, L.; Vaughan, L. Co-occurrence matrices and their applications in information science: Extending ACA to the Web
environment. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 1616–1628. [CrossRef]

20. Levy, O.; Goldberg, Y.; Dagan, I. Improving Distributional Similarity with Lessons Learned from Word Embeddings. Trans. Assoc.
Comput. Linguist. 2015, 3, 211–225. [CrossRef]

21. Radev, D.R.; Jing, H.; Styś, M.; Tam, D. Centroid-based summarization of multiple documents. Inf. Process. Manag. 2004,
40, 919–938. [CrossRef]

22. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [CrossRef]
23. Beel, J.; Gipp, B.; Langer, S.; Breitinger, C. Paper recommender systems: A literature survey. Int. J. Digit. Libr. 2016, 17, 305–338.

[CrossRef]
24. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
25. Martinez-Cantin, R. Bayesopt: A bayesian optimization library for nonlinear optimization, experimental design and bandits.

J. Mach. Learn. Res. 2014, 15, 3735–3739.
26. Alammar, J. The Illustrated Transformer. 2019. Available online: http://jalammar.github.io/illustrated-bert/ (accessed on 1

October 2022).

http://doi.org/10.1007/s42044-022-00098-6
http://dx.doi.org/10.1016/j.eswa.2022.118034
https://doi.org/10.2200/S00639ED1V01Y201504HLT027
http://dx.doi.org/10.3390/info11090421
http://dx.doi.org/10.1007/s13042-010-0001-0
https://www.researchgate.net/file.PostFileLoader.html?id=587340a5dc332da8fc3aaae3&assetKey=AS%3A448525403201536%401483948197307
https://www.researchgate.net/file.PostFileLoader.html?id=587340a5dc332da8fc3aaae3&assetKey=AS%3A448525403201536%401483948197307
http://doi.org/10.3115/v1/D14-1162
http://doi.org/10.18653/v1/N19-1423
http://doi.org/10.48550/ARXIV.2206.10029
http://doi.org/10.18653/v1/P19-1264
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1109/TPAMI.2007.1058
http://www.ncbi.nlm.nih.gov/pubmed/17356203
http://dx.doi.org/10.1109/TDSC.2006.50
http://dx.doi.org/10.1002/asi.20335
http://dx.doi.org/10.1162/tacl_a_00134
http://dx.doi.org/10.1016/j.ipm.2003.10.006
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1007/s00799-015-0156-0
http://jalammar.github.io/illustrated-bert/

Computation 2022, 10, 200 16 of 16

27. Greene, D.; Cunningham, P. Practical solutions to the problem of diagonal dominance in kernel document clustering. In
Proceedings of the 23rd International Conference on Machine Learning (ICML’06), Baltimore, MD, USA, 25–29 June 2006; ACM
Press: New York, NY, USA, 2006; pp. 377–384.

28. Zhuang, Y.; Xie, J.; Zheng, Y.; Zhu, X. Quantifying context overlap for training word embeddings. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 587–593.

29. Myers, L.; Sirois, M.J. Spearman correlation coefficients, differences between. Encycl. Stat. Sci. 2004, 12, ess5050.
30. Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the surprising behavior of distance metrics in high dimensional space. In

Proceedings of the International Conference on Database Theory, London, UK, 4–6 January 2001; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 420–434.

31. Ibrahim, O.A.; Landa-Silva, D. A new weighting scheme and discriminative approach for information retrieval in static and
dynamic document collections. In Proceedings of the 2014 14th UK Workshop on Computational Intelligence (UKCI), Bradford,
UK, 8–10 September 2014; pp. 1–8.

	Introduction
	Related Work
	Greedy Texts Similarity Mapping
	Vector Representation of Words
	Co-Occurrence
	Weights of Words
	Centroid
	TF-IDF Weights
	Latent Dirichlet Analysis (LDA)

	Algorithm
	Ideal Relations
	Implementation Procedure

	Evaluation
	Word Vectors
	Co-Occurrence
	Word2vec
	GloVe
	BERT

	Classification Task
	Datasets
	Test Results
	Epsilon Parameter
	P Parameter
	Sigma Parameter
	Weights

	Correlation Task

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4

	References

