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Abstract: The existing literature indicates that spillovers can lead to a complicated bias in the
estimation of causal effects in empirical corporate finance. We show that, under the assumption
of simple random treatment assignment and when the proxy chosen for the group-level treatment
coverage is the leave-one-out average treatment, such a spillover bias exists if and only if the average
indirect effects on the treated and untreated groups are different. We quantify the gains in spillover
bias reduction using Monte Carlo exercises. We propose a Wald test to statistically infer the presence
of bias. We illustrate the application of this test to bear out spillovers in firms’ employment decisions.
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1. Introduction

It is well known that spillovers arise in corporate finance through firm competition and
geographical agglomeration; see, for example, [1], BRS21 hereon. Firm-level outcomes, such
as sales or investments, depend on firms’ own treatment assignment in a given intervention
and on the fraction of firms treated in the same industry and/or geographical region. As an
example of these spillovers, consider the following illustration taken from BRS21. Assume
that some coffee shops (i.e., the treated shops) in a given neighborhood are subject to a rise
in the price of coffee beans (the treatment). The rise in the input price leads to a rise in
the final price per cup of coffee for treated shops, and consequently, to a reduction in their
volume of sales, i.e, the direct effect of the treatment. This is not the only effect on sales. It
is likely that due to the increase in price, some consumers switch coffee shops. For coffee
shops in the same neighborhood whose price has not changed, this implies an increase in
the volume of sales, i.e, the spillover effect on the untreated. This spillover is an example of
interference in causal inference; see, for example, [2].

Spillovers can lead to a complicated bias in the estimation of causal effects; see, for
example, BRS21. Spillover bias arises when the coverage of an intervention is omitted
from the analysis. In terms of the above illustration, the coverage of the intervention is the
proportion of coffee shops in a neighborhood that were affected by the increase in their
costs. The reduction in the volume of sales suffered by shops in the treated group could be
lower if more shops in the neighborhood were affected by the increase in costs. Omitting
the proportion of affected coffee shops in a given neighborhood would induce a bias in
the estimation of the direct effect. The coverage of an intervention can be measured either
by the group-level average or by the leave-one-out average proxy. There is a The group-level
average proxy is the average number of firms in a group subject to the treatment including
the firm itself. The leave-one-out average proxy is the average number of firms subject to
the treatment excluding the firm itself. Little is known about which of the two proxies one
should use when controlling for spillovers.
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The objective of this paper is to compare the implications for the spillover bias when
using the leave-one-out average or the group-level average proxy. We show that choosing
the leave-one-out average proxy has two advantages. First, it simplifies the formula for
the spillover bias, which facilitates its diagnosis. Second, it clarifies the definition of the
average indirect effects, thereby facilitating its interpretation. These advantages justify the
use of the leave-one-out average as the preferred proxy.

The leave-one-out average proxy suggests a straightforward statistical test for the
diagnosis of the spillover bias. The test is a heteroskedastic-robust Wald test for the null
hypothesis of equal average indirect effects on the treated and untreated groups. If this
null hypothesis is rejected, the ordinary least square estimator of the average direct effect
omitting the spillovers is biased. We illustrate the implementation of this test in the context
of measuring the effect of credit supply contractions on firms’ employment decisions.

The rest of the paper proceeds as follows: In Section 2, we describe the two proxies to
model spillovers in empirical research in corporate finance. Section 3 contains the main
result and a discussion of the advantages of using the leave-one-out average as the preferred
proxy. Section 4 presents results from a Monte Carlo study exploring the bias of alternative
estimators of the average direct effect. Section 5 presents an illustration of the implications
of our results. Section 6 concludes. Appendix A contains auxiliary calculations.

2. Framework and Graphical Representation

Let yig denote an outcome, such as investments, debts, sales, or employment, for firm i
belonging to group g. Group g typically represents an industry or region. Following BRS21,
we assume that yig is determined by

yig = ϕ(dig, fig), (1)

where ϕ(·) is an unknown function, dig is a treatment indicator variable, and fig is the
group-level treatment coverage (or intensity). The treatment indicator variable is equal
to one if firm i receives the treatment, and is equal to zero otherwise. The group-level
treatment coverage takes values between zero and one. The available data are a sample of
size n {yig, dig, si}n

i=1, where the group variable si ∈ {1, . . . , g, . . . , G} records firm i’s group.
The object of study in this paper is the empirical specification of fig.

Causal estimands of interest include the average direct, indirect, total, and overall
effects. The average direct effect is the difference between the average outcome for treated
and untreated firms given all other things being equal. Following the illustration in the
introduction, the average direct effect is the average change in the sales of coffee shops that
experienced an increase in the price of coffee beans in the absence of spillovers. Formally,
the average direct effect is

∆D := E(yig|dig = 1, fig = 0)− E(yig|dig = 0, fig = 0). (2)

The average indirect effects are those due to treatment coverage. They can be defined
by comparing the outcomes in the treated or untreated firms. Following the illustration,
the average indirect effect on the treated firms is the difference in average sales for a treated
coffee shop between two hypothetical situations for the group: the group is fully treated vs.
the group is not treated at all. Formally, the average indirect effect on the treated is

∆T := E(yig|dig = 1, fig = 1)− E(yig|dig = 1, fig = 0). (3)

The average indirect effect on the untreated is defined similarly:

∆U := E(yig|dig = 0, fig = 1)− E(yig|dig = 0, fig = 0). (4)
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The average total and overall effects provide summary measures combining direct
and indirect effects. The average total effect is the sum of the average direct effect and the
average indirect effect on the untreated:

∆tot := ∆D + ∆U . (5)

The average overall effect is

∆over := E(yig|dig = 1, fig = 1)− E(yig|dig = 0, fig = 0) =
∆D + ∆T + ∆U

2
. (6)

Finally, for later reference, we define the average effect at the a-coverage as

∆a := E(yig|dig = 1, fig = a)− E(yig|dig = 0, fig = a), (7)

where a is a number between zero and one. Following the illustration, the average effect
at the a-coverage is the difference in average sales for treated and untreated coffee shops
when the group is treated at the coverage level a.

We consider two alternative models to estimate the causal estimands of interest. In the
first model, the treatment assignment dig is independent of the group assignment variable
si. This model is a special case of the setting delineated by [2].

Spillover Model with Leave-one-out Average:

yig = γ1 + γ2dig + γ3digd̃ig + γ4(1− dig)d̃ig + ζig, (8)

E(ζig|d1g, ..., dng, s1, ..., sn) = 0, (9)

dig and djg are independent and identically distributed for all i 6= j ∈ {1, ..., n}, (10)

dig and sj are independent for all i, j ∈ {1, ..., n}, (11)

where

d̃ig := (ng − 1)−1 ∑
j 6=i

djg1(sj = g)1(si = g) (12)

is the leave-one-out average, ng := ∑n
i=1 1(si = g) is the number of firms in group g, and

1(·) is the indicator function, taking a value of one when the condition in parentheses is
satisfied, and zero otherwise. In this model, the treatment is allocated as in the simple
random treatment assignment assumption, i.e., ζig is mean independent of (djg, sj) for any
i, j, dig is independent of sj for any i, j, and djg and dig are independent and identically
distributed for any i 6= j. In particular, Assumption (11) restricts the dependence between
the treatment indicator variable dig and the group variable si. Since dig and si are both
observed, this restriction is testable and hence should not be taken as a disadvantage of the
model. This model uses d̃ig as a proxy for the coverage fig. It delivers the approximations

∆D ≈ γ2, ∆T ≈ γ3, ∆U ≈ γ4 and ∆a ≈ γ2 + (γ3 − γ4)a.

The approximations for ∆ and ∆a coincide if the average indirect effects are homoge-
neous, i.e., γ3 = γ4.

In the second model, the treatment indicator dig and the group variable si can be
related. Treatment in this model may not be assigned as in the simple random treatment
assignment assumption. This model has been postulated by BRS21.

Spillover Model with Group-Level Average:

yig = β1 + β2dig + β3digd̄ig + β4(1− dig)d̄ig + εig, (13)
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where

d̄ig := n−1
g

n

∑
j=1

djg1(sj = g)1(si = g) (14)

is the group-level average treatment. This model uses d̄ig as a proxy for fig. BRS21
shows, under additional assumptions replicated in the appendix, that this model delivers
the approximations:

∆D ≈ lim
x→0

(β1 + β2 + β3x)− β1 = β2, ∆T ≈ β3, and ∆U ≈ β4.

To facilitate the comparison between the two models, we now represent them using
causal graphs.

Causal Graph I: Spillover Model with Leave-one-out Average

Treatment dig

Outcome yigGroup si

Coverage d̃ig

Causal Graph II: Spillover Model with Group-Level Average

Treatment dig

Outcome yigGroup si

Coverage d̄ig

Two differences arise when comparing the models. First, the proxies for coverage, and
consequently, the approximations of the estimands of interest, do not coincide. While dig

and the group-level average d̄ig are correlated, dig and the leave-one-out average d̃ig are not.
Notice the absence of an arrow connecting the nodes ‘Treatment’ and ‘Coverage’ in Causal
Graph I. Second, while the treatment variable in the model with the leave-one-out average
is assumed to follow the simple random assignment assumption, in the model with the
group-level average, it is not clear whether treatment is allocated as in a more sophisticated
experimental procedure. Notice the presence of the bi-directed arrow connecting the
nodes ‘Treatment’ and ‘Group’ in Causal Graph II. Little is known about whether these
differences are relevant and, if they are, whether one should use the group-level average
or the leave-one-out average proxy. The next section spells out two advantages of using
the leave-one-out proxy. These advantages illustrate, first, the relevance of the choice of
proxy for the coverage and, second, the benefits obtained from the rigorous modeling of
the treatment allocation procedure.

3. Main Results

To proceed, we compare the spillover bias arising from estimating γ2 using a baseline
model ignoring spillovers.
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Baseline Model:

yig = α1 + α2dig + ξig, E(ξig|d1g, ..., dig, ..., dng) = 0, i = 1, ..., n. (15)

If there are no spillovers, the OLS estimator α̂2 of α2 is an unbiased estimator of the
average direct effect. BRS21 (Proposition 1) proves the following result:

Lemma 1. The spillover bias of the baseline estimator α̂2 for the estimand β2 is :

E(α̂2)− β2 = (β3 − β4)E(dig) + β3
V(d̄ig)

E(dig)
+ β4

V(d̄ig)

1− E(dig)
. (16)

We show in Appendix A that:

Proposition 1. The spillover bias of the baseline estimator α̂2 for the estimand γ2 is:

E(α̂2)− γ2 = (γ3 − γ4)E(dig). (17)

The expression in Proposition 1 is simpler to interpret than the one in Lemma 1: α̂2
is an unbiased estimator of γ2 if and only if the indirect effects on the treated and the
untreated groups are homogeneous, i.e., γ3 = γ4. This is the first advantage of choosing
the leave-one-out average proxy.

From the characterization of the spillover bias in Proposition 1, the following statistical
test can statistically infer if the baseline estimator is a biased estimator of the average
direct effect.

Corollary 1. Empirical researchers can check that the baseline estimator α̂2 is biased for the
average direct effect ∆D by performing a heteroskedastic-robust Wald test for the null hypothesis
H0 : γ3 − γ4 = 0 versus the alternative H1 : γ3 − γ4 6= 0 based on the ordinary least squares
estimator of γ3, γ4.

This check complements the heuristic guidance suggested by BRS21 by providing
a test for statistically inferring the presence of spillover bias. If ζig is independent of the
treatment indicator variables and the group indicator variables, the homoskedastic-only
Wald test is an alternative to perform this check.

What is the baseline estimator unbiased for? Since

E(yig|dig = 1, d̃ig = a) = γ1 + γ2 + γ3a (18)

E(yig|dig = 0, d̃ig = a) = γ1 + γ4a, (19)

one has E(α̂2) = ∆a=E(dig)
and the following corollary holds.

Corollary 2. The baseline estimator α̂2 is unbiased for the average effect at the average cover-
age ∆a=E(dig)

.

The average effect at the average coverage is not equal to the sum of the average
direct effect and the average indirect effect on the treated firms, which should prevent one
from interpreting the baseline estimator as an unbiased estimator of the aggregation of the
average direct effect and the average indirect effects (see, for example, [3]).

The second advantage of choosing the leave-one-out average proxy comes from the
interpretation of the approximation ∆T ≈ γ2. Consider the case of a group g with two firms.
Only i is treated, so d̄ig = 1/2 and d̃ig = 0. In this case, there is no indirect effect on the
treated firm, which is not reflected in the difference E(yig|dig = 1, d̄ig = 1/2)− E(yig|dig =

1, d̄ig = 0) = β3/2. Compare this result with E(yig|dig = 1, d̃ig = 0)− E(yig|dig = 1, d̃ig =
0) = 0, obtained using the leave-one-out average. This suggests that γ3 approximates the
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average indirect effect on the treated ∆T that we are looking for, while β3 approximates
something else. Another way of interpreting this difference is that the group-level average
counts ‘twice’ the effect of dig: by including it, first, in β2dig, and, second, in d̄ig in β3digd̄ig.
The leave-one-out average counts only once the effect of dig: by including it in γ2dig and
excluding it from d̃ig in γ3digd̃ig.

4. Monte Carlo Exercises

To explore the finite sample properties of the estimator using the leave-one-out average
proxy, we carry out a Monte Carlo study. We consider the specification:

yig = 10− 4dig + γ3digd̃ig + 3.6(1− dig)d̃ig + ζig, for i = 1, ..., N ∈ {100, 400, 1600}, (20)

where γ3 ∈ {−3.6, 3.6} and ζig has a normal distribution with mean 0 and variance 2. The
design γ3 = 3.6 has homogeneous average indirect effects and γ3 = −3.6 has heteroge-
neous average indirect effects. These values are taken from the illustration in BRS21. The
treatment variable dig follows a Bernoulli distribution with mean E(dig) = 0.5. The group
variable si follows from the specification

si =
6

∑
j=1

j1(cj−1 < z?i ≤ cj), (21)

where c0 = −∞, c1 = −1, c2 = −0.5, c3 = 0, c4 = 0.5, c5 = 1, c6 = ∞, and z?i is a standard
normal random variable. The group variable si is independent of the treatment variable dig.
The disturbance term ζig is independent of the covariates.

Table 1 reports the results for the bias of different estimators of γ2 = −4. ‘Baseline’
labels the ordinary least squares estimator from the specification (15) and ‘leave-one-
out’ the ordinary least squares estimator from (8). As predicted by the theory for these
experiments, the bias of the baseline estimator of the average direct effect is approximately
E(dig)(γ3−γ4) = 0.5(γ3− 3.6), which is half of the difference between the average indirect
effect on the treated and untreated firms.

Table 1. Bias comparison of estimators.

Heterogeneous: γ3 = −3.6 Homogeneous: γ3 = 3.6
N Baseline Leave-One-Out Baseline Leave-One-Out

100

dig −3.60 −0.0367 −0.0439 −0.0049

dig d̃ig 0.007 0.0433

(1− dig)d̃ig 0.063 0.0569

400

dig −3.60 0.0120 −0.0163 0.0195

dig d̃ig −0.1152 −0.0502

(1− dig)d̃ig −0.0947 0.0007

1600

dig −3.60 0.0053 0.0003 0.0108

dig d̃ig 0.0031 0.0182

(1− dig)d̃ig 0.0155 0.0388
Note: The number of simulations is 5000.

5. Illustration

We now illustrate the use of the previous results in the context of applications con-
ducted in the empirical literature. The aim is to show the advantages of using the leave-
one-out average proxy to diagnose the spillover bias on the baseline estimator.

There is a growing body of empirical literature seeking to incorporate spillovers in
baseline models. These papers differ in their modeling of spillovers in two dimensions.
They either use the group-level average or the leave-one-out average as a proxy for the treat-



Computation 2022, 10, 149 7 of 10

ment coverage, and they either assume homogeneous or heterogeneous average indirect
effects. Table 2 below summarizes these differences among already published papers.

Table 2. Proxies employed in applications.

Spillover Effects ↓/Proxy→ Group-Level Average Leave-One-Out Average

Homogeneous [4,5] [6,7]

Heterogeneous [8] BRS21

Our results apply to any of these papers. We choose the application in BRS21 be-
cause the careful execution of the study lends itself to extension by applying the result in
Proposition 1 (and its corollaries).

The estimand of interest is the average direct effect of a bank-lending cut (the bank
in the database is Commerzbank) on German firms’ employment growth. Here, yig is the
symmetric growth employment rate over the 2008 to 2012 period for firm i located in county
g; dig is a dummy variable that equals one if the fraction of the firm’s relationship banks that
are Commerzbank branches is greater or equal than 0.5, and is zero otherwise (CBdep(0/1)ic
in BRS21’s notation); d̃ig is the average Commerzbank dependence calculated based on dig

of all other firms in the county g, excluding firm i itself (CBdep(0/1)ic in BRS21’s notation).
For the convenience of the reader, we reproduce the estimates in the table below (see BRS21,
Table 5, Columns (4) and (6)).

By comparing the baseline estimate α̂2 = −0.028 with γ̂2 = −0.053 in Table 3, BRS21
infers that ignoring spillovers causes the baseline estimator to be biased for the average
direct effect. This comparison, however, does not take into account sampling variability,
which, as we are going to show below, can change the above inference.

Table 3. Estimates from BRS21.

(1) (2)

dig
−0.028 −0.053
(0.006) (0.017)

dig d̃ig
0.025

(0.068)

(1− dig)d̃ig
−0.115
(0.038)

Note: The dependent variable is the symmetric growth rate of firm employment from 2008 to 2012. Robust
standard errors, clustered at the county level, are in parentheses. Source: BRS21 (Table 5).

The estimate γ̂3 is 0.025, whereas the estimate γ̂4 is−0.115. To verify that this difference
is not only due to sampling variability, Corollary 1 proposes a Wald test. Performing this
test is straightforward. It requires the Wald test statistic to be computed:

W =
(γ̂3 − γ̂4)

2

se2
γ̂3

+ se2
γ̂4
− 2 ˆcov(γ̂3, γ̂4)

,

where γ̂3 and γ̂4 are the OLS estimators for the estimands γ3 and γ4, seγ̂3 and seγ̂4 are their
respective standard errors, and ˆcov(γ̂3, γ̂4) is the covariance estimator. The asymptotic null
distribution of the Wald statistic is a chi-squared distribution with one degree of freedom,
from which we can compute critical values. The Wald test suggests rejecting the null
hypothesis (and statistically inferring that the baseline estimator is biased for the average
direct effect) if the realized value of the Wald test statistic is greater than or equal to the
critical value.

Table 3 contains all of the values to compute the realized value of the Wald test statistic,
except for ˆcov(γ̂3, γ̂4). For illustrative purposes, we take two values: a lower bound of zero
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and an upper bound from the Cauchy–Schwarz Inequality. In the case of the upper bound,
the realized value of the Wald statistic is

w =
[0.025− (−0.115)]2

0.0682 + 0.0382 − 2× 0.00258
=

0.0196
0.0009

= 21.77,

while the critical value at the 99% confidence level is cv0.99 = 6.63. Since the realized
value of the statistic (w = 21.77) is greater than the 99% critical value (cv0.99 = 6.63), the
test indicates that the baseline estimator is biased for the average direct effect. However,
the baseline estimator is still an unbiased estimator for the average effect at the average
coverage (Corollary 2). In the case of the lower bound, the realized value of the statistic
(w = 3.23) is smaller than the 99% critical value (cv0.99 = 6.63). In such a case, Proposition
1 indicates that there is no evidence that the baseline estimator is a biased estimator of the
average direct effect. We conclude, from the estimates in Table 3, that one cannot infer that
ignoring spillovers causes the baseline estimator to be biased for the average direct effect.
We remark that these results are not immediately available if one chooses the group-level
average as a proxy for the coverage.

6. Conclusions

Competitive interactions and agglomeration among firms generate spillovers after a
shock, a change in regulation, or any kind of intervention affecting firms. Ignoring these
spillovers when estimating causal effects leads to biased estimation. This paper discusses
the choice between two alternative proxies for modeling spillovers. We show that this choice
is relevant for diagnosing the existence of spillover bias. The leave-one-out average proxy
has two advantages over the group-level average proxy. First, it simplifies the formula
for the spillover bias, thereby facilitating its diagnosis. The baseline estimator is unbiased
for the average direct effect if and only if the average indirect effects are homogeneous.
Second, it clarifies the definition of the average indirect effect on the treated firms, thereby
facilitating its interpretation. These advantages justify the use of the leave-one-out average
as the preferred proxy and suggest a straightforward test to statistically infer the existence
of spillover bias.

One natural extension is to investigate how to define the coverage proxy when the
treatment is continuous instead of binary. This extension is outside of the scope of this
paper and is left for future research.
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Appendix A

Assumptions in BRS21. For the sake of completeness, we now replicate Assump-
tions A1–A4 in BRS21:

Assumption A1. Treatment status fulfills the conditional independence assumption (CIA).

Assumption A2. Outcomes not only depend on the treatment status of an individual firm, but
also on the treatment intensity in an industry (in the case of competition models) or a region (in the
case of spatial models).
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Assumption A3. Spillovers occur within industries/regions, but not across industries/regions
(i.e., we abstract from general equilibrium effects).

Assumption A4. We assume a linear relationship throughout the paper.

Auxiliary Calculations. We now derive the formula for the bias in (17). The bias of
the estimator α̂2 is (see Berg et al., 2021, Display (21)):

E(α̂2) = γ2 + γ3
C(dig, digd̃ig)

V(dig)
+ γ4

C[dig, (1− dig)d̃ig]

V(dig)
, (A1)

where V(dig) := E(dig)[1− E(dig)] is the variance of dig and, for any random variables a
and b, C(a, b) denotes their covariance. We now observe that

E(digd̃ig) =
(i)

E[E(digd̃ig|s1, ..., sn)] =
(ii)

E[d̃igE(dig|s1, ..., sn)]

=
(iii)

E[d̃igE(dig)] =
(iv)

E(djg)E(dig) =
(v)

E(dig)
2,

where (i) follows from the Law of Iterated Expectations, (ii) follows from observing
that d̃ig is a function of s1, . . . , sn and the assumption that dig and djg are independent,
(iii) follows from the assumption that dig and s1, . . . , sn are independent, (iv) follows from
observing that E(d̃ig) = E[E(d̃ig|s1, . . . , sn)] = E[(ng − 1)−1 ∑j 6=i E(djg1(si = g)1(sj =
g)|s1, . . . , sn] = E(djg), and (v) follows from the assumption that dig and dj are identically
distributed. Hence,

C(dig, digd̃ig) = E(digd̃ig)− E(dig)E(digd̃ig) = E(digd̃ig)[1− E(dig)] = E(dig)
2[1− E(dig)]

= E(dig)V(dig)

C[dig, (1− dig)d̃ig] = E[dig(1− dig)d̃ig]− E(dig)E[(1− dig)d̃ig]

= E(digd̃ig)− E(digd̃ig)− E(dig)E(d̃ig) + E(dig)E(digd̃ig)

= E(dig)E(dig)
2 − E(dig)

2

= E(dig)E(dig)[E(dig)− 1] = −E(dig)V(dig).

Substituting these expressions back into (16), one obtains:

E(α̂2) = γ2 + γ3
E(dig)V(dig)

V(dig)
+ γ4

[−E(dig)]V(dig)]

V(dig)
= γ2 + (γ3 − γ4)E(dig).

Wald Test. We now describe the Wald test for statistically inferring the presence of
bias in α̂2 when estimating γ2. Let γ̂ denote the ordinary least squares estimator obtained
from specification (4). Let ˆvar(γ̂) denote a consistent estimator of the variance of γ̂. Define
γ = (γ1, γ2, γ3, γ4)

> and the vector Q = (0, 0, 1,−1). Then, rewrite the null hypothesis
H0 : γ3 − γ4 = 0 as H0 : Qγ = 0. The Wald statistic is:

W = (Qγ̂)>[Q ˆvar(γ̂)Q>]−1Qγ̂ =
(Qγ̂)2

Q ˆvar(γ̂)Q>
.

Under standard regularity conditions, when the null hypothesis holds, the distribution
of W is approximately a chi-squared distribution with one degree of freedom. This approxi-
mation applies when the data do not contain points of high leverage (see, for example, [9]
for a definition of the leverage of points in regression designs). If the data contain points
of high leverage, the discrepancy between the exact and nominal size of the Wald test can
be substantial and the test can deliver misleading inferences. The Wald test statistically
infers (with significance level α) the presence of bias in α̂2 for estimating γ2 when the
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Wald statistic W is above the (1− α) quantile of a chi-square distribution with one degree
of freedom.
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