Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance and Finance
Abstract
:1. Introduction
2. Modelling Framework
3. Deep Neural Network Approximation for Linear PIDEs
3.1. Representation as Solution of a Minimization Problem
3.2. The Algorithm
4. Case Study for the Linear Case: Reinsurance Counterparty Credit Risk
4.1. Valuation of an Insurance Contract with Doubly Stochastic Poisson Arrivals
4.2. Computing the CVA for the Reinsurance Contract
5. Deep Learning Approximation for Semilinear PIDEs
5.1. Basic Method
5.2. Alternative Method
6. Case Study for the Semilinear Case: Optimal Credit Portfolios with Risk Capital Constraints
6.1. The Case without Constraints
6.2. The Optimization Problem with Constraints
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PIDE | Partial integro differential equation |
PDE | Partial differential equation |
BSDE | Backward stochastic differential equation |
FBSDEJ | Forward backward stochastic differential equation with jumps |
DNN | Deep neural network |
MC | Monte Carlo |
RCCR | Reinsurance counterparty credit risk |
CVA | Credit value adjustment |
References
- Cont, R.; Voltchkova, E. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 2005, 43, 1596–1626. [Google Scholar] [CrossRef]
- Andersen, L.; Andreasen, J. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 2000, 4, 231–262. [Google Scholar] [CrossRef]
- Matache, A.M.; Von Petersdorff, T.; Schwab, C. Fast deterministic pricing of options on Lévy driven assets. ESAIM Math. Model. Numer. Anal. 2004, 38, 37–71. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.; Lee, Y. A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 2011, 49, 2598–2617. [Google Scholar] [CrossRef]
- Briani, M.; Natalini, R.; Russo, G. Implicit–explicit numerical schemes for jump–diffusion processes. Calcolo 2007, 44, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Giles, M.B. Multilevel Monte Carlo path simulation. Oper. Res. 2008, 56, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Glasserman, P. Monte Carlo Methods in Financial Engineering; Springer: New York, NY, USA, 2003. [Google Scholar]
- Metwally, S.A.; Atiya, A.F. Using Brownian bridge for fast simulation of jump-diffusion processes and barrier options. J. Deriv. 2002, 10, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Jentzen, A.; Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, 8505–8510. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Jentzen, A. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 2017, 5, 349–380. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Long, J. Convergence of the deep BSDE method for coupled FBSDEs. Probab. Uncertain. Quant. Risk 2020, 5, 5. [Google Scholar] [CrossRef]
- Kremsner, S.; Steinicke, A.; Szölgyenyi, M. A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics. Risks 2020, 8, 136. [Google Scholar] [CrossRef]
- Huré, C.; Pham, H.; Warin, X. Deep backward schemes for high-dimensional nonlinear PDEs. Math. Comput. 2020, 89, 1547–1579. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.; Becker, S.; Cheridito, P.; Jentzen, A.; Neufeld, A. Deep splitting method for parabolic PDEs. SIAM J. Sci. Comput. 2021, 43, A3135–A3154. [Google Scholar] [CrossRef]
- Beck, C.; Becker, S.; Grohs, P.; Jaafari, N.; Jentzen, A. Solving the Kolmogorov PDE by means of deep learning. J. Sci. Comput. 2021, 88, 73. [Google Scholar] [CrossRef]
- Pham, H.; Warin, X.; Germain, M. Neural networks-based backward scheme for fully nonlinear PDEs. SN Partial. Differ. Equ. Appl. 2021, 2, 16. [Google Scholar] [CrossRef]
- Germain, M.; Pham, H.; Warin, X. Approximation error analysis of some deep backward schemes for nonlinear PDEs. SIAM J. Sci. Comput. 2022, 44, A28–A56. [Google Scholar] [CrossRef]
- Castro, J. Deep Learning Schemes For Parabolic Nonlocal Integro-Differential Equations. arXiv 2021, arXiv:2103.15008. [Google Scholar] [CrossRef]
- Al-Aradi, A.; Correia, A.; Naiff, D.d.F.; Jardim, G.; Saporito, Y. Applications of the Deep Galerkin Method to Solving Partial Integro-Differential and Hamilton-Jacobi-Bellman Equations. arXiv 2019, arXiv:1912.01455. [Google Scholar]
- Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018, 375, 1339–1364. [Google Scholar] [CrossRef] [Green Version]
- Boussange, V.; Becker, S.; Jentzen, A.; Kuckuck, B.; Pellissier, L. Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions. arXiv 2022, arXiv:2205.03672. [Google Scholar]
- Frey, R.; Köck, V. Convergence Analysis of the Deep Splitting Scheme: The Case of Partial Integro-Differential Equations and the associated FBSDEs with Jumps. arXiv 2022, arXiv:2206.01597. [Google Scholar]
- Gihman, I.; Skohorod, A. The Theory of Stochastic Processes; Springer: New York, NY, USA, 1980; Volume III. [Google Scholar]
- Kliemann, W.; Koch, G.; Marchetti, F. On the unnormalized solution of the filtering problem with counting process observations. IEEE Trans. Inf. Theory 1990, 36, 1415–1425. [Google Scholar] [CrossRef]
- Ethier, S.; Kurtz, T.G. Markov Processes: Characterization and Convergence; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Pham, H. Optimal stopping of controlled jump diffusion processes: A viscosity solution approach. J. Math. Syst. Estim. Control 1998, 8, 1–27. [Google Scholar]
- Colaneri, K.; Frey, R. Classical Solutions of the Backward PIDE for Markov Modulated Marked Point Processes and Applications to CAT Bonds. Insur. Math. Econ. 2021, 101 Pt B, 498–507. [Google Scholar] [CrossRef]
- Ceci, C.; Colaneri, K.; Frey, R.; Köck, V. Value adjustments and dynamic hedging of reinsurance counterparty risk. SIAM J. Financ. Math. 2020, 11, 788–814. [Google Scholar] [CrossRef]
- Frey, R.; Köck, V. Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance Mathematics. arXiv 2021, arXiv:2109.11403. [Google Scholar]
- Xu, G.; Zheng, H. Approximate basket options valuation for a jump-diffusion model. Insur. Math. Econ. 2009, 45, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Cardaliaguet, P.; LeHalle, C.A. Mean Field Game of Controls and an Application to Trade Crowding. Math. Financ. Econ. 2018, 12, 335–363. [Google Scholar] [CrossRef]
- Cartea, Á.; Jaimungal, S.; Penalva, J. Algorithmic and High-Frequency Trading; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Øksendal, B.K.; Sulem, A. Applied Stochastic Control of Jump Diffusions; Springer: Berlin/Heidelberg, Germany, 2007; Volume 498. [Google Scholar]
K | ||||
---|---|---|---|---|
1 | 1 | 110 |
Epochs | Mean | Std. Deviation | Rel. Error | Runtime |
---|---|---|---|---|
1000 | 6.3126 | 0.5001 | 0.0645 | 17.6 |
2000 | 6.3048 | 0.1151 | 0.0208 | 34.9 |
3000 | 6.3073 | 0.1388 | 0.0189 | 52.1 |
4000 | 6.3360 | 0.0898 | 0.0122 | 69.2 |
5000 | 6.3116 | 0.0468 | 0.0068 | 86.3 |
5 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, R.; Köck, V. Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance and Finance. Computation 2022, 10, 201. https://doi.org/10.3390/computation10110201
Frey R, Köck V. Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance and Finance. Computation. 2022; 10(11):201. https://doi.org/10.3390/computation10110201
Chicago/Turabian StyleFrey, Rüdiger, and Verena Köck. 2022. "Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance and Finance" Computation 10, no. 11: 201. https://doi.org/10.3390/computation10110201
APA StyleFrey, R., & Köck, V. (2022). Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance and Finance. Computation, 10(11), 201. https://doi.org/10.3390/computation10110201