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Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.

Keywords: density matrix functional embedding; density-functional theory; householder
transformation

1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,
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a single (partially-interacting) many-body wave function is calculated self-consistently
and the complement to the partial interaction energy is described with an appropriate
density functional (which differs from the conventional xc one). In other words, there is
no KS construction in the actual calculation. Some of these concepts have been reused
in the study of model lattice Hamiltonians [12,13]. A similar strategy will be adopted
in the present work, with an important difference though. The reduced-in-size correlated
density-functional many-body wave function that we will introduce will be extracted
from a quantum embedding theory where the KS determinant of the full system is a key
ingredient that must be evaluated explicitly.

Quantum embedding theory [14] is at first sight a completely different approach to
the strong electron correlation problem. Interestingly, some of its implementations, like the
density matrix embedding theory (DMET) [15–23], rely on a reference Slater determinant that
is computed for the full system. This is also the case in practical embedding calculations
based on the exact factorization formalism [24,25]. Unlike the well-established dynamical
mean-field theory (DMFT) [26–30], which relies on the one-electron Green’s function, DMET
is a static theory of ground electronic states. Most importantly, the bath, in which a frag-
ment of the original system (referred to as impurity when it is a single localized orbital)
is embedded, is drastically reduced in size in DMET. As a result, the “impurity+bath”
embedding cluster can be accurately (if not exactly) described with wave function-based
quantum chemical methods. The authors have shown recently that the Schmidt decompo-
sition of the reference Slater determinant, which is central in DMET, can be recast into a
(one-electron reduced) density-matrix functional Householder transformation [31], which
is much simpler to implement. This approach, in which the bath orbitals can in principle
be correlated directly through the density matrix [31], is referred to as Householder trans-
formed density matrix functional embedding theory (Ht-DMFET). Since the seminal work of
Knizia and Chan on DMET [15], various connections with DMFT and related approaches
have been established [32–37]. Connections with DFT have been less explored, and only
at the approximate level of theory. We can refer to the density embedding theory (DET) of
Bulik et al. [38], which is a simplified version of DMET where only the diagonal elements
of the embedded density matrix are mapped onto the reference Slater determinant of the
full system. More recently, Senjean [39] combined DFT for lattices [40,41] with DMET,
and Mordovina et al. [42] (see also Ref. [43]) proposed a self-consistent density-functional
embedding (SDE), where the KS determinant is explicitly used as the reference wave function
in the DMET algorithm.

In the present work, an in-principle-exact combination of KS-DFT with DMET is de-
rived for the one-dimensional (1D) Hubbard lattice, as a proof of concept. For that purpose,
we use the density-matrix functional Householder transformation introduced recently by
the authors [31]. On the basis of well-identified density-functional approximations, we
propose and implement a local potential functional embedding theory (LPFET) where the Hxc
potential is evaluated self-consistently in the lattice by “learning” from the embedding
cluster at each iteration of the optimization process. LPFET can be seen as a flavor of
KS-DFT where no density functional is actually used.

The paper is organized as follows. After a short introduction to the 1D Hubbard model
in Section 2.1, a detailed review of Ht-DMFET is presented in Section 2.2, for clarity and
completeness. An exact density-functional reformulation of the theory is then proposed in
Section 2.3. The resulting approximate LPFET and its comparison with SDE are detailed
in Sections 2.4 and 2.5, respectively. The LPFET algorithm is summarized in Section 3.
Results obtained for a 1000-site Hubbard ring are presented and discussed in Section 4. The
conclusion and perspectives are finally given in Section 5.
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2. Theory
2.1. One-Dimensional Hubbard Lattice

By analogy with Ref. [31], various quantum embedding strategies will be discussed
in the following within the simple but nontrivial uniform 1D Hubbard model. The corre-
sponding lattice Hamiltonian (for a L-site ring) reads as

Ĥ = T̂ + Û + vextN̂, (1)

where the hopping operator (written in second quantization),

T̂ = −t
L−1

∑
i=0

∑
σ=↑,↓

(
ĉ†

iσ ĉ(i+1)σ + ĉ†
(i+1)σ ĉiσ

)
, (2)

with parameter t, is the analog for lattices of the kinetic energy operator. For convenience,
we will systematically use periodic boundary conditions, i.e., ĉ†

Lσ ≡ ĉ†
0σ. On-site repulsions

are only taken into account in the two-electron repulsion operator Û, i.e.,

Û =
L−1

∑
i=0

Ûi, (3)

where Ûi = Un̂i↑n̂i↓, U is the parameter that controls the strength of the interaction, and
n̂iσ = ĉ†

iσ ĉiσ is a site occupation operator for spin σ. Since the lattice is uniform, the local
external potential (which would correspond to the nuclear potential in a conventional
quantum chemical calculation) operator is proportional to the electron counting operator
(see the last term on the right-hand side of Equation (1)),

N̂ =
L−1

∑
i=0

∑
σ=↑,↓

n̂iσ. (4)

The uniform value of the external potential can be rewritten as

vext = −µ, (5)

where the chemical potential µ controls the number of electrons N or, equivalently, the
uniform density n = N/L in the lattice. In this case, Ĥ is actually a (zero-temperature)
grand canonical Hamiltonian. For convenience, we rewrite the hopping operator as follows,

T̂ ≡
L−1

∑
i,j=0

∑
σ=↑,↓

tij ĉ†
iσ ĉjσ, (6)

where

tij = −t
(

δj(i+1) + δi(j+1)

)
, (7)

and t(L−1)0 = t0(L−1) = −t. From now on the bounds in the summations over the full
lattice will be dropped, for simplicity:

∑
i
≡

L−1

∑
i=0

. (8)

Note that the quantum embedding strategies discussed in the present work can be
extended to more general (quantum chemical, in particular) Hamiltonians [20]. For that
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purpose, the true ab initio Hamiltonian should be written in a localized molecular orbital
basis, thus leading to the more general Hamiltonian expression,

Ĥ = ∑
σ

∑
ij

hij ĉ†
iσ ĉjσ +

1
2 ∑

σ,σ′
∑
ijkl
〈ij|kl〉ĉ†

iσ ĉ†
jσ′ ĉlσ′ ĉkσ, (9)

where hij and 〈ij|kl〉 are the (kinetic and nuclear attraction) one-electron and two-electron
repulsion integrals, respectively. Using a localized orbital basis allows for the decompo-
sition of the molecule under study into fragments that can be embedded afterward [20].
In the following, we will work with the simpler Hamiltonian of Equation (1), as a proof
of concept.

2.2. Review of Ht-DMFET

For the sake of clarity and completeness, a review of Ht-DMFET [31] is presented
in the following subsections. Various ingredients (operators and reduced quantities) that
will be used later on in Section 2.3 in the derivation of a formally exact density-functional
embedding theory (which is the main outcome of this work) are introduced. Real al-
gebra will be used. For simplicity, we focus on the embedding of a single impurity. A
multiple-impurity extension of the theory can be obtained from a block Householder trans-
formation [31,44]. Unlike in the exact reformulation of the theory which is proposed in
the following Section 2.3 and where the chemical potential µ controls the density of the
uniform lattice, the total number of electrons will be fixed to the value N in the present
section. In other words, the uniform density is set to n = N/L and µ is an arbitrary constant
(that could be set to zero).

2.2.1. Exact Non-Interacting Embedding

Let us first consider the particular case of a non-interacting (U = 0) lattice for which
Ht-DMFET is exact [31]. As it will be applied later on (in Section 2.3) to the auxiliary
KS lattice, it is important to highlight the key features of the non-interacting embedding.
Following Ref. [31], we label as i = 0 one of the localized (lattice site in the present case)
spin-orbital

∣∣χσ
0
〉
≡ ĉ†

0σ|vac〉 [we denote |vac〉 the vacuum state of second quantization]
that, ultimately, will become the so-called embedded impurity. The ingredient that is central
in Ht-DMFET is the (one-electron reduced) density matrix of the full system in the lattice
representation, i.e.,

γ↑ = γ↓ = γ ≡ γij = 〈Φ|ĉ†
iσ ĉjσ|Φ〉, (10)

where we restrict ourselves to closed-shell singlet ground states |Φ〉, for simplicity. Note that

γ00 =
n
2
=

N
2L

(11)

is the uniform lattice filling per spin. Since the full lattice will always be described with a
single Slater determinant in the following, the density matrix γ will always be idempotent.
The latter is used to construct the Householder unitary transformation which, once it
has been applied to the one-electron lattice space, defines the so-called bath spin-orbital
with which the impurity will ultimately be exclusively entangled. More explicitly, the
Householder transformation matrix

P = I − 2vv† ≡ Pij = δij − 2vivj, (12)

where I is the identity matrix, is a functional of the density matrix, i.e.,

P ≡ P[γ], (13)
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where the density-matrix-functional Householder vector components read as [31]

v0 = 0, (14)

v1 =
γ10 − γ̃10√

2γ̃10(γ̃10 − γ10)
, (15)

vi =
i≥2

γi0√
2γ̃10(γ̃10 − γ10)

, (16)

with

γ̃10 = −sgn(γ10)

√
∑
j>0

γ2
j0, (17)

and

v†v = ∑
i≥1

v2
i = 1. (18)

Note that, in the extreme case of a two-site lattice, the denominator in
Equations (15) and (16) is still well defined and it does not vanish. Indeed, by construction
(see Equation (17)),

γ̃10 ={
γj0

j>1
= 0
} −sgn(γ10)|γ10| = −γ10 (19)

in this case, thus leading to γ̃10(γ̃10 − γ10) = 2γ2
10 > 0. Note also that P is hermitian and

unitary, i.e., P = P† and

P2 = PP† = P†P = I. (20)

The bath spin-orbital
∣∣ϕσ

bath

〉
is then constructed as follows in second quantization,

|ϕσ
bath〉 := d̂†

1σ|vac〉, (21)

where, according to Equations (12) and (14),

d̂†
1σ = ∑

k
P1k ĉ†

kσ

= ĉ†
1σ − 2v1 ∑

k≥1
vk ĉ†

kσ.
(22)

More generally, the entire lattice space can be Householder-transformed as follows,

d̂†
iσ =

0≤i≤L−1
∑
k

Pik ĉ†
kσ, (23)

and the back transformation simply reads as

∑
i

Pli d̂†
iσ = ∑

ik
PliPik ĉ†

kσ = ∑
k

[
P2
]

lk
ĉ†

kσ = ĉ†
lσ. (24)

We stress that the impurity is invariant under the Householder transformation, i.e.,

d̂†
0σ = ĉ†

0σ, (25)



Computation 2022, 10, 45 6 of 23

and, according to the Appendix A, the Householder-transformed density matrix elements
involving the impurity can be simplified as follows,

〈Φ|d̂†
jσ d̂0σ|Φ〉 = γj0 − vj

√
2γ̃10(γ̃10 − γ10). (26)

As readily seen from Equations (15) and (26), the matrix element γ̃10 introduced in
Equation (17) is in fact the bath-impurity element of the density matrix in the Householder
representation:

〈Φ|d̂†
1σ d̂0σ|Φ〉 = γ̃10. (27)

If we denote

γ̃ ≡ γ̃ij = 〈Φ|d̂†
iσ d̂jσ|Φ〉 = ∑

kl
Pikγkl Pl j ≡ PγP (28)

the full Householder-transformed density matrix, we do readily see from Equations (16)
and (26) that the impurity is exclusively entangled with the bath, i.e.,

γ̃i0 =
i≥2

0, (29)

by construction [31]. As γ̃ inherits the idempotency of γ through the unitary Householder
transformation, we deduce from Equation (29) that

γ̃i0 =
[
γ̃2
]

i0
= ∑

j
γ̃ijγ̃j0 = γ̃i0γ̃00 + γ̃i1γ̃10, (30)

or, equivalently,

γ̃i1 =
γ̃i0(1− γ̃00)

γ̃10
, (31)

thus leading to (see Equation (29))

γ̃i1 =
i≥2

0, (32)

and

γ̃00 + γ̃11 = 1. (33)

Equations (32) and (33) simply indicate that, by construction [31], the bath is itself
entangled exclusively with the impurity, and the Householder “impurity+bath” cluster,
which is disconnected from its environment, contains exactly two electrons (one per spin).
Therefore, the Householder cluster sector of the density matrix can be described exactly by
a two-electron Slater determinant ΦC :

γ̃ij =
0≤i,j≤1

〈
ΦC
∣∣∣d̂†

iσ d̂jσ

∣∣∣ΦC〉. (34)

Note that, in the Householder representation, the lattice ground-state determinant
reads as Φ ≡ ΦCΦcore, where the cluster’s determinant ΦC is disentangled from the core
one Φcore. Once the cluster’s block of the density matrix has been diagonalized, we obtain
the sole occupied orbital that overlaps with the impurity, exactly like in DMET [20]. In other
words, for non-interacting (or mean-field-like descriptions of) electrons, the Ht-DMFET
construction of the bath is equivalent (although simpler) to that of DMET. We refer the
reader to Ref. [31] for a more detailed comparison of the two approaches.
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2.2.2. Non-Interacting Embedding Hamiltonian

As the Householder cluster is strictly disconnected from its environment in the non-
interacting case, it is exactly described by the two-electron ground state

∣∣ΦC〉 of the
Householder-transformed hopping operator (that we refer to as kinetic energy operator
from now on, like in DFT for lattices [13,41]) on projected onto the cluster [31], i.e.,

T̂ C
∣∣∣ΦC〉 = ECs

∣∣∣ΦC〉, (35)

where, according to Equations (6) and (24),

T̂ C = ∑
ij

∑
σ=↑,↓

tij

1

∑
k,l=0

PikPjl d̂†
kσ d̂lσ. (36)

For convenience, we will separate in T̂ C the physical per-site kinetic energy operator
(see Equation (2)),

t̂01 = −t ∑
σ=↑,↓

(
ĉ†

0σ ĉ1σ + ĉ†
1σ ĉ0σ

)
, (37)

from the correction induced (within the cluster) by the Householder transformation:

τ̂C = T̂ C − t̂01. (38)

Note that, since t00 = 0, τ̂C can be expressed more explicitly as follows,

τ̂C = ∑
σ=↑,↓

(
∑
ij

Pi1Pj0tij

)[
d̂†

0σ d̂1σ + d̂†
1σ d̂0σ

]
+ ∑

σ=↑,↓

(
∑
ij

Pi1Pj1tij

)
d̂†

1σ d̂1σ − t̂01

= ∑
σ=↑,↓

(
∑

i
Pi1ti0

)[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]
+ ∑

σ=↑,↓

(
∑
ij

Pi1Pj1tij

)
d̂†

1σ d̂1σ − t̂01

= ∑
σ=↑,↓

t10

[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]
− 2v1 ∑

σ=↑,↓

(
∑

i
viti0

)[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]
+ ∑

σ=↑,↓

(
∑
ij

Pi1Pj1tij

)
d̂†

1σ d̂1σ − t̂01,

(39)

thus leading to

τ̂C = 2tv1 ∑
σ=↑,↓

∑
k≥1

vk

[
ĉ†

0σ ĉkσ + ĉ†
kσ ĉ0σ

]
− 2v1 ∑

σ=↑,↓

(
∑

i
viti0

)[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]
+ 4

(
∑
ij

vivj

(
v2

1 − δj1

)
tij

)
∑

σ=↑,↓
d̂†

1σ d̂1σ,

(40)
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where we used Equations (12) and (22), as well as the fact that t11 = 0 and t10 = −t.
Note that, when no Householder transformation is performed (i.e., when vi = 0 for
0 ≤ i ≤ L− 1), the bath site simply corresponds to the nearest neighbor (i = 1) of the
impurity in the lattice (see Equation (22)) and, as readily seen from Equations (38) and (40),
the non-interacting cluster’s Hamiltonian T̂ C reduces to t̂01.

Unlike in the interacting case, which is discussed in Section 2.2.3, it is unnecessary
to introduce an additional potential on the embedded impurity in order to ensure that it
reproduces the correct lattice filling. Indeed, according to Equations (11), (14), (26), (28)
and (34), 〈

ΦC
∣∣∣ĉ†

0σ ĉ0σ

∣∣∣ΦC〉 =
〈

ΦC
∣∣∣d̂†

0σ d̂0σ

∣∣∣ΦC〉 = n/2. (41)

This constraint is automatically fulfilled when Householder transforming the kinetic
energy operator T̂ of the full lattice, thanks to the local potential contribution on the bath
(see the last term on the right-hand side of Equation (40)). Interestingly, the true (non-
interacting in this case) per-site energy of the lattice can be determined solely from ΦC .
Indeed, according to Equation (10), the per-site kinetic energy can be evaluated from the
lattice ground-state wave function Φ as follows,

〈Φ|t̂01|Φ〉 = −4tγ10. (42)

When rewritten in the Householder representation, Equation (42) gives (see
Equations (24), (29) and (34))

〈Φ|t̂01|Φ〉 = −4t ∑
i

P1iγ̃i0

= −4t ∑
0≤i≤1

P1iγ̃i0

= −4t ∑
0≤i≤1

P1i

〈
ΦC
∣∣∣d̂†

iσ d̂0σ

∣∣∣ΦC〉
= −4t ∑

i
P1i

〈
ΦC
∣∣∣d̂†

iσ ĉ0σ

∣∣∣ΦC〉,

(43)

where we used Equation (25) and the fact that d̂iσ
∣∣ΦC〉 i>1

= 0, since ΦC is constructed within
the cluster. We finally recover from Equation (43) the following equality [31],

〈Φ|t̂01|Φ〉 = −4t
〈

ΦC
∣∣∣ĉ†

1σ ĉ0σ

∣∣∣ΦC〉
=
〈

ΦC
∣∣∣t̂01

∣∣∣ΦC〉,
(44)

which drastically (and exactly) simplifies the evaluation of non-interacting energies for lattices.

2.2.3. Approximate Interacting Embedding

The simplest (approximate) extension of Ht-DMFET to interacting electrons con-
sists in introducing the on-impurity-site two-electron repulsion operator Û0 into the
non-interacting Householder cluster’s Hamiltonian of Equation (35), by analogy with
DMET [15,31]. In such a (standard) scheme, the interaction is treated on top of the non-
interacting embedding. Unlike in the non-interacting case, it is necessary to introduce a
chemical potential µ̃imp on the embedded impurity in order to ensure that it reproduces
the correct lattice filling N/L [31], i.e.,

〈n̂0〉ΨC = N/L, (45)
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where the two-electron cluster’s ground-state wave function ΨC fulfills the following
interacting Schrödinger equation:(

T̂ C + Û0 − µ̃impn̂0

)∣∣∣ΨC〉 = EC
∣∣∣ΨC〉. (46)

The physical per-site energy (from which we remove the chemical potential contribu-
tion) is then evaluated as follows:

(E + µN)/L ≈
Ht−DMFET

〈
ΨC
∣∣∣t̂01 + Û0

∣∣∣ΨC〉. (47)

Let us stress that, in Ht-DMFET, the cluster is designed from a single determinantal
(non-interacting in the present case) lattice wave function, like in regular DMET calcu-
lations [20]. In other words, the Householder transformation is constructed from an
idempotent density matrix. Moreover, the interacting cluster is described as a closed (two-
electron) subsystem. As shown for small Hubbard rings, the exact interacting cluster is in
principle an open subsystem [31]. It rigorously contains two electrons only at half filling, as
a consequence of the hole-particle symmetry of the Hubbard lattice Hamiltonian [31].

Note finally that, if we Householder transform the two-electron repulsion operator Û
of the full lattice, one can in principle take into account its complete projection onto the
cluster. It means that the interaction on the bath site could be added to the Hamiltonian
in Equation (46). For simplicity, we will focus in the following on the (so-called) non-
interacting bath formulation of the theory, which is described by Equation (46). Let us
finally mention that, in the present single-impurity embedding, DMET, DET, and Ht-
DMFET are equivalent [31].

2.3. Exact Density-Functional Embedding

We will show in the following that, once it has been merged with KS-DFT, Ht-DMFET
can be made formally exact. For clarity, we start with reviewing briefly KS-DFT for lattice
Hamiltonians in Section 2.3.1. A multi-determinantal extension of the theory based on the
interacting Householder cluster’s wave function is then proposed in Section 2.3.2.

2.3.1. KS-DFT for Uniform Lattices

According to the Hohenberg–Kohn (HK) variational principle [45], which is applied
in this work to lattice Hamiltonians [41], the ground-state energy of the full lattice can be
determined as follows,

E = min
n
{F(n) + vextnL}, (48)

where the HK density functional reads as

F(n) = 〈Ψ(n)|T̂ + Û|Ψ(n)〉, (49)

and |Ψ(n)〉 is the lattice ground state with uniform density profile n 0≤i<L
= 〈Ψ(n)|n̂i|Ψ(n)〉.

Strictly speaking, F(n) is a function of the site occupation n, hence the name site occupation
functional theory often given to DFT for lattices [13,41]. Note that the ground-state energy E
is in fact a (zero-temperature) grand canonical energy since a change in uniform density n
induces a change in the number N = nL of electrons. In the thermodynamic N → +∞ and
L→ +∞ limit, with N/L fixed to n, one can in principle describe continuous variations in
n with a pure-state wave function Ψ(n). The derivations that follow will be based on this
assumption. If we introduce the per-site analog of the HK functional,

f (n) = F(n)/L = 〈Ψ(n)|t̂01 + Û0|Ψ(n)〉, (50)



Computation 2022, 10, 45 10 of 23

and use the notation of Equation (5), then Equation (48) becomes

E/L ≡ E(µ)/L = min
n
{ f (n)− µn}, (51)

and the minimizing density n(µ) fulfills the following stationarity condition:

µ =
∂ f (n)

∂n

∣∣∣∣
n=n(µ)

. (52)

In the conventional KS formulation of DFT, the per-site HK functional is decomposed
as follows,

f (n) = ts(n) + eHxc(n), (53)

where

ts(n) = 〈Φ(n)|t̂01|Φ(n)〉 = 1
L
〈Φ(n)|T̂|Φ(n)〉 (54)

is the (per-site) analog for lattices of the non-interacting kinetic energy functional, and the
Hxc density functional reads as [41]

eHxc(n) =
U
4

n2 + ec(n), (55)

where ec(n) is the exact (per-site) correlation energy functional of the interacting lattice. The
(normalized) density-functional lattice KS determinant Φ(n) fulfills the (non-interacting)
KS equation (

T̂ − µs(n)N̂
)
|Φ(n)〉 = Es(n)|Φ(n)〉, (56)

so that (see Equation (54))

∂ts(n)
∂n

=
2
L

〈
∂Φ(n)

∂n

∣∣∣∣T̂∣∣∣∣Φ(n)
〉

=
2µs(n)

L

〈
∂Φ(n)

∂n

∣∣∣∣N̂∣∣∣∣Φ(n)
〉

=
µs(n)

L
∂(nL)

∂n
= µs(n),

(57)

since 〈Φ(n)|N̂|Φ(n)〉 = N = nL. Thus, we recover from Equations (52) and (53) the
well-known relation between the physical and KS chemical potentials:

µs(n(µ)) ≡ µs = µ− vHxc, (58)

where the density-functional Hxc potential reads as vHxc = vHxc(n(µ)) with

vHxc(n) =
∂eHxc(n)

∂n
. (59)

Note that the exact non-interacting density-functional chemical potential can be ex-
pressed analytically as follows [40]:

µs(n) = −2t cos
(π

2
n
)

. (60)
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Capelle and coworkers [40,41] have designed a local density approximation (LDA)
to eHxc(n) on the basis of exact Bethe Ansatz (BA) solutions [46] (the functional is usually
referred to as BALDA).

Unlike in conventional ab initio DFT, the Hxc functional of lattice Hamiltonians is
not truly universal in the sense that it is universal for a given choice of (hopping) one-
electron and two-electron repulsion operators. In other words, the Hxc functional does
not depend on the (possibly non-uniform) one-electron local potential operator ∑i vext,in̂i,
which is the analog for lattices of the nuclear potential in molecules, but it is t- and U-
dependent and, in the present case, it should be designed specifically for the 1D Hubbard
model. Even though BALDA can be extended to higher dimensions [47], there is no general
strategy for constructing (localized) orbital-occupation functional approximations, thus
preventing direct applications to quantum chemistry [12], for example. Turning ultimately
to a potential-functional theory, as proposed in Section 2.4, is appealing in this respect.
With this change of paradigm, which is the second key result of the paper, the Hxc energy
and potential become implicit functionals of the density, and they can be evaluated from a
(few-electron) correlated wave function through a quantum embedding procedure.

2.3.2. Density-Functional Interacting Cluster

We propose in this section an alternative formulation of DFT based on the interact-
ing Householder cluster introduced in Section 2.2.3. For that purpose, we consider the
following exact decomposition,

f (n) = f C(n) + ec(n), (61)

where the Householder cluster HK functional

f C(n) =
〈

ΨC(n)
∣∣∣t̂01 + Û0

∣∣∣ΨC(n)〉 (62)

is evaluated from the two-electron cluster density-functional wave function ΨC(n), and
ec(n) is the complementary correlation density functional that describes the missing cor-
relation effects of the interacting bath and the Householder cluster’s environment on the
embedded impurity [31]. Note that, according to Section 2.2.3,

∣∣ΨC(n)〉 fulfills the following
Schrödinger-like equation,

ĤC(n)
∣∣∣ΨC(n)〉 = EC(n)

∣∣∣ΨC(n)〉, (63)

where (we use the same notations as in Section 2.2.3)

ĤC(n) ≡ T̂ C(n) + Û0 − µ̃imp(n) n̂0 (64)

and

T̂ C(n) ≡ t̂01 + τ̂C(n). (65)

The dependence in n of the (projected-onto-the-cluster) Householder-transformed
kinetic energy operator T̂ C(n) comes from the fact that the KS lattice density matrix
γ(n) ≡ 〈Φ(n)|ĉ†

iσ ĉjσ|Φ(n)〉 (on which the Householder transformation is based) is, like the
KS determinant Φ(n) ≡ ΦC(n)Φcore(n) of the lattice, a functional of the uniform density
n. On the other hand, for a given uniform lattice density n, the local potential −µ̃imp(n) is
adjusted on the embedded impurity such that the interacting cluster reproduces n, i.e.,〈

ΨC(n)
∣∣∣n̂0

∣∣∣ΨC(n)〉 = n. (66)
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Interestingly, on the basis of the two decompositions in Equations (53), (61) and (62),
we can relate the exact Hxc functional to the density-functional Householder cluster as
follows,

eHxc(n) =
〈
ΨC(n)

∣∣t̂01 + Û0
∣∣ΨC(n)〉− ts(n) + ec(n), (67)

where, as shown in Equation (44), the per-site non-interacting kinetic energy can be de-
termined exactly from the two-electron cluster’s part ΦC(n) of the KS lattice determinant
Φ(n), i.e.,

ts(n) =
〈

ΦC(n)
∣∣∣t̂01

∣∣∣ΦC(n)〉, (68)

thus leading to the final expression

eHxc(n) =
〈

ΨC(n)
∣∣∣t̂01 + Û0

∣∣∣ΨC(n)〉− 〈ΦC(n)
∣∣∣t̂01

∣∣∣ΦC(n)〉+ ec(n). (69)

Note that, according to Equations (35) and (38), ΦC(n) fulfills the KS-like equation(
t̂01 + τ̂C(n)

)∣∣∣ΦC(n)〉 = ECs (n)
∣∣∣ΦC(n)〉, (70)

where the Householder transformation ensures that
〈
ΦC(n)

∣∣n̂0
∣∣ΦC(n)〉 = n (see

Equation (41)).

We will now establish a clearer connection between the KS lattice system and the
Householder cluster via the evaluation of the Hxc density-functional potential in the lattice.
According to Equations (59) and (69), the latter can be expressed as follows,

vHxc(n) = 2
〈

∂ΨC(n)
∂n

∣∣∣∣t̂01 + Û0

∣∣∣∣ΨC(n)〉
− 2
〈

∂ΦC(n)
∂n

∣∣∣∣t̂01

∣∣∣∣ΦC(n)〉+
∂ec(n)

∂n
,

(71)

or, equivalently (see Equations (63), (66) and (70)),

vHxc(n) = µ̃imp(n)− 2
〈

∂ΨC(n)
∂n

∣∣∣∣τ̂C(n)∣∣∣∣ΨC(n)〉
+ 2
〈

∂ΦC(n)
∂n

∣∣∣∣τ̂C(n)∣∣∣∣ΦC(n)〉+
∂ec(n)

∂n
.

(72)

If we introduce the following bi-functional of the density,

τCc (n, ν) =
〈

ΨC(ν)
∣∣∣τ̂C(n)∣∣∣ΨC(ν)〉− 〈ΦC(ν)

∣∣∣τ̂C(n)∣∣∣ΦC(ν)〉, (73)

which can be interpreted as a kinetic correlation energy induced within the density-
functional cluster by the Householder transformation and the interaction on the impurity,
we obtain the final exact expression

vHxc(n) = µ̃imp(n)− ∂τCc (n, ν)

∂ν

∣∣∣∣
ν=n

+
∂ec(n)

∂n
, (74)

which is the first key result of this paper.
Before turning Equation (74) into a practical self-consistent embedding method (see

Section 2.4), let us briefly discuss its physical meaning and connection with Ht-DMFET. As
pointed out in Section 2.2.1, the (density-functional) operator τ̂C(n) is an auxiliary correc-
tion to the true per-site kinetic energy operator t̂01 which originates from the Householder-
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transformation-based embedding of the impurity. It is not physical and its impact on the
impurity chemical potential µ̃imp(n), which is determined in the presence of τ̂C(n) in the
cluster’s Hamiltonian (see Equations (63)–(65)), should be removed when evaluating the
Hxc potential of the true lattice, hence the minus sign in front of the second term on the right-
hand side of Equation (74). Finally, the complementary correlation potential ∂ec(n)/∂n
is in charge of recovering the electron correlation effects that were lost when considering
an (impurity-only) interacting cluster that is disconnected from its environment [31]. We
should stress at this point that, in Ht-DMFET (which is equivalent to DMET or DET when a
single impurity is embedded [31]), the following density-functional approximation is made:

ec(n) ≈
Ht−DMFET

0, (75)

so that the physical density-functional chemical potential is evaluated as follows [31],

µ(n) ≈
Ht−DMFET

∂ f C(n)
∂n

. (76)

Interestingly, even though it is never computed explicitly in this context, the corre-
sponding (approximate) Hxc potential simply reads as

vHxc(n) ≈
Ht−DMFET

∂( f C(n)− ts(n))
∂n

, (77)

or, equivalently (see Equations (74) and (75)),

vHxc(n) ≈
Ht−DMFET

µ̃imp(n)− ∂τCc (n, ν)

∂ν

∣∣∣∣
ν=n

. (78)

Therefore, Ht-DMFET can be seen as an approximate formulation of KS-DFT where
the Hxc potential is determined solely from the density-functional Householder cluster.
As illustrated in Figure 9 of Ref. [31], the approximation of Equation (75) leads, for exam-
ple, to a substantial underestimation of the per-site energy, except in the vicinity of half
filling where the energy is overestimated. Describing the electron repulsion in the bath
(not considered in the present work, for simplicity) lowers the energy even further, thus
leading to accurate results only at half filling, because of error cancellations [31]. Most
importantly, Equation (75) implies that Ht-DMFET neglects the fluctuations in the electron
number within the Householder cluster (see Equations (61)–(63)). Consequently, as further
discussed in Ref. [31] and Section 4, Ht-DMFET is unable to describe the opening of the
gap at half filling.

2.4. Local Potential Functional Embedding Theory

Until now the Householder transformation has been described as a functional of the
uniform density n or, more precisely, as a functional of the KS density matrix, which is itself
a functional of the density. If we opt for a potential-functional reformulation of the theory,
as suggested in the following, the Householder transformation becomes a functional of
the KS chemical potential µs instead, and, consequently, the Householder correction to the
per-site kinetic energy operator within the cluster (see Equation (65)) is also a functional
of µs:

τ̂C(n)→ τ̂C(µs). (79)

Similarly, the interacting cluster’s wave function becomes a bi-functional of the KS
and interacting embedded impurity chemical potentials:

ΨC(n)→ ΨC
(

µs, µ̃imp
)

. (80)
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In the exact theory, for a given chemical potential value µ in the true interacting lattice,
both the KS lattice and the embedded impurity reproduce the interacting lattice density
n(µ), i.e.,

n(µ) = nKS
lattice(µ− vHxc) = nC

(
µ− vHxc, µ̃imp

)
, (81)

where

nKS
lattice(µs) ≡ 〈n̂0〉T̂−µs N̂ , (82)

and

nC
(

µs, µ̃imp
)
= 〈n̂0〉ΨC(µs,µ̃imp)

≡ 〈n̂0〉t̂01+τ̂C (µs)+Û0−µ̃impn̂0
,

(83)

with, according to Equation (74),

µ̃imp = µ̃imp(n(µ))

= vHxc −
[

∂ec(ν)

∂ν
− ∂τCc (n(µ), ν)

∂ν

]
ν=n(µ)

.
(84)

The density constraint of Equation (81) combined with Equation (84) allows for an
in-principle-exact evaluation of the Hxc potential vHxc. Most importantly, these two equa-
tions can be used for designing an alternative (and self-consistent) embedding strategy
on the basis of well-identified density-functional approximations. Indeed, in Ht-DMFET,
the second term on the right-hand side of Equation (84) is simply dropped, for simplic-
ity (see Equation (75)). If, in addition, we neglect the Householder kinetic correlation
density-bi-functional potential correction ∂τCc (n, ν)/∂ν [last term on the right-hand side of
Equation (84)], we obtain from Equation (81) the following self-consistent equation,

nKS
lattice(µ− ṽHxc) = nC(µ− ṽHxc, ṽHxc), (85)

from which an approximation ṽHxc ≡ ṽHxc(µ) to the Hxc potential can be determined.
Equation (85) is the second main result of this paper. Since ṽHxc is now the to-be-optimized
quantity on which the embedding fully relies, we refer to the approach as local potential
functional embedding theory (LPFET), in which the key density-functional approximation
that is made reads as

vHxc(n) ≈
LPFET

µ̃imp(n). (86)

The approach is graphically summarized in Figure 1.
In order to verify that the first HK theorem [45] still holds at the LPFET level of

approximation, let us assume that two chemical potentials µ and µ + ∆µ lead to the same
density. If so, the converged Hxc potentials should differ by ṽHxc(µ + ∆µ)− ṽHxc(µ) = ∆µ,
so that both calculations give the same KS chemical potential value (see Equation (58)).
According to Equations (85) and (86), it would imply that two different values of the
interacting embedded impurity chemical potential can give the same density, which is
impossible [31,48]. Therefore, when convergence is reached in Equation (85), we can
generate an approximate map

µ→ n(µ) ≈
LPFET

nKS
lattice(µ− ṽHxc) = 〈n̂0〉ΨC (µ−ṽHxc,ṽHxc)

, (87)
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and compute approximate per-site energies as follows,

E(µ)
L

+ µn(µ) ≈
LPFET

〈
t̂01 + Û0

〉
ΨC (µ−ṽHxc,ṽHxc)

, (88)

since the approximation in Equation (75) is also used in LPFET, as discussed above.

Figure 1. Graphical representation of the LPFET procedure. Note that the same Hxc potential ṽHxc is
used in the KS lattice and the embedding Householder cluster. It is optimized self-consistently in
order to fulfill the density constraint of Equation (85). See text for further details.

Note that Ht-DMFET (which is equivalent to DMET in the present context) and LPFET
use the same per-site energy expression (see Equation (47)), which is a functional of the
interacting cluster’s wave function. In both approaches, the latter and the non-interacting
lattice share the same density. Therefore, if the per-site energy or the double occupation〈

n̂0↑n̂0↓
〉

were plotted as functions of the (converged) lattice filling n, as it is usually done
in the literature [15], both methods would give exactly the same results. The reason
is that, at convergence of the LPFET algorithm, the density constraint of Equation (85)
should be fulfilled, exactly like in Ht-DMFET (see Equations (45) and (46)). However, if
properties were plotted as functions of the chemical potential value µ in the true interacting
lattice, LPFET and Ht-DMFET would give different results, simply because the densities
obtained (for a given µ value) with the two methods would be different. Indeed, as
shown in Section 2.3.2, Ht-DMFET can be viewed as an approximation to KS-DFT where
the Hxc density-functional potential of Equation (78) is employed. As readily seen from
Equation (86), the LPFET and Ht-DMFET Hxc potentials differ by the Householder kinetic
correlation potential (which is neglected in LPFET). If the corresponding KS densities
were the same then the Hxc potential, the Householder transformation, and, therefore,
the chemical potential on the interacting embedded impurity would be the same, which
is impossible according to Equations (78) and (86). In summary, differences in properties
between LPFET and Ht-DMFET are directly related to differences in density. This is
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the reason why, in order to compare the two methods, we will restrict ourselves to the
computation of chemical-potential-density maps (see Section 4).

2.5. Comparison with SDE

At this point we should stress that LPFET is very similar to the SDE approach of
Mordovina et al. [42]. The major difference between SDE and LPFET (in addition to the
fact that LPFET has a clear connection with a formally exact density-functional embedding
theory based on the Householder transformation) is that no KS construction is made within
the cluster. Instead, the Hxc potential is directly updated in the KS lattice, on the basis of
the correlated embedded impurity density. This becomes even more clear when rewriting
Equation (85) as follows,

ṽHxc = µ−
[
nKS

lattice

]−1(
nC(µ− ṽHxc, ṽHxc)

)
, (89)

where
[
nKS

lattice

]−1 : n → µs(n) is the inverse of the non-interacting chemical-potential-
density map. A practical advantage of such a procedure (which remains feasible since
the full system is treated at the non-interacting KS level only) lies in the fact that the KS
construction within the cluster is automatically (and exactly) generated by the Householder
transformation, once the density has been updated in the KS lattice (see Equation (41) and
the comment that follows). Most importantly, the density in the KS lattice and the density
of the non-interacting KS embedded impurity (which, unlike the embedded interacting
impurity, is not used in the actual calculation) will match at each iteration of the Hxc
potential optimization process, as it should when convergence is reached. If, at a given
iteration, the KS construction were made directly within the cluster, there would always
be a “delay” in density between the KS lattice and the KS cluster, which would only
disappear at convergence. Note that, when the latter is reached, the (approximate) Hxc
potential of the lattice should match the one extracted from the cluster, which is defined
in SDE as the difference between the KS cluster Hamiltonian and the one-electron part of
the interacting cluster’s Hamiltonian [42], both reproducing the density of the KS lattice.
Therefore, according to Equations (64), (65) and (70), the converged Hxc potential will
simply correspond to the chemical potential on the interacting embedded impurity, exactly
like in LPFET (see Equation (86)).

Note finally that the simplest implementation of LPFET, as suggested by Equation (89),
can be formally summarized as follows:

ṽ(i+1)
Hxc = µ−

[
nKS

lattice

]−1(
nC
(

µ− ṽ(i)Hxc, ṽ(i)Hxc

))
,

ṽ(i=0)
Hxc = 0.

(90)

A complete description of the algorithm is given in the next section.

3. LPFET Algorithm

The LPFET approach introduced in Section 2.4 aims at computing the interacting
chemical-potential-density µ→ n(µ) map through the self-consistent optimization of the
uniform Hxc potential. A schematics of the algorithm is provided in Figure 2. It can be
summarized as follows.

1. We start by diagonalizing the one-electron Hamiltonian (i.e., the hopping in the
present case) matrix t ≡ tij (see Equation (7)). Thus, we obtain the “molecular”
spin-orbitals and their corresponding energies. We fix the chemical potential of the
interacting lattice to some value µ and (arbitrarily) initialize the Hxc potential to
ṽHxc = 0. Therefore, at the zeroth iteration, the KS chemical potential µs equals µ.

2. We occupy all the molecular spin-orbitals with energies below µs = µ− ṽHxc and
construct the corresponding density matrix (in the lattice representation). The latter
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provides the uniform KS density (denoted nKS
lattice in Figure 2) and the embedding

Householder cluster Hamiltonian (see Equation (46)) in which the impurity chemical
potential is set to µ̃imp = ṽHxc (see Equation (86)).

3. We solve the interacting Schrödinger equation for the two-electron Householder
cluster and deduce the occupation of the embedded impurity (which is denoted
nC in Figure 2). This can be done analytically since the Householder cluster is an
asymmetric Hubbard dimer [31].

4. We verify that the density in the KS lattice nKS
lattice and the occupation of the interacting

embedded impurity nC match (a convergence threshold has been set to 10−4). If this
is the case, the calculation has converged and nC is interpreted as (an approximation
to) the density n(µ) in the true interacting lattice. If the two densities do not match,
the Hxc potential ṽHxc is adjusted in the KS lattice such that the latter reproduces nC

(see Equation (90)) or, equivalently, such that the KS lattice contains LnC electrons.
We then return to step 2.

Householder transformation


Evaluation of the KS chemical potential

 


and construction of the 1RDM
μs = μ − ṽHxc

Evaluation of the interacting embedded

 impurity density  


(with the potential  on the impurity)
n𝒞

−ṽHxc


n𝒞 ?= nKSlattice
Yes

Converged

No
Checking the density mapping constraint

 ṽHxc = μ − [nKSlattice]−1 (n𝒞)

Choice of the chemical potential value  

in the lattice

μ

Initialization 
ṽHxc = 0


nKSlattice(μs)


nKSlattice

=

Figure 2. Schematics of the LPFET algorithm. The (one-electron reduced) density matrix of the KS
lattice is referred to as the 1RDM. See text for further details.

4. Results and Discussion

In the following, LPFET is applied to a uniform Hubbard ring with a large L = 1000
number of sites in order to approach the thermodynamic limit. Periodic boundary con-
ditions have been used. The hopping parameter is set to t = 1. As explained at the end
of Section 2.4, plotting Ht-DMFET (which is equivalent to DMET or DET in the present
single embedded impurity case) and LPFET properties such as the per-site energy or the
double occupation as functions of the (converged) lattice filling n would give exactly the
same results. We refer the reader to Ref. [31] for a detailed analysis of the Ht-DMFET
scheme and its performance. On the other hand, the two methods are expected to give
different chemical-potential-density µ→ n(µ) maps since they rely on different density-
functional approximations (see Equations (78) and (86)). We focus in the following on the
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self-consistent computation of this map at the LPFET level of theory. Comparison will be
made with Ht-DMFET and the exact BA results.

As illustrated by the strongly correlated results of Figures 3 and 4, the LPFET self-
consistency loop converges smoothly in few iterations. The same observation is made in
weaker correlation regimes (not shown). The deviation in density between the KS lattice
and the embedded impurity is drastically reduced after the first iteration (see Figure 3).
This is also reflected in the large variation of the Hxc potential from the zeroth to the first
iteration (see Figure 4). It originates from the fact that, at the zeroth iteration, the Hxc
potential is set to zero in the lattice while, in the embedding Householder cluster, the
interaction on the impurity site is “turned on”. As shown in Figure 3, the occupation of
the interacting embedded impurity is already at the zeroth iteration a good estimate of
the self-consistently converged density. A few additional iterations are needed to refine
the result.
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0.400
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nimpurity
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Figure 3. Comparison of the KS lattice and embedded impurity densities at each iteration of the
LPFET calculation. The interaction strength and chemical potential values are set to U/t = 8 and
µ/t = −0.97, respectively. As shown in the inset, convergence is reached after five iterations.
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Figure 4. Convergence of the LPFET Hxc potential for U/t = 8 and µ/t = −0.97.
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The converged LPFET densities are plotted in Figure 5 as functions of the chemical
potential µ in various correlation regimes. The non-interacting U = 0 curve describes
the KS lattice at the zeroth iteration of the LPFET calculation. Thus, we can visualize, as
U deviates from zero, how much the KS lattice learns from the interacting two-electron
Householder cluster. LPFET is actually quite accurate (even more than Ht-DMFET, probably
because of error cancellations) in the low filling regime. Even though LPFET deviates
from Ht-DMFET when electron correlation is strong, as expected, their chemical-potential-
density maps are quite similar. This is an indication that neglecting the Householder
kinetic correlation potential contribution to the Hxc potential, as done in LPFET, is not a
crude approximation, even in the strongly correlated regime. As expected [15,31], LPFET
and Ht-DMFET poorly perform when approaching half filling. Like the well-established
single-site DMFT (see Figure 7 of Ref. [5]), they are unable to describe the density-driven
Mott–Hubbard transition (i.e., the opening of the gap). As discussed in Ref. [31], this might
be related to the fact that, in the exact theory, the Householder cluster is not disconnected
from its environment and it contains a fractional number of electrons, away from half
filling, unlike in the (approximate) Ht-DMFET and LPFET schemes. In the language of
KS-DFT, modeling the gap opening is equivalent to modeling the derivative discontinuity
in the density-functional correlation potential vc(n) = µ(n)− µs(n)− U

2 n at half filling.
As clearly shown in Figure 6, Ht-DMFET and LPFET do not reproduce this feature. In the
language of the exact density-functional embedding theory derived in Section 2.3, both
Ht-DMFET and LPFET approximations neglect the complementary density-functional
correlation energy ec(n) that is induced by the interacting bath and the environment of
the (closed) density-functional Householder cluster. As readily seen from Equation (74), it
should be possible to describe the density-driven Mott–Hubbard transition with a single
statically embedded impurity, provided that we can model the derivative discontinuity in
∂ec(n)/∂n at half filling. This is obviously a challenging task that is usually bypassed by
embedding more impurities [15,31]. The implementation of a multiple-impurity LPFET as
well as its generalization to higher-dimension lattice or quantum chemical Hamiltonians is
left for future work.
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Figure 5. Converged LPFET densities (red solid lines) plotted as functions of the chemical potential
µ in various correlation regimes. Comparison is made with the exact BA (black solid lines) and Ht-
DMFET (blue dotted lines) results. In the latter case, the chemical potential is evaluated via the numer-
ical differentiation of the density-functional Ht-DMFET per-site energy (see Equations (62) and (76)).
The non-interacting (U = 0) chemical-potential-density map (see Equation (60)) is shown for
analysis purposes.



Computation 2022, 10, 45 20 of 23

0.0 0.5 1.0 1.5 2.0
-3

-2

-1

0

1

2

3

n

co
rre

la
tio

n 
po

te
nt

ia
l

   

Ht-DMFET

U=8

LPFET

exact (BA)

Figure 6. Correlation potential vc(n) = µ(n)− µs(n)− U
2 n plotted as a function of the lattice filling n

at the Ht-DMFET (blue dashed line) and LPFET (red solid line) levels of approximation for U/t = 8.
Comparison is made with the exact BA correlation potential (black solid line).

5. Conclusions and Perspectives

An in-principle-exact density-functional reformulation of the recently proposed House-
holder transformed density matrix functional embedding theory (Ht-DMFET) [31] has been
derived for the uniform 1D Hubbard Hamiltonian with a single embedded impurity. On
that basis, an approximate local potential functional embedding theory (LPFET) has been pro-
posed and implemented. Ht-DMFET, which is equivalent to DMET or DET in the particular
case of a single impurity, is reinterpreted in this context as an approximation to DFT where
the complementary density-functional correlation energy ec(n) induced by the interacting
bath and the environment of the (closed) embedding “impurity+bath” cluster is neglected.
LPFET neglects, in addition, the kinetic correlation effects induced by the Householder
transformation on the impurity chemical potential. We have shown that combining the two
approximations is equivalent to approximating the latter potential with the Hxc potential
of the full lattice. Thus, an approximate Hxc potential can be determined self-consistently
for a given choice of external (chemical in the present case) potential in the true interacting
lattice. The self-consistency loop, which does not exist in regular single-impurity DMET
or DET [36], emerges naturally in LPFET from the exact density constraint, i.e., by forcing
the KS lattice and interacting embedded impurity densities to match. In this context, the
energy becomes a functional of the Hxc potential. In this respect, LPFET can be seen as a
flavor of KS-DFT where no density functional is used. LPFET is very similar to SDE [42].
The two approaches essentially differ in the optimization of the potential. In LPFET, no
KS construction is made within the embedding cluster, unlike in SDE. Instead, the Hxc
potential is directly updated in the lattice. As a result, the KS cluster (which is not used in
the actual calculation) can be automatically generated with the correct density by applying
the Householder transformation to the KS lattice Hamiltonian.

LPFET and Ht-DMFET chemical-potential-density maps have been computed for a
1000-site Hubbard ring. Noticeable differences appear in the strongly correlated regime.
LPFET is more accurate than Ht-DMFET in the low filling regime, probably because of error
cancellations. As expected from previous works [15,31], their performance deteriorates as
we approach half filling. It appears that, in the language of density-functional embedding
theory, it should be possible to describe the density-driven Mott–Hubbard transition (i.e.,
the opening of the gap), provided that the complementary correlation potential ∂ec(n)/∂n
exhibits a derivative discontinuity at half filling. Since the latter is neglected in both



Computation 2022, 10, 45 21 of 23

methods, the gap opening is not reproduced. The missing correlation effects might be
recovered by applying a multi-reference Görling–Levy-type perturbation theory on top of
the correlated cluster calculation [31]. Extending LPFET to multiple impurities by means of
a block Householder transformation is another viable strategy [31]. Work is currently in
progress in these directions. Note that, like DMET or SDE, LPFET is in principle applicable
to quantum chemical Hamiltonians written in a localized molecular orbital basis. A general
computational implementation of the theory will be presented in a forthcoming paper and
the code will be made available on that occasion.
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Appendix A. Simplification of Density Matrix Elements in the
Householder Representation

Starting from the expression in Equation (23) of the creation operators in the House-
holder representation and Equations (12), (14)–(16) and (18), we can simplify step by step
the expression of the density matrix elements that involve the impurity as follows,

〈Φ|d̂†
jσ d̂0σ|Φ〉 = ∑

i
Pjiγi0

= γj0 − 2vj ∑
i≥1

viγi0

= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10) ∑

i≥2
v2

i

= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10)

(
1− v2

1

)
= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10) + 2vjv2

1

√
2γ̃10(γ̃10 − γ10)

= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10) + 2vjv1(γ10 − γ̃10)

= γj0 − 2vj

(
v1γ̃10 +

√
2γ̃10(γ̃10 − γ10)

)
= γj0 − 2vj

√
2γ̃10(γ̃10 − γ10)

(
1 +

γ̃10(γ10 − γ̃10)

2γ̃10(γ̃10 − γ10)

)
= γj0 − vj

√
2γ̃10(γ̃10 − γ10).

(A1)
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