
Citation: Pan, Z.; Hur, B.; Myles, K.;

Adelman, Z. Development of

Raspberry Pi 4 B and 3 B+

Micro-Kubernetes Cluster and IoT

System for Mosquito Research

Applications. Computation 2022, 10,

221. https://doi.org/10.3390/

computation10120221

Academic Editor: Karlheinz Schwarz

Received: 12 November 2022

Accepted: 6 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Development of Raspberry Pi 4 B and 3 B+ Micro-Kubernetes
Cluster and IoT System for Mosquito Research Applications
Zhihao Pan 1,* , Byul Hur 1,*, Kevin Myles 2 and Zach Adelman 2

1 Department of Engineering Technology and Industrial Distribution, Texas A&M University,
College Station, TX 77843, USA

2 Department of Entomology, Texas A&M University, College Station, TX 77843, USA
* Correspondence: zhihaopan@tamu.edu (Z.P.); byulmail@tamu.edu (B.H.)

Abstract: Detecting infected female mosquitoes can be vital when they transmit harmful diseases such
as dengue, malaria, and others. Infected mosquitoes can lay hundreds of eggs in breeding locations,
and newborns can transmit diseases to more victims. Hence, gathering and monitoring climate
data and environmental conditions for mosquito research can be valuable in preventing mosquitoes
from spreading diseases. To obtain microclimate data, users such as mosquito researchers may need
weather stations in various locations and an inexpensive, effective IoT system for monitoring multiple
specific locations. We can achieve this in each location by sending microclimate data from wireless
sensor end-node devices to a nearby middle-node aggregator. Each location’s aggregator can send
the data to a cluster, such as a customized Raspberry Pi-based cluster with Micro-Kubernetes as its
distributed operating system. The applications, such as the database and web server, can be wrapped
up by docker containers and deployed as containerized applications on the cluster. This cluster can
store the data, available to be accessed via Android and web applications. The results of this work
show that the measurement data of the specific locations are more accurate than those from nearby
third-party weather stations. This proposed IoT cluster system in this paper can be used to provide
accurate microclimate data for the selected locations.

Keywords: Micro-Kubernetes (MicroK8s); mosquito research; Raspberry Pi; cluster; Internet of
Things (IoT)

1. Introduction

Mosquito research applications have been developed and used worldwide because
they are approaches for understanding and analyzing mosquitoes’ behaviors. Mosquitoes
feed on other organisms’ blood, mainly by biting their targets with their proboscis during
an organism’s moments of inattention. While ingesting their target’s blood, mosquitoes can
potentially transfer illnesses they carry into their target’s body. Therefore, the mosquito is
one of the world’s most dangerous creatures because it can easily infect mammals, birds,
and humans with harmful diseases, such as dengue, malaria, West Nile, and Zika [1–3].
Moreover, due to changes in temperature, humidity, wind, and other microclimate variables,
viruses and other diseases can quickly spread further and mutate during viral transmission
among different targets, including infected ones [4,5]. With recent advancements in the
microcomputer cluster and Internet of Things (IoT) systems, mosquito research applications
that use these systems to gather and track microclimate data in different locations have
become indispensable for predicting, detecting, controlling, and preventing mosquito
breeding and disease spreading [6,7].

Due to the invention of microcomputers such as Raspberry Pi (RPi), mosquito re-
searchers can use an RPi-based distributed computing cluster system instead of a simple
single computing system. The single computing system refers to a cloud, typically offered
as a cloud computing service by companies such as Amazon Web Services, Microsoft Azure,

Computation 2022, 10, 221. https://doi.org/10.3390/computation10120221 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10120221
https://doi.org/10.3390/computation10120221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-8051-7979
https://orcid.org/0000-0001-5901-7171
https://doi.org/10.3390/computation10120221
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10120221?type=check_update&version=2

Computation 2022, 10, 221 2 of 13

and Google Cloud Platform. The RPi-based cluster refers to multiple RPis grouped over a
network that functions as a single computer. Each RPi is considered a node in the cluster,
and with Micro-Kubernetes (MicroK8s), load balancing can distribute tasks, which are
workloads, to each node.

There are advantages to using the RPi-based MicroK8s cluster system instead of a
single computing system. The cluster can be scalable and flexible because new nodes can be
connected to the cluster to solve the problem of an overloaded workload without changing
or stopping any ongoing applications. When one node or application is down, the cluster
will provide highly available and fault-tolerant services, and the other nodes will take on
the additional workload of that failed node or application. Regarding cloud computing,
the third-party cloud provider may share the tenant data with business partners, law
enforcement agents, or governments, especially when a law enforcement agency subpoenas
them for tenant data. When using a cloud, the long-term availability and dependability are
unpredictable because the cloud provider or service may not exist tomorrow. Additionally,
the cloud service architecture is less flexible and less secure in terms of performance [8].

Computer clusters can focus on docker containerized applications, such as databases
and web services, and reduce the workload of storing data and hosting web services by
using Kubernetes (K8s) [9]. Since 2015, K8s has been designed by Google to be an open-
source platform that can automate containerized applications’ deployment, management,
and scaling across the nodes of the cluster [10]. The RPi-based cluster can use different
container orchestration tools as the distribution system for load balancing, but MicroK8s
was chosen in this study. MicroK8s is a lightweight version of Kubernetes (K8s), an open-
source container orchestration tool that can manage containerized applications, workloads,
and services. By using the cluster in the IoT system, IoT devices can connect with the
cluster so the cluster can store and view the microclimate data from different locations by
mosquito researchers.

In this paper, a low-cost customized service solution is presented, which is a Raspberry
Pi(s) Micro-Kubernetes cluster consisting of one RPi 4 B and three RPi 3 B+s. It uses the
method of one master node and multiple worker nodes. We only used four RPis as the
adequate solution because the cluster can add more RPis later, and the supply chain and
chip shortage in 2021∼2022 [11]. In our scenario, we simply deploy our cluster in an IoT
system based on our customized Internet of Things (IoT) network and IoT edge devices, like
an aggregator. The aggregator, such as the sensor hub and gateway, allows microclimate
data from end nodes to be sent across the internet to our cluster [12,13]. This IoT network
technique combines older work with our cluster to form a data acquisition system to allow
any individual to study, predict, and prevent the spreading of mosquito-borne diseases.
The work presented in this paper is part of the first author’s master’s thesis work in 2022,
and as of this publication, the thesis is not publicly accessible as it is in the embargo period.

This paper is organized into three parts. First, we start with the proposed method.
After that, this study’s measurements are shown, and the advantages of the proposed
method are described. Lastly, we close our paper with a conclusion and some perspectives
for our proposed works.

2. Proposed Method
2.1. Iot System Architecture

In this section, the proposed IoT system is described, and it is the architecture of an
efficient end-to-end process for individuals to monitor the microclimate data from any
wireless sensor end-node devices. Figure 1 represents an IoT system operated by a cluster
and four aggregators (remote data stations) in an IoT network.

The remote data stations (on the right side of Figure 1) are the middle node (between
the cluster and the end nodes) for gathering and transferring the temperature, humidity,
pressure, light, and GPS (Global Positioning System) coordinates in the mosquito breeding
locations, such as standing water and containers that hold water. However, in our case, the
sensors are physically connected to the remote data stations, but originally they are con-

Computation 2022, 10, 221 3 of 13

nected to the wireless sensor end-node devices, which are not included in this study’s scope.

Figure 1. IoT system for mosquito research applications [14,15].

The task of environmental conditions and climate data collection can be challenging
due to the devices’ complex setup and the harsh environment. The local microclimate data
can be obtained from third-party sites, but they may not necessarily accurately represent
the data at a specific location [16,17]. Therefore, our remote data stations are located
near mosquito breeding sites. Each station is an aggregator for periodically collecting
microclimate data from various sensor nodes in the potential mosquito breeding sites.
Additionally, a single RPi board is an adequate solution for each station because it can
reduce the network transmission loading relief and periodically upload the microclimate
data to our cluster. From others’ research, individuals can also use an RPi in a fully
controlled street lighting isle and human-powered vehicle [18,19].

Due to the efficiency of the IoT system, the IoT system based on cloud services has been
used for structural health monitoring to increase human safety and reduce maintenance
costs of the system [20]. Additionally, RPi has been used as the IoT edge device to gather
climate data and upload it to the cloud services [21]. Moreover, in 2016, Keijo Heljanko
designed and developed a Kubernetes cluster consisting of five RPis to act as the IoT sensor
node to send pictures and temperature values to a cloud platform that used the Apache
Kafka framework [22]. However, comparing our IoT system and cluster to the work done by
others, our IoT system can increase the number of aggregators for monitoring microclimate
variables on more mosquito breeding sites. Additionally, because of the aggregator’s
abilities, we can reduce latency and bandwidth costs when data are transitioning from the
wireless sensor end-node devices to the cluster.

2.2. MicroK8s Cluster Architecture

In Figure 2, the architecture of the Micro-Kubernetes cluster is shown. Micro-Kubernetes
(MicroK8s), a 1.23 stable version, is a lightweight and fully compliant Kubernetes (K8s)
distribution system for our cluster. It can provide and simplify the usage of K8s for each
RPi in our cluster. Each RPi has installed Ubuntu 18.04 LTS (Long Term Support) as the
operating system because Canonical supports and features its version of MicroK8s [23].
The primary reasons for using MicroK8s are the redundancy, scalability, and reliability
factors. The monotony of MicroK8s provides uninterrupted services, such as database
and web service, to the users. By using MicroK8s, users can add more services by adding
more RPis (worker nodes) to the cluster. With the redundancy and scalability of MicroK8s,
users can depend on the cluster to collect microclimate data from each location’s remote
data station.

The cluster consists of one master node and three worker nodes. Each node has
components that will be described. The master node (on the left) controls and manages the
worker nodes (on the right) and distributes the workloads, such as hosting web services,
to them. It is also responsible for orchestrating containers containing the web application
and other applications on the worker nodes. The master node has a few more add-ons,

Computation 2022, 10, 221 4 of 13

including a Kube API (Application Programming Interface) server, controller, scheduler,
and etcd.

Figure 2. The MicroK8s architecture for the distributed system in this study [24,25].

With the use of these add-ons, users can automate the management of the cluster. The
Kube API server, the front end of the cluster, allows the users, management devices, and all
external communication to interact with the cluster. The controller is the orchestration’s
brain, which makes decisions to bring up new containers when nodes, containers, or
other endpoints go down. The scheduler is responsible for distributing the workloads or
containers to different nodes, including the master node. The etcd is the key value store
used by MicroK8s to store all data used in the cluster in a distributed manner.

Besides the significant components from the master node, all nodes have pod(s) and a
Docker daemon. A pod is a group of one or more containers, such as Docker containers,
and also a single instance of an application, such as a database. Nodes can increase the
number of pods across nodes to share the workloads when more users are accessing the
application. The Docker daemon manages the objects, such as the Docker image, container,
and network. Web and other applications can be built and run in the Docker container.

Besides the master node, there are three worker nodes. Each of them contains the
Kubelet, Kube proxy, container runtime, and optional add-on(s). The Kubelet is the node
agent of the worker node. It can register the worker with the Kube API server to allow
itself to communicate with the master node. The Kube proxy is used as the network proxy,
which maintains the network rules on the worker node. The container runtime is used to
manage and support the worker node continuously in a life cycle. If the worker nodes have
extra memory usage, they can add optional add-ons, such as CoreDNS, Calico, and Flannel,
which extend the functionality of MicroK8s.

Figure 3 shows the front and top view of the RPi MicroK8s cluster. The enclosure is
made of metal and can house four RPi boards.

Each RPi is firmly installed on the enclosure. The RPi on the left side of Figure 3 is an
RPi 4 B board. The rest of them are RPi 3 B+ boards. Each RPi is connected to an Ethernet
switch, which provides internet access and communication between the RPi boards. The
RPi 4 B board has an external USB flash drive to store the database file. All of the database
data and configuration files are stored in the USB flash drive.

The dimensions of our cluster are 20.6 × 13.6 × 16.2 cm. The back view of the cluster
shows the case fans and the port that allows power cables to connect to the RPis and the
Ethernet switch. Two case fans are used, and a device fan is installed on the RPi 4 B board.

Computation 2022, 10, 221 5 of 13

Figure 3. The RPi MicroK8s cluster. (a) Front view of the cluster. (b) Top view of the cluster.

2.3. Remote Data Station

Figure 4 shows a remote data station (aggregator). In our scenario, we used four
of these and placed them in four different mosquito breeding locations. It has a 3D-
printed enclosure to protect the device. Additionally, it is an embedded system with
a Raspberry Pi 3 B board and sensors. The sensors are supposed to be connected to
the wireless sensor end-node devices, which are not included in this study’s scope. If
the end-nodes are included, they can transmit microclimate data to the aggregator. In
mosquito research, the microclimate data and GPS coordinates are some of the important
factors for determining the method of mosquito population control. Therefore, this remote
data station can currently measure temperature, humidity, pressure, and light, as well
as GPS coordinates. Moreover, this system has user buttons and an RGB (Red, Green,
and Blue) color indication LED (Light-Emitting Diode). Users can transfer the measured
microclimate data from these remote data stations to the cluster using the MQTT (MQ
Telemetry Transport) protocol.

Figure 4. Remote data station, which is an aggregator between the cluster and the end-nodes.

2.4. MicroK8s Cluster and IoT System Implementation

Our cluster is formed by connecting four RPis to a network switch. Users can place it
in a room with an internet connection and good airflow conditions for the operations of
fans. The benefit is that users can position the cluster anywhere with those conditions. In
our case, the cluster was installed and placed in College Station, TX, USA. It allows users
to access the microclimate data via our customized Android and web applications. Those
data are available on the database when they are sent from the remote data stations.

The flowchart in Figure 5 shows the sub-process of the measurement, which can
repeatedly be running in the remote data station. Each remote data station can collect
data from various sensors at about 2∼3 s. Next, it can publish the data to the MQTT (MQ
Telemetry Transport) broker on the cluster. Because each station has a unique device ID

Computation 2022, 10, 221 6 of 13

(identification) number with an MQTT topic equivalent to that ID, the MQTT broker can
filter each message for each connected station based on the ID. For example, if the remote
data station’s ID is 101, then the topic is 101. After that, the database can store the data
from the MQTT broker, as shown in Figure 6, but the exact GPS locations are hidden in the
figure. The MySQL database, version 8.0, is used in our scenario because the stability of the
database is an essential factor in the IoT system. The database needs to store a large amount
of data coming from the remote data stations, so when MySQL compares to MongoDB and
other databases, MySQL is more stable for storing the data [26,27].

Figure 5. Flowchart showing the sub-process of microclimate data transferring from a remote data
station to the database.

Figure 6. Various data from the device ID 101 database.

The flowchart in Figure 7 shows the data access process using an Android applica-
tion or web browser. Using an API (Application Programming Interface) URL (Uniform
Resource Locator) from the Flash API, the Android application or web browser can use
an HTTP (Hypertext Transfer Protocol) GET request to receive a response from the cluster.
Once the Flask API receives the request, the program can fetch microclimate data from the
MySQL database. The microclimate data can be formatted into JSON (JavaScript Object
Notation) form and transferred to the Android application or web browser. Once the
Android application or web browser receives the data, it will decode the JSON and display
each parameter’s value.

Computation 2022, 10, 221 7 of 13

Figure 7. Flowchart showing the data access via Android application and web browser using the
Flask API.

Figure 8 shows screenshots of the website when the data are accessed. The top left
table shows the list of available microclimate data. The real-time data graph for that
corresponding subtitle is displayed on the top right side by selecting an item from the table.
For example, selecting the temperature item can display its real-time data graph. Lastly,
the bottom map shows the remote data station locations.

Figure 8. Data access over the website.

Figure 9 shows screenshots of an Android application developed using Flutter and
Android Studio. We can access the same data as the website with a few selections. The
first screenshot on the left shows the welcome page. After researchers select the begin
button, the second page will show up, and the locations of the remote data stations can be
displayed on the map. This map is obtained using Google Map API. Next, users can select
icons of remote stations. After that, a message window will pop up. The users can choose
the message window, and the application will direct them to the next page, where the list
of the available microclimate data is displayed on the screen. Lastly, the users can select
the parameter and display the corresponding real-time data graph. For example, selecting
the humidity parameter can display its real-time data graph. The users can return to the
previous page by selecting the top left return icon.

Computation 2022, 10, 221 8 of 13

Figure 9. Data access over the Android application.

3. Measurements
3.1. Microclimate Data Measurements

The microclimate measurements are collected from different remote data stations
located in different locations. As shown in Figure 10, the measurements’ date is 28 August
2022, and it shows the time duration of 12 h, from 9:30 a.m. to 9:30 p.m. Two sets of
data from remote data stations are selected and presented as an example for comparison.
Therefore, the set of measurements of (a), (b), and (c) shows the data from the remote
data station located in College Station, Texas, USA. Parts of the measurement are missing
because the remote station was out of battery at that time. The other set of data in (a),
(b), and (c) in Figure 10 is the publicly available weather data collected from Weather
Underground (WU). The WU data points that are closest to the test location were selected.
The distance between the remote data station and the selected WU station is separated by
about 1.6 miles. The light information is not available from Weather Underground, but it
was measured using remote data stations as shown in (c) and (f) in Figure 10.

Figure 10. Data measured on 28 August 2022 using remote data stations and the data from Weather
Underground for comparison. Graphs (a–c) are the set for the test spot in College Station. And
graphs (d–f) are the set for the test spot in Houston.

Computation 2022, 10, 221 9 of 13

The set of measurements of (d), (e), and (f) shows the data from the Remote Data
Station (RDS) located in Houston, Texas, USA. In this case, the distance between the RDS
and the selected WU station is separated by about 15.8 miles. Data collected using the
remote data station are drawn in blue color, and the data from Weather Underground are
illustrated in an orange color [28,29].

Users can compare the ambient temperature and humidity data between the ones
from the Remote Data Station (RDS) and the ones from Weather Underground (WU). The
percentage error between the measurements from the RDS and WU is shown in Table 1.
Additionally, it was calculated by using the formula below. The observed value is the data
from RDS. The WU value is the data from Weather Underground.

% Error = 100 ∗ |Observed Value−WU Value| ÷ WU Value

Table 1. Percentage error between the measurements from remote data station and the measurements
from Weather Underground.

Microclimate
Average

Percentage Error
Maximum

Percentage Error
Minimum

Percentage Error

College Station’s
Ambient Temperature

5.32% 7.67% 2.70%

Houston’s
Ambient Temperature

14.28% 24.77% 5.49%

College Station’s
Humidity

11.48% 17.86% 0.07%

Houston’s
Humidity

21.69% 43.74% 0.12%

In Table 1, excluding the table’s subtitle, the first and second rows show the percentage
error for the corresponding chart in row (a) of Figure 10. The third and fourth row show the
percentage error for the corresponding graph in row (b) of Figure 10. In College Station, the
RDS and WU station are close to each other, so the various percentage errors for ambient
temperature and humidity are smaller than the ones from Houston. However, in Houston,
the RDS is far from the WU station, so the percentage error is higher than those from College
Station. The average percentage error for College Station’s temperature is 5.32%, which is
equivalent to the minimum percentage error for Houston’s temperature. Additionally, in
temperature, the error caused by the device can be considered as ±2.50 ◦C. This error factor
would not be regarded as a significant contributing factor that shows the difference between
the data from the RDS and WU. These results indicate that this proposed microclimate IoT
system may provide more accurate data for the test spots for selected potential breeding
locations. Additionally, more accurate and precise data collection significantly changes
research quality in that area.

Instead of showing microclimate data for 12 h, Table 2 shows the extended period
of the daily record for two of the recorded variables, ambient temperature and humidity.
These data were collected from another station, 102, in College Station. Therefore, the
table is divided into two big columns, College Station’s station 102 and WU. Under the
College Station column, the average and standard deviation of ambient temperature and
humidity are shown from 7 September to 14 September 2022. Because WU does not provide
the standard deviation, only the average temperature and humidity are shown under the
second big column, WU. The distance between station 102 and the selected data point from
WU is separated by about 1.14 miles.

On September 7th, the average temperature for station 102 in College Station was
27.57 ◦C, and the average temperature for the nearby Weather Underground station was
26.94 ◦C. The percentage error between those two data points is 2.34%, close to the minimum
percentage error, 2.70%, for College Station’s ambient temperature in Table 1. Therefore,

Computation 2022, 10, 221 10 of 13

mosquito researchers could use these accurate microclimate data for the area of interest to
generate more accurate analysis. In the following subsection, additional ping measurements
for the cluster are described for more information.

Table 2. Daily record of temperature and humidity for the dates between 7 September and 14
September 2022.

Date

Station 102 in College Station Weather Underground

Temperature (◦C) Humidity (%) Temperature (◦C) Humidity (%)

Average Std. Dev. Average Std. Dev. Average Average

9/7/22 27.57 3.90 70.90 15.36 26.94 75.70

9/8/22 28.32 3.52 58.94 14.76 27.53 64.60

9/9/22 28.43 1.49 58.10 4.72 27.50 61.50

9/10/22 29.91 2.90 54.62 14.62 28.06 61.30

9/11/22 28.97 3.02 64.32 15.53 27.94 62.30

9/12/22 27.87 3.50 50.42 11.16 26.78 55.80

9/13/22 27.49 4.48 53.47 7.59 26.50 58.00

9/14/22 27.23 4.63 65.61 8.20 26.33 55.30

3.2. Ping Measurements between the Master Node and the Worker Nodes in the Cluster

This section started by comparing ping time between the master node and worker
nodes. It is under the scenario of four remote data stations simultaneously sending mi-
croclimate data to their connected cluster. In this measurement, a 32 bytes data packet
is used to measure the ping time in millisecond (ms) units. Table 3 shows the ping time
between the master and worker nodes for the cluster. The table shows the measurements’
the minimum time, average time, maximum time, and standard deviation.

Table 3. The ping time between rpi4b-master-1 and each of its workers.

Master Node Worker Node

Ping Time

Minimum
Time (ms)

Average
Time (ms)

Maximum
Time (ms)

Standard
Deviation (ms)

rpi4b-master-1

rpi3b-plus-worker-1 0.614 0.759 0.913 0.067

rpi3b-plus-worker-2 0.598 0.772 0.982 0.081

rpi3b-plus-worker-3 0.545 0.754 0.933 0.076

Table 3 is divided into three big columns. The first column is the master node of
the cluster from Figure 2. The second column is the worker nodes, rpi3b-plus-worker-1,
rpi3b-plus-worker-2, and rpi3b-plus-worker-3, from Figure 2. The last column is the ping
time, which is divided into four sub-columns, minimum time, average time, maximum
time, and standard deviation. The average time between the RPi 4 B master node 1 and the
RPi 3 B+ worker node 1 is 0.759 ms. The standard deviation between them is 0.067 ms. By
using the average time and standard deviation, the standard deviation graph can be made
for a graphical representation of the data.

4. Conclusions

In this paper, we proposed a microclimate IoT system for mosquito research applica-
tions, and it may collect and monitor accurate microclimate data from selected locations.
Mosquito researchers may use the microclimate data for the test spots of interest for analysis
and control. Various methods of accessing the data in this proposed IoT system are offered
in this IoT system. The data can be accessed using an Android application and website

Computation 2022, 10, 221 11 of 13

for the data stored in the Raspberry Pi Micro-Kubernetes cluster. The measurements were
shown, and the data were compared with the publicly available weather data. The result
shows that this customized IoT network, remote data stations, and low-cost RPi MicroK8s
cluster may provide more accurate data for the test spots, and the data can be accessed via
an android application and website.

For future work, we will continue to develop various RPi MicroK8s clusters. We plan
to perform investigations using the microclimate data from this IoT system. We plan to
check if there is a substantial limitation on the accuracy and precision of micro-climate
measurements. Additionally, we plan to carry out more granular monitoring for micro-
climates to check the difference between the micro-climate and macro-climate in mosquito
breeding sites. There can be multiple opportunities for future work that can build upon the
proposed cluster in this study. More different types of measurements at multiple locations
can be performed and processed using the proposed clusters. We plan to improve the
cluster by using a newer version of RPi for all nodes in the cluster. We plan to perform
more experimentation by increasing the scale of worker nodes by adding several more
Raspberry Pis to the cluster. In the remote data station of the IoT system architecture, we
see a potential vision of making the work easier for the maintenance engineer by making
wireless sensor end-node devices need less maintenance and minimizing their energy use.

Author Contributions: Conceptualization, Z.P., B.H., K.M. and Z.A.; methodology, Z.P., B.H., K.M.
and Z.A.; software, Z.P.; validation, Z.P.; formal analysis, Z.P. and B.H.; investigation, Z.P. and B.H.;
resources, Z.P., B.H., K.M. and Z.A.; data curation, Z.P.; writing—original draft preparation, Z.P. and
B.H.; writing—review and editing, Z.P. and B.H.; supervision, B.H., K.M. and Z.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported through Cooperative Agreement Number 1U01CK000512
between the Centers for Disease Control and Prevention (CDC) and the University of Texas Medical
Branch/Western Gulf Center for Excellence in Vector-Borne Diseases. Moreover, this work was supported
by Dr. B. Hur’s Texas A&M research fund and resources.

Data Availability Statement: Data for a few specific days is contained within the article. The data
for other days are not publicly available due to the funding source’s ownership of the data.

Acknowledgments: We would like to thank Eun Jung Kim and Ana Goulart for their valuable
insights and support. We would like to thank Kevin Price, Fernando Aguado, and Jonathan Gavlick
for their help during the early stages of this research.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interfaces
CDC Centers for Disease Control and Prevention
CPU Central Processing Unit
GPS Global Positioning System
HTTP Hypertext Transfer Protocol
ID Light-Emitting Diode
IoT Internet of Things
JSON JavaScript Object Notation
K8s Kubernetes
LED Light-Emitting Diode
LTS Long Term Support
MicroK8s Micro-Kubernetes
MQTT MQ Telemetry Transport
PCB Printed Circuit Board
RDS Remote Data Station

Computation 2022, 10, 221 12 of 13

RGB Red, Green, and Blue
RPi Raspberry Pi
Std. Dev. Standard Deviation
URL Uniform Resource Locator
WU Weather Underground

References
1. Ronca, S.E.; Ruff, J.C.; Murray, K.O. A 20-year historical review of West Nile virus since its initial emergence in North America:

Has West Nile virus become a neglected tropical disease. PLoS Neglected Trop. Dis. 2021, 15, e0009190. [CrossRef] [PubMed]
2. Gatton, M.; Chitnis, N.; Churcher, T.; Donnelly, M.; Ghani, A.; Godfray, C.; Gould, F.; Hastings, I.; Marshall, J.; Ranson, H.; et al.

The Important of Mosquito Behavioral adaptations to Malaria Control in Africa. Int. J. Org. Evol. 2013, 67, 1218–1330. [CrossRef]
[PubMed]

3. Roundy, C.M.; Azar, S.R.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.; Kitron, U.; et al.
Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission. Emerg Infect Dis. 2017, 23, 625–632. [CrossRef]
[PubMed]

4. Bai, L.; Morton, C.; Liu, Q. Climate change and mosquito-borne diseases in China: A review. Glob. Health 2013, 9, 10. [CrossRef]
[PubMed]

5. Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk
with climate change. PLoS Neglected Trop. Dis. 2019, 13, e0007213. [CrossRef] [PubMed]

6. Pley, C.; Evans, M.; Lowe, R.; Montgomery, H.; Yacoub, S. Digital and technological innovation in vector-borne disease surveillance
to predict, detect, and control climate-driven outbreaks. Lancet Planet. Health 2021, 5, e739–e745. [CrossRef] [PubMed]

7. Davis, J.K.; Vincent, G.; Hildreth, M.B.; Kightlinger, L.; Carlson, C.; Wimberly, M.C. Integrating Environmental Monitoring and
Mosquito Surveillance to Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak. PLoS Curr. 2017, 9,
2157–3999. [CrossRef] [PubMed]

8. Balatamoghna, B.; Jaganath, A.; Vaideeshwaran, S.; Subramanian, A.; Suganthi, K. Integrated balancing approach for hosting
services with optimal efficiency - Self Hosting with Docker. Mater. Today Proc. 2022, 62, 4612–4619. [CrossRef]

9. Shah, J.; Dubaria, D. Building Modern Clouds: Using Docker, Kubernetes Google Cloud Platform. In Proceedings of the 2019
IEEE 9th Annual 261 Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January
2019; pp. 0184–0189.

10. Containers, VMs, Kubernetes and VMware. Available online: http://googlecloudplatform.blogspot.com/2014/08/containers-
vms-kubernetes-and-vmware.html (accessed on 21 September 2022).

11. Micheli, P.; Johnson, M.; Godsell, J. Editorial How the Covid-19 pandemic has affected, and will affect, operations and supply
chain management research and practice. Emerald Publ. Ltd. 2021, 41, 773–780. [CrossRef]

12. Nakamura, K.; Manzoni, P.; Redondi, A.; Longo, E.; Zennaro, M.; Cano, J.; Calafate, C. A LoRa-based protocol for connecting IoT
edge computing nodes to provide small-data-based services. Digit. Commun. Netw. 2022, 8, 257–266. [CrossRef]

13. Khazaei, H.; Bannazadeh, H.; Leon-Garcia, A. SAVI-IoT: A Self-Managing Containerized IoT Platform. In Proceedings of the 2017
IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud), Prague, Czech Republic, 21–23 August 2017
pp. 227–234.

14. Hur, B.; Myles, K.; Adelman, Z.; Erraguntla, M.; Lawley, M.; Kim, E.; Burgi, J.; Price, K.; Fritz, K.; Stalcup, D.; et al. IoT
Environmental-monitoring System Development for Mosquito Research Through Capstone Project Integration in Engineering
Technology. In Proceedings of the 2021 ASEE Virtual Annual Conference Content Access, Virtual, 26–29 July 2021.

15. Hur, B.; Myles, K.; Adelman, Z.; Kim, S.; Kim, E.J.; Price, K.; Gavlick, J. Low-Cost Raspberry Pi Compute Module 3+ Cluster for
Mosquito Research via Capstone Project. In Proceedings of the 2022 ASEE Annual Conference & Exposition, Minneapolis, MN,
USA, 26–29 June 2022.

16. Paaijmans, K.P.; Thomas, M.B. The influence of mosquito resting behaviour and associated microclimate for malaria risk. Malar. J.
2011, 10, 183. [CrossRef] [PubMed]

17. Murdock, C.C.; Evans, M.V.; McClanahan, T.D.; Miazgowicz, K.L.; Tesla, B. Fine-scale variation in microclimate across an urban
landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease.
PLoS Neglected Trop. Dis. 2017, 11, e0005640. [CrossRef] [PubMed]

18. Leccese, F.; Cagnetti, M.; Trinca, D. A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card,
a ZigBee Sensor Network and WiMAX. MDPI Sens. 2014, 14, 24408–24424. [CrossRef] [PubMed]

19. Ambrož, M. Raspberry Pi as a low-cost data acquisition system for human powered vehicles. Measurement 2017, 100, 7–18.
[CrossRef]

20. Scuro, C.; Sciammarella, P.F.; Lamonaca, F.; Olivito, R.S.; Carni, D.L. IoT for structural health monitoring. IEEE Instrum. Meas.
Mag. 2018, 21, 4–14. [CrossRef]

21. Polineni, S.; Shastri, O.; Bagchi, A.; Gnanakumar, G.; Rasamsetti, S.; Sundaravadivel, P. MOSQUITO EDGE: An Edge-Intelligent
Real-Time Mosquito Threat Prediction Using an IoT-Enabled Hardware System. MDPI Sens. 2022, 22, 695. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pntd.0009190
http://www.ncbi.nlm.nih.gov/pubmed/33956816
http://dx.doi.org/10.1111/evo.12063
http://www.ncbi.nlm.nih.gov/pubmed/23550770
http://dx.doi.org/10.3201/eid2304.161484
http://www.ncbi.nlm.nih.gov/pubmed/28287375
http://dx.doi.org/10.1186/1744-8603-9-10
http://www.ncbi.nlm.nih.gov/pubmed/23497420
http://dx.doi.org/10.1371/journal.pntd.0007213
http://www.ncbi.nlm.nih.gov/pubmed/30921321
http://dx.doi.org/10.1016/S2542-5196(21)00141-8
http://www.ncbi.nlm.nih.gov/pubmed/34627478
http://dx.doi.org/10.1371/currents.outbreaks.90e80717c4e67e1a830f17feeaaf85de
http://www.ncbi.nlm.nih.gov/pubmed/28736681
http://dx.doi.org/10.1016/j.matpr.2022.03.078
http://googlecloudplatform.blogspot.com/2014/08/containers-vms-kubernetes-and-vmware.html
http://googlecloudplatform.blogspot.com/2014/08/containers-vms-kubernetes-and-vmware.html
http://dx.doi.org/10.1108/IJOPM-06-2021-902
http://dx.doi.org/10.1016/j.dcan.2021.08.007
http://dx.doi.org/10.1186/1475-2875-10-183
http://www.ncbi.nlm.nih.gov/pubmed/21736735
http://dx.doi.org/10.1371/journal.pntd.0005640
http://www.ncbi.nlm.nih.gov/pubmed/28558030
http://dx.doi.org/10.3390/s141224408
http://www.ncbi.nlm.nih.gov/pubmed/25529206
http://dx.doi.org/10.1016/j.measurement.2016.12.037
http://dx.doi.org/10.1109/MIM.2018.8573586
http://dx.doi.org/10.3390/s22020695
http://www.ncbi.nlm.nih.gov/pubmed/35062653

Computation 2022, 10, 221 13 of 13

22. Javed, A. Container-Based IoT Sensor Node on Raspberry Pi and the Kubernetes Cluster Framework. Master’s Thesis, Aalto
University, Espoo, Finland, 24 August 2016.

23. MicroK8s Documentation-Home. Available online: https://microk8s.io/docs (accessed on 1 October 2022).
24. Kang, B.; Jeong, J.; Choo, H. Docker Swarm and Kubernetes Containers for Smart Home Gateway. IT Prof. 2021, 23, 75–80.

[CrossRef]
25. Debauche, O.; Mahmoudi, S.; Guttadauria, A. A New Edge Computing Architecture for IoT and Multimedia Data Management.

Information 2022, 13, 89. [CrossRef]
26. Rautmare, S. MySQL and NoSQL database comparison for IoT application. In Proceedings of the 2016 IEEE International

Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016; pp. 235–238.
27. Tongkaw, S.; Tongkaw, A. A comparison of database performance of MariaDB and MySQL with OLTP workload. In Proceedings

of the 2016 IEEE Conference on Open Systems (ICOS), Langkawi, Malaysia, 10–12 October 2016; pp. 117–119.
28. College Station, TX Weather History. Available online: https://www.wunderground.com/history/daily/us/tx/college-station/

KCLL/date/2022-8-29 (accessed on 31 August 2022).
29. Houston, TX Weather History. Available online: https://www.wunderground.com/history/daily/us/tx/houston/KHOU/

date/2022-8-29 (accessed on 31 August 2022).

https://microk8s.io/docs
http://dx.doi.org/10.1109/MITP.2020.3034116
http://dx.doi.org/10.3390/info13020089
https://www.wunderground.com/history/daily/us/tx/college-station/KCLL/date/2022-8-29
https://www.wunderground.com/history/daily/us/tx/college-station/KCLL/date/2022-8-29
https://www.wunderground.com/history/daily/us/tx/houston/KHOU/date/2022-8-29
https://www.wunderground.com/history/daily/us/tx/houston/KHOU/date/2022-8-29

	Introduction
	Proposed Method
	Iot System Architecture
	MicroK8s Cluster Architecture
	Remote Data Station
	MicroK8s Cluster and IoT System Implementation

	Measurements
	Microclimate Data Measurements
	Ping Measurements between the Master Node and the Worker Nodes in the Cluster

	Conclusions
	References

