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Abstract: This paper describes a novel approach to the robotic system’s dexterous manipulator
arm design. A simulation model of the robotic system is developed in the MATLAB/Simulink
environment. The designed gripper moves the dumbbells from one shelf to another using impedance
and dynamics control. The novel approach to contact force control was tested. For the most accurate
simulation, the size and mass parameters of the manipulator and dumbbells are determined. In
addition, various force parameters such as normal, friction and damping were evaluated. The
dynamic behavior of the robotic system was described by the Lagrange dynamics equations to
find the acceleration of the robot’s joints during friction interaction, and the energy performance
was described. The corresponding dynamic model and its analysis are the starting point for its
successful solution. The analytical and numerical descriptions are obtained and can be further
used for computer simulation of the system, calculation of dynamic constraints, optimization of
manipulator design, synthesis of trajectory planner and motion control algorithms of dexterous
manipulative robotic systems.

Keywords: control systems; mathematical modeling; automation; computational methods; robotics;
mechatronics; force control; robotic manipulation

1. Introduction

The foundations of modern robotics are built on the concepts of kinematics and
dynamics of articulated rigid bodies [1]. Practically, every robotics textbook starts with
a description of robot configuration using joint angles and then uses them to introduce
robot kinematics, dynamics and control [2]. A significant consequence of this is the implicit
assumption of knowing its kinematic information: the arrangement of links and joints, the
link dimensions and the joint positions to control a robot [3,4]. Assuming, in addition, that
the link dimensions are constant, then the only information needed to control a robot is the
joint angles [5]. Robot controllers still rely on the same principle—of general kinematics
and measurable joint positions.

Since manipulation and force control continue to develop rapidly in modern robotics,
only a few methods have been proposed to control robotic complexes [6–8]. Hence, this
work describes the novel approach to the modeling and design of a 2R planar dexterous ma-
nipulation robot with a gripper that can grab dumbbells from a shelf and move it to another
one. The novelty of the proposed approach lies in a completely unprecedented combination
of uniquely designed gripping and dynamics/impedance force control methods for the
stacking of dumbbells as a critical manipulation task.

The main objectives of the work are listed below:

1. Mechanical Structure Analysis;
2. Gripper Design;
3. Kinematics;
4. Dynamics;
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5. Model-based Control of Robot Dynamical Interaction with Environment;
6. Contact Forces Set;
7. Trajectory Set.

2. Materials and Methods

This work proposes the analysis of the dynamics methods:

1. Euler–Newton formulation: to describe the bodies of the rigid dynamic, it is an
effective way for complex systems and is used to assemble the equation of the motion
using the algorithms;

2. Lagrangian formulation: using the kinetic and potential energy of the robot, it is
effective for simple systems with few bodies that have a degree of freedom.

2.1. Mechanical Structure

The robot model comprises two revolute joints and two links that are shown on the
robot scheme. The first and second links’ lengths are 0.8m each, and their masses are 2 kg,
respectively. The links are connected with no elastic elements. The first link is connected
to the ground, and the end effector is connected to the second link. The x-axis is to the
right, the z-axis is in the upward direction, and the y-axis is out of the screen. The robot is
equipped with a mechanical gripping device, which can be seen in Figure 1. The essence of
the task is to move dumbbells from one shelf to another (from A to B or C, and back again),
and the control of this system should be as accurate and energy efficient as possible for this
type of manipulation.

Figure 1. Scheme of the robot.

The physical interface between a robot arm and the workpiece is called robot grippers.
The most important part of the robot is the end-of-arm-tooling (EOAT). A robotic gripper
is a device that enables the holding, handling, tightening and releasing of the object. A
gripper is a component attached to a robot or a part of a fixed automated system. There are
many styles and sizes of grippers that the application’s model can select.

Choosing a proper gripper is essential to ensure successful automation applications [9].
Robotic grippers are also called end effectors. The benefit of using grippers is reducing part
damage to the product. The robotic grippers are manufactured and programmable with
different functions, trading speed and flexibility force.
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Robotic grippers with two fingers are the simplest grippers used in the industrial
collaborative robots market. These are easy to manufacture. Different alternatives in the
group, such as opening control, pressure control and distance control, are commonly used
by collaborative robots companies with plug-and-play features in universal robots.

The proposed gripper (Figure 2) comprises 17 parts to constrain its motion. It is
controlled by a prismatic joint in the MATLAB environment.

Figure 2. Gripper 3d model.

2.2. Forward Kinematics

The position of the end effector can be analyzed by its pose in relation to the base
by describing the geometrical vectors, the position of the end effector is determined in
Cartesian space, and the equations are considered as:

Px = l1 cos θ1 + l2 cos(θ1 + θ2); (1)

Py = l1 sin θ1 + l2 sin(θ1 + θ2), (2)

where Px and Py are the coordinates of the end effector position in x and y directions; l1
and l2 are the lengths of each link, and θ1 and θ2 are the angles of each joint, respectively.

Furthermore, the position matrix of the end effector can be described as shown:

P =

[
Px
Py

]
=

[
l1 cos θ1 + l2 cos(θ1 + θ2)
l1 sin θ1 + l2 sin(θ1 + θ2)

]
. (3)

The velocity matrix of the end effector is written as:

V =

[
Ṗx
Ṗy

]
=

[
−l1θ̇1 sin θ1 − l2(θ̇1 + θ̇2) sin(θ1 + θ2)
l1θ̇1 cos θ1 + l2(θ̇1 + θ̇2) cos(θ1 + θ2)

]
. (4)
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The parameters of the space angular velocities are extracted as shown:

V =

[
−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

][
θ̇1
θ̇2

]
= J(θ)θ̇, (5)

where J(θ) is the Jacobian of the planar 2R robot and θ is the vector of angular velocities.

J(θ) =
[
−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]
. (6)

After identifying these kinematic parameters of the system, it is necessary to proceed
to the dynamic behavior of the presented robotic system.

2.3. Robot Dynamics

Contact forces are transmitted between bodies by short-range atomic or molecular
interactions [10]. For example, push, pull, the tension of a string, normal force, the force
of friction, etc. The origin of these forces can be explained in terms of the fundamental
properties of matter. However, this approach emphasizes the properties of these forces and
the techniques for dealing with physical problems, not worrying about their microscopic
origins. To implement the contact forces in this case, they have to be applied to the gripper’s
fingers, the dumbbell and between the dumbbell and the shelf.

The forces and torques are considered, as the forward dynamics have to determine
the robot’s acceleration θ̈ for the joint space (θ, θ̇), the forces on the joints F and torques
τ. Furthermore, the inverse dynamics determine the robot’s forces F and torques τ for
the robot acceleration θ̈. The Lagrangian formulation is considered for analyzing this
robot system.

The Lagrangian function is the difference between the kinetic energy K and potential
Energy U, as shown:

L(θ, θ̇) = K(θ, θ̇)−U(θ, θ̇). (7)

The total kinetic energy for both links is calculated.

K(θ, θ̇) = K1(θ, θ̇) + K2(θ, θ̇) =
m1v2

1
2

+
m2v2

2
2

, (8)

where v1 and v2 are the linear velocity of the first and second links, respectively.
The total potential energy of both links is

U(θ, θ̇) = U1(θ, θ̇) + U2(θ, θ̇) = m1gh1 + m2gh2, (9)

where h1 and h2 represent the heights of the center of masses for the first and second links.
To determine the velocities of the center of mass for both links:

V2
1 = Ṗ2

1 = Ẋ2
1 + Ẏ2

1 =

(
l1
2

θ̇1 sin θ1

)2
+

(
l1
2

θ̇1 cos θ1

)2
=

θ̇2
1 l2

1
2

; (10)

V2
2 = Ṗ2

2 = Ẋ2
2 + Ẏ2

2 =

(
l2
1 + l1l2 cos θ2 +

l2
2
4

)
θ̇2

1 +

(
l1l2 cos θ2 +

l2
2
4

)
θ̇1θ̇2 +

θ̇2l2
2

4
. (11)

The kinetic energy for both links:

K1(θ, θ̇) =
m1v2

1
2

=
m1θ̇2

1 l2
1

8
; (12)

K2(θ, θ̇) =
m2

2

[
m2v2

2
2

=

(
l2
1 + l1l2 cos θ2 +

l2
2
4

)
θ̇2

1 +

(
l1l2 cos θ2 +

l2
2
4

)
θ̇1θ̇2 +

θ̇2l2
2

4

]
. (13)
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The potential energy of the center of mass for both links can be presented as:

U1(θ, θ̇) = m1g
l1
2

sin θ1; (14)

U2(θ, θ̇) = m2g
(

l1 sin θ1 +
l2
2

sin(θ1 + θ2)

)
; (15)

The Lagrangian formulation is presented as shown:

d
dt

(
dL
dθ̇

)
−
(

dL
dθ

)
= τT , (16)

where τ is the applied torque for the joints τ = [τ1τ2], the equation of motion should be
derived for both generalized coordinates.

For the first joint:

dL1

dθ1
= −m1g

l1
2

cos θ1 −m2gl1 cos θ1 −m2g
l2
2
− cos(θ1 + θ2); (17)

dL1

dθ̇1
=

1
4

m1gl2
1 θ̇2

1 + m2

(
l2
1 +

l2
2
4

)
θ̇2

1 + (m2l1l2 cos θ2)θ̇1 +

(
1
2

m2l1l2 cos θ2θ̇2 +

(
1
4

m2l2
2

))
θ̇2. (18)

For the second joint:

dL2

dθ2
= −

(
1
2

m2l1l2 sin θ2

)
θ̇2

1 −
(

1
2

m2l1l2 sin θ2

)
θ̇2

1 θ̇2
2 −

(
1
2

m2l2 cos(θ1 + θ2)g
)

; (19)

dL2

dθ̇2
=

(
1
2

m2l1l2 sin θ2

)
θ̇2

1 +
1
4

m2l2
2 θ̇1 +

1
4

m2l2
2 θ̇2. (20)

Now the applied torques on the joints can be obtained. The torque on the first joint:

τ1 =

(
1
4

m1l2
1 + m2

(
l2
1 + l1l2 cos θ2 +

l2
2
4

))
θ̈2 +

1
4

m2l2

(
l1 cos θ2 +

l2
2

)
θ̈2 −

1
2

m2l1l2 sin θ2

(
2θ̇1θ̇2 + θ̇2

2

)
+

+

(
1
2

m1 + m2

)
gl1 cos (θ1 + θ2). (21)

The torque on the second joint:

τ2 =

(
1
2

m2l2

(
l1 cos θ2 +

l2
2

))
θ̈1 +

1
4

m2l 2
2 θ̈2 +

1
2

m2l1l2 sin (θ2) θ̇1
2
+

1
2

m2gl2 cos (θ1 + θ2). (22)

The torques of the joints can be described by the matrix equation of the motion:

M(θ)θ̈ + C
(
θ, θ̇
)
θ̇ + G(θ) = τ T

d , (23)

where θ, θ̇, θ̈ are the position vector, angular velocity and angular acceleration of the joints;
M(θ)—the inertia matrix; C

(
θ, θ̇
)
—the Coriolis vector and centrifugal forces; G(θ)—the

vector of the potential energy; τ T
d —the inherent dynamics of the robot.

M(θ) =

 1
4 m1l 2

1 + m2γ 1
2 m2l2

(
ε + 1

2 l2
)

1
2 m2l2

(
ε + 1

2 l2
)

1
2 m2l 2

2

; (24)

C
(
θ, θ̇
)
θ̇ =

[
− 1

2 m2l1l2 sin θ2
(
2θ̇1θ̇2 + θ̇2

2
)

1
2 m2l1l2 sin (θ2)θ̇

2
1

]
; (25)



Computation 2022, 10, 143 6 of 13

G(θ) =

[(
1
2 m1 + m2

)
gl1 cos (θ1 + θ2) +

1
2 m2gl2cos(θ1 + θ2)

1
2 m2g l2 cos (θ1 + θ2)

]
, (26)

where ε = l1 cos θ2, γ = l2
1 + l2ε + 1

4 l2
2 and g = 9.80665 m/s2.

The calculated τ is for the equilibrium of the initial position, so its effect corresponds
to the gravity. To achieve motion for these joints, additional torques and forces should
be added.

2.4. Robot Control

To achieve the motion of the desired trajectory of the robot, the total torques should
include three components:

τT = τT
d + τT

f + τT
i , (27)

here τT is the total applied torque on the joints required for the trajectory; τT
d is the inherent

dynamics of the robot; τT
f is the friction torque and τT

i is the dynamic interaction with the
environment. The friction torque can be determined:

τT
f = bθ̇, (28)

where b is the friction damping coefficient and θ̇ is the angular velocity of the generalized
coordinates. The dynamic interaction with the environment is determined as

τT
i = JT FT , (29)

where JT is the Jacobian matrix; FT is the externally applied force on the end effector.

2.5. Impedance Control

When the interaction with the environment is considered, force F is the applied force
on the end effector. To keep the robot in the equilibrium position, actuators have to produce
reaction torque with equal power [11].

Fv = τθ̇ = P, (30)

where F = [Fx Fy] is a vector of the external force; v = [vx vy] is a velocity vector; τ = [τ1 τ2]
is a vector of torques on joints and P is a power in scalar.

The robot is treated as a virtual spring with elastic force F applied to the end effector
to get the impedance behavior [12]

FT = K
(

P̃− P
)
+ D(ṽ− v), (31)

where K and D are proportional and derivative (or damping) coefficients, P̃ is the desired
position and P is the current position, ṽ is the desired linear velocity of the end effector and
v is the current velocity.

P̃ =

[
Ax cos ( f t) + Bx
Ay cos ( f t) + By

]
, (32)

where Ax and Ay are the amplitudes and Bx and By are the biases for x and y, respectively,
f is the frequency of oscillation and t is the time; the impedance control helps create a
virtually passive system that can dynamically interact with the environment [13,14].

2.6. Simulink Model

A simulation model in the MATLAB/Simulink environment was developed. Simscape
Multibody Library was primarily used in this research. Simulation modeling is a research
method in which the understudy robotic system is replaced by a model that describes the
actual system with sufficient accuracy. It is an efficient tool for conducting experiments
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to verify, evaluate and support design decisions, study the interaction between the com-
ponents of the robot and the objects of the environment, as well as analyze kinematic
and dynamic properties, adjust control algorithms and get other information about the
system [15].

The robot model primarily comprises the main mechanical part (Figure 3), which
includes control subsystems such as dynamic controller (Figure 4) and impedance controller
(Figure 5). To connect the main parts of the robot with the working body, a subsystem
of the gripper model is provided (Figure 6). A subsystem of contact forces (Figure 7) is
provided to simulate the force interaction with the gripper and dumbbell surfaces.
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Figure 3. Robot mechanical part.
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3. Results and Analysis

A simulation of the dexterous 2R manipulator model was carried out. The scene
simulation time was set to 8 s. Plotted results of the modeling process are obtained.

Figures 8 and 9 show the results of the impedance and dynamics outputs of the
controllers. The change in the angles of each of the manipulator’s joints, strictly speaking,
the configurations of each of the joints at each moment of time, is shown in Figure 10.
Contact forces include three varieties: normal force, friction force and damping force. The
change in these forces between the first and second finger gripper with the first dumbbell
is shown in Figures 11 and 12. The change in these forces between the first and second
dumbbell fingers is shown in Figures 13 and 14. The change in contact forces between the
first and second dumbbell with the target shelf is shown in Figures 15 and 16.

The image sequence of the simulated result of the robotic manipulator model from
MATLAB Mechanics Explorer is shown in Figure 17 and Supplementary Materials.

0 1 2 3 5 6 7 84 
-500
-400
-300
-200
-100
0

200 
100
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Figure 8. Impedance controller outputs.
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Figure 9. Dynamics controller outputs.
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Figure 10. Configurations of the first and second joints.
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Figure 11. Contact forces between the first finger and the first dumbbell.
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Figure 12. Contact forces between the second finger and the first dumbbell.
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Figure 13. Contact forces between the first finger and the second dumbbell.
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Figure 14. Contact forces between the second finger and the second dumbbell.

0 1 2 3 5 6 7 84 
Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5
2 

������ ����� 
�������� ����� 
����ing �����

*105

Figure 15. Contact forces between the first dumbbell and the target shelf.
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Figure 17. Simulation sequence of robotic manipulation using force control.

The results show that the interaction forces of the individual first finger and the second
finger of the gripper, specifically the friction force, are opposite in value, while the damping
and normal force differ only imperceptibly. In summary, simulation errors are negligible
when compared to results due to the effectiveness of manipulation.

4. Conclusions

In this work, a 2R planar robot that can grab dumbbells from a shelf and move it to
another one was modeled and simulated. The 2R robot, with the help of the Simulink
Multibody system library and the gripper in Fusion360 was modeled. The motion of the
gripper was controlled with a repeating sequence. The dynamics and impedance control of
the robot were implemented with MATLAB functions. The trajectory for the x and z axes
was also generated by the repeating sequences. The contact forces were modeled with the
contact force library. A control system based on the principle of impedance (interaction)
control was developed and tested. In addition, the compensation of the robot’s dynamics
is considered. The gripper was designed of blocks of complex geometry and had its own
control system. As a result, an animation of the load transfer from the floor to the shelf
has been successfully processed. The trajectory of the gripper movement in space was
plotted, as well as the graphs of the forces applied to the actuators and the graph of the
force reaction in the gripper.

The future work on the system will be based on the neural circuits evolved in biological
systems, such as lateralization [16–19], are going to be considered for the improvement of
the performance of the dexterous manipulator. The results of this work are going to be im-
plemented on a real robotic manipulator with reinforcement learning-based manipulation
for further research and comparison of the model and a real system. Future research will
consider the designing of a gripper version with improved accuracy [20]; optimization and
tuning up numerical algorithms based on experimental results [21]; calculation analysis
for other robots with different dimensional parameters [22]; using more realistic material
properties [23,24] and experimental validation for all proposed results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation10090143/s1, Video S1: Video of simulation of
robotic manipulation using force control.
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