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Abstract: This study develops a new definition of a fractional derivative that mixes the definitions of
fractional derivatives with singular and non-singular kernels. This developed definition encompasses
many types of fractional derivatives, such as the Riemann–Liouville and Caputo fractional derivatives
for singular kernel types, as well as the Caputo–Fabrizio, the Atangana–Baleanu, and the generalized
Hattaf fractional derivatives for non-singular kernel types. The associate fractional integral of the
new mixed fractional derivative is rigorously introduced. Furthermore, a novel numerical scheme is
developed to approximate the solutions of a class of fractional differential equations (FDEs) involving
the mixed fractional derivative. Finally, an application in computational biology is presented.

Keywords: fractional operators; singular and non-singular kernels; Laplace transform; numerical
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1. Introduction

In recent years, fractional mathematical modeling involving non-local fractional deriva-
tives has become a robust tool and constituted a new resource that could capture the dynam-
ics of complex systems with memory effects and hereditary characteristics. Such systems
can be found in various fields, including physics, fluid mechanics, material science, signal
processing, engineering, chemistry, biology, medicine, finance, social sciences, economics,
and ecology.

In the literature, there are two main types of non-local fractional derivatives. The
first are fractional derivatives with singular kernels, like the Riemann–Liouville fractional
derivative [1,2], as well as the Caputo fractional derivative introduced by Caputo in 1967 [3]
to find the analytical expression for a linear dissipative mechanism where the quality factor
(Q) is nearly frequency independent in large frequency ranges. The second types have
non-singular kernels and include the Caputo–Fabrizio (CF) derivative [4], which was
introduced by Caputo and Fabrizio in 2015 in order to mitigate the singularity that existed
in [3]. In 2016, Atangana and Baleanu [5] proposed a fractional derivative to model the flow
of heat transfer through heterogeneous materials at different scales. In 2020, Al-Refai [6]
presented a weighted fractional derivative based on the Atangana–Baleanu (AB) fractional
derivative [5]. By means of the Laplace transform, the author solved an associated linear
fractional differential equation.

Recently, a new generalized Hattaf fractional (GHF) derivative with a non-singular
kernel has been introduced in [7] to improve on the CF [4], AB [5], and weighted-AB [6]
fractional derivatives. A new class of fractal-fractional derivatives was derived from the
GHF derivative, and a new generalized fractal derivative [8] that improved on the Haus-
dorff fractal derivative [9] was used to model anomalous diffusion processes. Furthermore,
the new GHF derivative has been used by many researchers to describe the dynamics of
various phenomena arising from several areas of science and engineering [10–12].
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Therefore, motivated by the above studies, we focus the first aim of this study on
introducing a new definition for a non-local fractional derivative that includes and gen-
eralizes numerous fractional derivatives with singular and non-singular kernels, such as
Riemann–Liouville [1,2], Caputo [3], CF [4], AB [5], and the weighted-AB [6] fractional
derivatives. This definition also includes the GHF derivative [7], the power fractional
derivative [13], and the novel fractional derivative with a Mittag–Leffler kernel of two
parameters, which had been introduced in [14] and applied in thermal science.

However, most fractional differential equations (FDEs) involving non-local fractional
derivatives have been complex and unable to be solved analytically. For this reason, various
numerical methods have been proposed to approximate the solutions of these FDEs. For
example, a numerical method that recovered the classical Euler’s scheme for ordinary
differential equations (ODEs) was introduced in [15] to approximate the solutions of FDEs
with GHF derivative. Another numerical method for the GHF derivative was developed
in [16] to solve numerically nonlinear biological systems of FDEs found in virology.

The second aim of our study is to develop a numerical method to approximate the
solutions of FDEs with the new mixed fractional derivative, as mentioned in the first
objective. The developed numerical method includes the three recent numerical schemes,
as presented in [16–18], and it is based on Lagrange polynomial interpolation.

The remainder of the present paper is organized as follows. Section 2 defines the
new mixed fractional derivative, in both Caputo and Riemann–Liouville aspects, and
presents specific examples of such mixed fractional derivatives presented in previous
studies. Section 3 describes the Laplace transform of the new mixed fractional deriva-
tive. Section 4 provides the fractional integral associated with the new mixed fractional
derivative and its special cases. Section 5 establishes the formulas and properties for the
new differential and integral operators. Section 6 focuses on the new numerical method.
Section 7 presents an application in computational biology. Finally, Section 8 presents
our conclusions.

2. The New Mixed Fractional Derivative

This section defines the new mixed fractional derivative in the sense of Caputo and
Riemann– Liouville.

Definition 1. Let (p, q) ∈ [0, 1]2, r, m > 0, and u ∈ H1(a, b). The mixed fractional derivative
of the function u(t) of order p in Caputo sense with respect to the weight function w(t) is defined
as follows:

CDp,q,r,m
a,t,w,δ u(t) =

H(p + q − 1)
2 − p − q

1
w(t)

∫ t

a
(t − τ)q−1Er,q[−δµp,q(t − τ)m]

d
dτ

(wu)(τ)dτ, (1)

where δ ∈ R∗, w ∈ C1(a, b), with w > 0 on [a, b]; H(.) is a normalization function such that

H(0) = H(1) = 1, µp,q =
p + q − 1
2 − p − q

; and Er,q(t) =
+∞

∑
k=0

tk

Γ(rk + q)
is the Wiman function [19],

also called the Mittag–Leffler function, with two parameters r and q.

Definition 1 includes several existing fractional derivatives with singular and non-
singular kernels. For example,

1. When q = 1 − p and w(t) = 1, we obtain the Caputo fractional derivative [3] with
singular kernel, as follows:

CDp,1−p,r,m
a,t,1,δ u(t) =

1
Γ(1 − p)

∫ t

a
(t − τ)−pu′(τ)dτ.
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2. When q = r = m = δ = 1 and w(t) = 1, we obtain the CF fractional derivative [4]
with non-singular kernel, as follows:

CDp,1,1,1
a,t,1,1 u(t) =

H(p)
1 − p

∫ t

a
exp[−µp,1(t − τ)m]u′(τ)dτ,

where µp,1 = p
1−p .

3. When q = δ = 1, r = m = p, and w(t) = 1, we obtain the AB fractional derivative [5],
as follows:

CDp,1,p,p
a,t,1,1 u(t) =

H(p)
1 − p

∫ t

a
Ep[−µp,1(t − τ)p]u′(τ)dτ.

4. When q = δ = 1 and r = m = p, we find the weighted-AB fractional derivative [6],
as follows:

CDp,1,p,p
a,t,w,1 u(t) =

H(p)
1 − p

1
w(t)

∫ t

a
Ep[−µp,1(t − τ)p]

d
dτ

(wu)(τ)dτ.

5. When q = δ = 1, we obtain the GHF derivative [7], as follows:

CDp,1,r,m
a,t,w,1 u(t) =

H(p)
1 − p

1
w(t)

∫ t

a
Er[−µp,1(t − τ)m]

d
dτ

(wu)(τ)dτ.

6. When q = 1, m = r and δ = ln( p̄) (with p̄ > 0), we obtain the power fractional
derivative [13], as follows:

CDp,1,r,r
a,t,w,ln( p̄)u(t) =

H(p)
1 − p

1
w(t)

∫ t

a
Er[− ln( p̄)µp,1(t − τ)r]

d
dτ

(wu)(τ)dτ.

7. When δ = 1, m = r = p, and w(t) = 1, we obtain the fractional derivative introduced
in [14], as follows:

CDp,q,p,p
a,t,1,1 u(t) =

H(p + q − 1)
2 − p − q

∫ t

a
(t − τ)q−1Ep,q[−µp,q(t − τ)p]u′(τ)dτ.

Now, we define the new mixed fractional derivative in Riemann–Liouville sense.

Definition 2. Let (p, q) ∈ [0, 1]2, r, m > 0, and u ∈ H1(a, b). The mixed fractional derivative of
the function u(t) of order p in Riemann–Liouville sense with respect to the weight function w(t) is
defined as follows:

RDp,q,r,m
a,t,w,δ u(t) =

H(p + q − 1)
2 − p − q

1
w(t)

d
dt

∫ t

a
(t − τ)q−1Er,q[−δµp,q(t − τ)m]w(τ)u(τ)dτ. (2)

Obviously, when q = 1 − p and w(t) = 1, we obtain the Riemann–Liouville fractional
derivative [1,2] with singular kernel. In addition, we have the following result.

Theorem 1. Let t ∈ [a, b] and wu be an analytic function satisfying:

(wu)(τ) =
+∞

∑
n=0

(wu)(n)(t)
n!

(τ − t)n for all τ ∈ [a, t]. Then

RDp,q,r,m
a,t,w,δ u(t) = CDp,q,r,m

a,t,w,δ u(t) +
H(p + q − 1)(t − a)q−1

(2 − p − q)w(t)
Er,q[−δµp,q(t − a)m](wu)(a). (3)

Proof. Let t ∈ [a, b]. Since (wu)(τ) =
+∞

∑
n=0

(wu)(n)(t)
n!

(τ − t)n for all τ ∈ [a, t], we had

the following:
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RDp,q,r,m
a,t,w,δ u(t) =

H(p + q − 1)
(2 − p − q)w(t)

d
dt

+∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n)(t)
n!Γ(rk + q)

∫ t

a
(t − τ)mk+n+q−1dτ

=
H(p + q − 1)

(2 − p − q)w(t)
d
dt

+∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n)(t)(t − a)mk+n+q

n!Γ(rk + q)(mk + n + q)

=
H(p + q − 1)

(2 − p − q)w(t)

[ +∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n+1)(t)(t − a)mk+n+q

n!Γ(rk + q)(mk + n + q)

+
+∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k

n!Γ(rk + q)
(wu)(n)(t)(t − a)mk+n+q−1

]

=
H(p + q − 1)

(2 − p − q)w(t)

[ +∞

∑
n=0

+∞

∑
k=0

(−1)n(−δµp,q)k(wu)(n+1)(t)
n!Γ(rk + q)

∫ t

a
(t − τ)mk+n+q−1dτ

+
+∞

∑
n=0

(−1)n

n!
(wu)(n)(t)(t − a)n+q−1

+∞

∑
k=0

(−δµp,q)k

Γ(rk + q)
(t − a)mk

]
= CDp,q,r,m

a,t,w,δ u(t) +
H(p + q − 1)

(2 − p − q)w(t)
(t − a)q−1Er,q[−δµp,q(t − a)m](wu)(a).

This completes the proof.

Theorem 1 extended the results in Theorem 1 of [7] for q = δ = 1 and, in Theorem 4.2
of [14], for δ = 1, m = r = p, and w(t) = 1.

3. Laplace Transform of the New Mixed Fractional Derivative

In this section, we first needed the following result:

Lemma 1. The Laplace transform of tq−1Er,q(−δµp,qtm) is given by

L{tq−1Er,q(−δµp,qtm)}(s) = 1
sq

+∞

∑
k=0

(−δµp,q

sm

)k Γ(mk + q)
Γ(rk + q)

. (4)

If m = r, then

L{tq−1Er,q(−δµp,qtr)}(s) = sr−q

sr + δµp,q
,
∣∣ δµp,q

sm

∣∣ < 1. (5)

Proof. According to the definition of the Wiman function, we obtained the following:

L{tq−1Er,q(−δµp,qtm)}(s) = L
{ +∞

∑
k=0

(−δµp,q)k

Γ(rk + q)
tmk+q−1

}
(s)

=
+∞

∑
k=0

(−δµp,q)k

Γ(rk + q)
L
{

tmk+q−1
}
(s)

=
1
sq

+∞

∑
k=0

(−δµp,q

sm

)k Γ(mk + q)
Γ(rk + q)

.

In particular, if m = r, then

L{tq−1Er,q(−δµp,qtr)}(s) = sr−q

sr + δµp,q
,
∣∣ δµp,q

sm

∣∣ < 1.

This completes the proof.

By a simple application of Lemma 1, we obtained the following theorem:
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Theorem 2.

(i) The Laplace transform of w(t)CDp,q,r,m
0,t,w,δ u(t) is given by the following:

L{w(t)CDp,q,r,m
0,t,w,δ u(t)} =

H(p + q − 1)
(2 − p − q)sq

+∞

∑
k=0

(−δµp,q

sm

)k Γ(mk + q)
Γ(rk + q)

[
sL{(wu)(t)}

−(wu)(0)
]

. (6)

In particular, we find the following:

L{w(t)CDp,q,r,r
0,t,w,δu(t)} =

H(p + q − 1)
2 − p − q

sr−q+1L{w(t)u(t)} − sr−qw(0)u(0)
sr + δµp,q

. (7)

(ii) The Laplace transform of w(t)RDp,q,r,m
0,t,w,δ u(t) is given by the following:

L{w(t)RDp,q,r,m
0,t,w,δ u(t)} =

H(p + q − 1))
(2 − p − q)sq−1 L{w(t)u(t)}

+∞

∑
k=0

(−δµp,q

sm

)k Γ(mk + q)
Γ(rk + q)

. (8)

In particular, we have the following:

L{w(t)RDp,q,r,r
0,t,w,δu(t)} =

H(p + q − 1)
2 − p − q

sr−q+1L{w(t)u(t)}
sr + δµp,q

. (9)

Proof. For (i), we had the following:

w(t)CDp,q,r,m
0,t,w,δ u(t) =

H(p + q − 1)
2 − p − q

∫ t

a
(t − τ)q−1Er,q[−δµp,q(t − τ)m](wu)′(τ)dτ

=
H(p + q − 1)

2 − p − q

(
tq−1Er,q

(
− δµp,qtm) ∗ (wu)′(t)

)
,

where the symbol ∗ denotes the convolution of two functions, tq−1Er,q
(
− δµp,qtm) and

(wu)′(t). Hence,

L{w(t)CDp,q,r,m
0,t,w,δ u(t)} =

H(p + q − 1)
2 − p − q

L{tq−1Er,q
(
− δµp,qtm)}L{(wu)′(t)}

=
H(p + q − 1)

2 − p − q
[
sL{(wu)(t)} − (wu)(0)

]
L{tq−1Er,q

(
− δµp,qtm)}.

According to Lemma 1, we could deduce (i). Similarly, we had the following:

L{w(t)RDp,q,r,m
0,t,w,δ u(t)} =

H(p + q − 1)
2 − p − q

L{ d
dt

[
tq−1Er,q

(
− δµp,qtm) ∗ (wu)(t)

]
}

=
H(p + q − 1)

2 − p − q
[
sL{tq−1Er,q

(
− δµp,qtm) ∗ (wu)(t)} − 0

]
=

H(p + q − 1)
2 − p − q

sL{tq−1Er,q
(
− δµp,qtm)}L{(wu)(t)}

=
H(p + q − 1)

(2 − p − q)sq−1 L{(wu)(t)}
+∞

∑
k=0

(−δµp,q

sm

)k Γ(mk + q)
Γ(rk + q)

.

This proved (ii).
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Remark 1. Lemma 1 and Theorem 2 extend the results presented in [7] for the new GHF derivative,
it suffices to take q = δ = 1.

4. The Associated Fractional Integral

In this section, we define the fractional integral associated with the new mixed frac-
tional derivative. First, we considered the following fractional differential equation:

RDp,q,r,r
0,t,w,δv(t) = u(t). (10)

Lemma 2. Equation (10) has a unique solution, given by the following:

v(t) =


2−p−q

H(p+q−1)

[RLI1−q
a,w u(t) + δµp,q

RLI1+r−q
a,w u(t)

]
, if q ̸= 1;

1−p
H(p)u(t) + δp

H(p)
RLI r

a,wu(t), if q = 1,
(11)

where RLIα
a,w is the standard weighted Riemann–Liouville fractional integral of order α, given by

the following:
RLIα

a,wu(t) =
1

Γ(α)
1

w(t)

∫ t

a
(t − τ)α−1w(τ)u(τ)dτ. (12)

Proof. From (10), we found the following:

w(t)RDp,q,r,r
0,t,w,δv(t) = w(t)u(t).

By applying Theorem 2, we obtained:

L{w(t)v(t)}(s) =
2 − p − q

H(p + q − 1)
1

s1−q L{w(t)u(t)}(s) + 2 − p − q
H(p + q − 1)

δµp,q

sr−q+1 L{w(t)u(t)}(s).

• When q = 1, we had the following:

L{w(t)v(t)}(s) =
1 − p
H(p)

L{w(t)u(t)}(s) + 1 − p
H(p)

δµp,1

sr L{w(t)u(t)}(s)

=
1 − p
H(p)

L{w(t)u(t)}(s) + 1 − p
H(p)

δµp,1

Γ(r)
L{tr−1 ∗ (wu)(t)}(s).

By taking the inverse Laplace, we obtained the following:

w(t)v(t) =
1 − p
H(p)

w(t)u(t) +
1 − p
H(p)

δµp,1

Γ(r)
(
tr−1 ∗ (wu)(t)

)
.

Hence,

v(t) =
1 − p
H(p)

u(t) +
δp

H(p)Γ(r)
1

w(t)

∫ t

a
(t − τ)r−1w(τ)u(τ)dτ. (13)

• When q ̸= 1, we had the following:

L{w(t)v(t)}(s) =
2 − p − q

H(p + q − 1)Γ(1 − q)
L{t−q ∗ w(t)u(t)}(s)

+
(2 − p − q)δµp,q

H(p + q − 1)Γ(r − q + 1)
L{tr−q ∗ (wu)(t)}(s).
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By passage to the inverse Laplace, we obtained the following:

w(t)v(t) =
2 − p − q

H(p + q − 1)Γ(1 − q)
(
t−q ∗ w(t)u(t)

)
+

(2 − p − q)δµp,q

H(p + q − 1)Γ(r − q + 1)
(
tr−q ∗ (wu)(t)

)
=

2 − p − q
H(p + q − 1)

[
1

Γ(1 − q)

∫ t

a
(t − τ)−qw(τ)u(τ)dτ

+
δµp,q

Γ(r − q + 1)

∫ t

a
(t − τ)r−qw(τ)u(τ)dτ

]
,

which led to:

v(t) =
2 − p − q

H(p + q − 1)
[RLI1−q

a,w u(t) + δµp,q
RLI1+r−q

a,w u(t)
]
. (14)

This completes the proof.

Definition 3. If m = r, then the fractional integral associated with the new mixed fractional
derivative is defined as follows:

Ip,q,r
a,t,w,δu(t) =


2−p−q

H(p+q−1)

[RLI1−q
a,w u(t) + δµp,q

RLI1+r−q
a,w u(t)

]
, if q ̸= 1;

1−p
H(p)u(t) + δp

H(p)
RLI r

a,wu(t), if q = 1.
(15)

Remark 2. The associate integral, as previously defined, included a variety of fractional integral
operators. For example,

(i) If δ = 1, r = p, and w(t) = 1, then (15) reduced to the new fractional integral presented in
[14].

(ii) If q = δ = 1, then (15) reduced to the new GHF integral introduced in [7], which included
the Atangana–Baleanu fractional integral [5] and the weighted Atangana–Baleanu fractional
integral [6].

(iii) If p = q = 1, then (15) reduced to the standard weighted Riemann–Liouville fractional
integral of order r and to the ordinary integral when r = 1 and w(t) = 1.

5. Fundamental Properties of the New Differential and Integral Operators

In this section, we establish the important formulas and properties for the new differ-
ential and integral operators.

For simplicity, we denoted CDp,q,r,r
a,t,w,δ by Dp,q,r

a,w,δ, and Ip,q,r
a,t,w,δ by I p,q,r

a,w,δ.

Lemma 3. The mixed fractional derivative Dp,q,r
a,w,δ could be expressed as follows:

Dp,q,r
a,w,δu(t) =

H(p + q − 1)
2 − p − q

+∞

∑
k=0

(−δµp,q)
k RLIkr+q

a,w

(
(wu)′

w

)
(t). (16)

Proof. Since the Mittag–Leffler function Ep,q(t) was the entire function of t, then Dp,q,r
a,w,δ

could be expressed as follows:
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Dp,q,r
a,w,δu(t) =

H(p + q − 1)
2 − p − q

1
w(t)

+∞

∑
k=0

(−δµp,q)k

Γ(rk + q)

∫ t

a
(t − τ)rk+q−1(wu)′(τ)dτ

=
H(p + q − 1)

2 − p − q

+∞

∑
k=0

(−δµp,q)
k 1

Γ(rk + q)
1

w(t)

∫ t

a
(t − τ)rk+q−1(wu)′(τ)dτ

=
H(p + q − 1)

2 − p − q

+∞

∑
k=0

(−δµp,q)
k RLIkr+q

a,w

(
(wu)′

w

)
(t).

This completes the proof.

Remark 3. Lemma 3 extended the recent results established by Zitane and Torres in Lemma 3
of [18].

Theorem 3. Let (p, q) ∈ [0, 1]2, r > 0, δ ∈ R∗ and u ∈ H1(a, b). Then we have the follow-
ing property:

I p,q,r
a,w,δ

(
Dp,q,r

a,w,δu
)
(t) = u(t)− w(a)u(a)

w(t)
. (17)

Proof. When q ̸= 1, we had the following:

I p,q,r
a,w,δ

(
Dp,q,r

a,w,δu
)
(t) =

2 − p − q
H(p + q − 1)

[RLI1−q
a,w

(
Dp,q,r

a,w,δu
)
(t) + δµp,q

RLI1+r−q
a,w

(
Dp,q,r

a,w,δu
)
(t)

]
.

By applying Lemma 3, we obtained the following:

I p,q,r
a,w,δ

(
Dp,q,r

a,w,δu
)
(t) = RLI1−q

a,w
[ +∞

∑
k=0

(−δµp,q)
k RLIkr+q

a,w

(
(wu)′

w

)
(t)

]
+δµp,q

RLI1+r−q
a,w

[ +∞

∑
k=0

(−δµp,q)
k RLIkr+q

a,w

(
(wu)′

w

)
(t)

]
=

+∞

∑
k=0

(−δµp,q)
k RLIkr+1

a,w

(
(wu)′

w

)
(t)−

+∞

∑
k=1

(−δµp,q)
k RLIkr+1

a,w

(
(wu)′

w

)
(t)

= RLI1
a,w

(
(wu)′

w

)
(t)

=
1

w(t)

∫ t

a
(wu)′(τ)dτ = u(t)− w(a)u(a)

w(t)
.

For q = 1, we had the following:

I p,1,r
a,w,δ

(
Dp,1,r

a,w,δu
)
(t) =

1 − p
H(p)

(Dp,q,r
a,w,δu

)
(t) +

δp
H(p)

RLI r
a,w

(
Dp,q,r

a,w,δu
)
(t)

=
+∞

∑
k=0

(−δµp,1)
k RLIkr+1

a,w

(
(wu)′

w

)
(t)

+δµp,1
RLI r

a,w
[ +∞

∑
k=0

(−δµp,1)
k RLIkr+1

a,w

(
(wu)′

w

)
(t)

]
=

+∞

∑
k=0

(−δµp,1)
k RLIkr+1

a,w

(
(wu)′

w

)
(t)−

+∞

∑
k=1

(−δµp,1)
k RLIkr+1

a,w

(
(wu)′

w

)
(t)

= RLI1
a,w

(
(wu)′

w

)
(t)

= u(t)− w(a)u(a)
w(t)

.
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Hence, the proof was complete.

It was obvious that when w(t) = 1, we obtained the following first corollary of
Theorem 3 that extended the Newton–Leibniz formula given in [20].

Corollary 1. The new mixed fractional derivative and integral satisfied the Newton–Leibniz
formula. In other words, we had the following:

I p,q,r
a,1,δ

(
Dp,q,r

a,1,δ u
)
(t) = u(t)− u(a). (18)

Clearly, Dp,q,r
a,1,δ(c) = 0 for all constant function u(t) = c. Moreover, we found the

following result.

Corollary 2. Let u be a solution of the following fractional differential equation:

Dp,q,r
a,1,δ u(t) = 0. (19)

Then the function u is a constant function.

Proof. It follows from (18) that u(t) = u(a). This proves that u is a constant function.

6. Numerical Scheme

In this section, we first developed a numerical method to approximate the solution of
the following FDE with the new mixed fractional derivative, as given by the following:

Dp,q,r
a,w,δy(t) = f

(
t, y(t)

)
, (20)

where t ∈ [a, b], f : [a, b]×R → R is a continuous function and (20) is subject to the given
initial condition

y(a) = y0.

From Theorem 3, Equation (20) could be converted into the following fractional
integral equation:

y(t)− y(a)w(a)
w(t)

= I p,q,r
a,w,δ f

(
t, y(t)

)
. (21)

Therefore, we evaluated specific scenarios. When q = 1, we had

y(t)− y(a)w(a)
w(t)

=
1 − p
H(p)

f
(
t, y(t)

)
+

δp
H(p)

RLI r
a,w f

(
t, y(t)

)
,

which implied that

y(t) =
y(a)w(a)

w(t)
+

1 − p
H(p)

f
(
t, y(t)

)
+

δp
H(p)Γ(r)

1
w(t)

∫ t

a
(t − τ)r−1w(τ) f

(
τ, y(τ)

)
dτ. (22)

Let ∆t be the discretization step and tn = a + n∆t, with n ∈ IN. We had the following:

y(tn+1) =
y0w(a)
w(tn)

+
1 − p
H(p)

f
(
tn, y(tn)

)
+

δp
H(p)Γ(r)w(tn)

∫ tn+1

a
(tn+1 − τ)r−1w(τ) f

(
τ, y(τ)

)
dτ.
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Then

y(tn+1) =
y0w(a)
w(tn)

+
1 − p
H(p)

f
(
tn, y(tn)

)
+

δp
H(p)Γ(r)w(tn)

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)r−1g
(
τ, y(τ)

)
dτ, (23)

where g
(
τ, y(τ)

)
= w(τ) f

(
τ, y(τ)

)
. The function g could be approximated over [tk, tk+1]

by means of the Lagrange polynomial interpolation, as follows:

Pk(τ) =
τ − tk

tk−1 − tk
g
(
tk−1, y(tk−1)

)
+

τ − tk−1
tk − tk−1

g
(
tk, y(tk)

)
,

≃ g(tk−1, yk−1)

∆t
(tk − τ) +

g(tk, yk)

∆t
(τ − tk−1). (24)

Hence,

y(tn+1) =
y0w(0)
w(tn)

+
1 − p
H(p)

f
(
tn, yn

)
+

δp
H(p)Γ(r)w(tn)

n

∑
k=0

[
g
(
tk, yk

)
∆t

∫ tk+1

tk

(
τ − tk−1

)(
tn+1 − τ

)r−1dτ

+
g
(
tk−1, xk−1

)
∆t

∫ tk+1

tk

(
tk − τ

)(
tn+1 − τ

)r−1dτ

]
.

Since∫ tk+1

tk

(tn+1 − τ)r−1(τ − tk−1)dτ =
(∆t)r+1

r(r + 1)
[
(n − k + 1)r(n − k + 2 + r)

−(n − k)r(n − k + 2 + 2r)
]
, (25)

and ∫ tk+1

tk

(tn+1 − τ)r−1(tk − τ)dτ =
(∆t)r+1

r(r + 1)
[
(n − k)r(n − k + 1 + r)

−(n − k + 1)r+1], (26)

we had the following numerical scheme for the case of q = 1:

yn+1 =
y0w(0)
w(tn)

+
1 − p
H(p)

f
(
tn, yn

)
+

δp(∆t)r

H(p)Γ(r + 2)w(tn)

n

∑
k=0

(
w(tk) f

(
tk, yk

)
Ar

n,k

+w(tk−1) f
(
tk−1, yk−1

)
Br

n,k

)
, (27)

where

Ar
n,k = (n − k + 1)r(n − k + 2 + r)− (n − k)r(n − k + 2 + 2r),

Br
n,k = (n − k)r(n − k + 1 + r)− (n − k + 1)r+1.

Remark 4. The numerical scheme given in (27) accounted for the numerical method of Hattaf et al. [16],
when q = δ = 1; Toufik and Atangana [17], when w(t) = 1, q = δ = 1, and r = p; and the recent
numerical scheme presented in [18], when q = 1 and δ = ln( p̄), with p̄ > 0.
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For q ̸= 1, Equation (21) became:

y(t) =
y(a)w(a)

w(t)
+

2 − p − q
H(p + q − 1)w(t)

[
1

Γ(1 − q)

∫ t

a
(t − τ)−qw(τ) f

(
τ, y(τ)

)
dτ

+
δµp,q

Γ(r − q + 1)

∫ t

a
(t − τ)r−qw(τ) f

(
τ, y(τ)

)
dτ

]
.

Thus,

y(tn+1) =
y(a)w(a)

w(tn)
+

2 − p − q
H(p + q − 1)w(tn)

[
1

Γ(1 − q)

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)−qg
(
τ, y(τ)

)
dτ

+
δµp,q

Γ(r − q + 1)

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)r−qg
(
τ, y(τ)

)
dτ

]
.

Similarly, we obtained the following scheme for the case of q ̸= 1:

yn+1 =
y0w(a)
w(tn)

+
(2 − p − q)(∆t)1−q

H(p + q − 1)w(tn)

[
1

Γ(3 − q)

n

∑
k=0

(
w(tk) f

(
tk, yk

)
Ar

n,k

+w(tk−1) f
(
tk−1, yk−1

)
Br

n,k

)
+

δµp,q(∆t)r

Γ(r − q + 3)

n

∑
k=0

(
w(tk) f

(
tk, yk

)
Ar−q+1

n,k

+w(tk−1) f
(
tk−1, yk−1

)
Br−q+1

n,k

)]
. (28)

Now, we investigated the numerical error of our proposed approximation scheme by
assuming that g = w f had a bounded second derivative. For the case of q = 1, we found
the following:

y(tn+1) =
y0w(a)
w(tn)

+
1 − p
H(p)

f
(
tn, y(tn)

)
+

δp
H(p)Γ(r)w(tn)

n

∑
k=0

∫ tk+1

tk

(tn+1 − τ)r−1g
(
τ, y(τ)

)
dτ.

Hence,

y(tn+1) =
y0w(a)
w(tn)

+
1 − p
H(p)

f
(
tn, y(tn)

)
+

pδ

H(p)Γ(r)w(tn)

n

∑
k=0

∫ tk+1

tk

(
Pk(τ)

+
(τ − tk)(τ − tk−1)

2!
g(2)

(
ξτ , y(ξτ)

))
(tn+1 − τ)r−1dτ

=
y0w(a)
w(tn)

+
1 − α

H(p)
f
(
tn, y(tn)

)
+

pδ(∆t)r

H(p)Γ(r + 2)w(tn)

n

∑
k=0

(
g
(
tk, yk

)
Ar

n,k + g
(
tk−1, yk−1

)
Br

n,k

)
+Rp,1,δ

n ,

where the approximation error Rp,1,δ
n was given by the following:

Rp,1,δ
n =

pδ

H(p)Γ(r)w(tn)

n

∑
k=0

∫ tk+1

tk

(τ − tk)(τ − tk−1)

2!
g(2)

(
ξτ , y(ξτ)

)
(tn+1 − τ)r−1dτ. (29)



Computation 2024, 12, 7 12 of 17

As the function τ 7→ (τ − tk−1)(tn+1 − τ)r−1 was positive on [tk, tk+1], then there
existed a ξk ∈ [tk, tk+1], such that:

Rp,1,δ
n =

pδ

H(p)Γ(r)w(tn)

n

∑
k=0

g(2)
(
ξk, y(ξk)

) (ξk − tk)

2

∫ tk+1

tk

(τ − tk−1)(tn+1 − τ)r−1dτ

=
pδ(∆t)r+1

2H(p)Γ(r + 2)w(tn)

n

∑
k=0

g(2)
(
ξk, y(ξk)

)
(ξk − tk)Ar

n,k.

Thus, ∣∣∣Rp,1,δ
n

∣∣∣ ≤ pδ(∆t)r+2

2H(p)Γ(r + 2)w(tn)
max

τ∈[a,tn+1]
|g(2)(τ, y(τ))|

∣∣∣∣ n

∑
k=0

Ar
n,k

∣∣∣∣.
Based on the following formulas

Ar
n,k ≤ (n − k + 2 + r)[(n + 1)r − rnr],

n

∑
k=0

(n − k + 2 + r) =
(n + 1)(n + 4 + 2r)

2
,

we found the following:∣∣∣Rp,1,δ
n

∣∣∣ ≤ pδ(∆t)r+2(n + 1)(n + 4 + 2r)[(n + 1)r − rnr]

4H(p)Γ(r + 2)w(tn)
max

τ∈[a,tn+1]
|g(2)(τ, y(τ))|. (30)

In the same way as above, it was not hard to establish the approximation error for the
case of q ̸= 1.

To illustrate our numerical scheme, we considered the following FDE with a mixed
fractional derivative: {

Dp,1,r
a,w,δy(t) = t2e−t,

y(0) = 0.
(31)

Let w(t) = et. By applying the fractional integral to both sides of (31) and using
Theorem 3, we obtained the exact solution of (31), which was given by the following:

y(t) =
(1 − p

H(p)
+

2pδtr

H(p)Γ(r + 3)
)
t2e−t. (32)

Now, we applied the developed numerical scheme for the case of q = 1, as presented
in (27), to approximate the solution of (31). For all numerical simulations, we chose the
normalization function, as follows:

H(p) = 1 − p +
p

Γ(p)
. (33)

The comparison between the exact and approximate solutions of (31), with the cor-
responding absolute errors, is shown in Figure 1 for the different values of ∆t, p = 0.7,
r = 0.8, and δ = 2.5. In addition, Table 1 presents the maximum errors for numerous values
of ∆t.
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Figure 1. The exact and numerical solutions of (31), with the corresponding absolute errors, for
different values of ∆t.

Table 1. The maximum errors corresponding to different values of ∆t, with p = 0.7, r = 0.8, and
δ = 2.5.

Discretization Step (∆t) Error

0.1 8.6991 × 10−2

0.01 8.5373 × 10−3

0.001 8.5204 × 10−4

From Figure 1, we observed that the developed numerical scheme had very good
agreement between the exact and approximate solutions for the different values of the
discretization step ∆t. Furthermore, Table 1 shows that the convergence of the numerical
approximation depended on the discretization step ∆t. By comparing the exact and ap-
proximate solutions, we deduced that the new developed numerical scheme was effective
and rapidly converged to the exact solution.
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7. Application in Computational Biology

Computational biology is a branch of biology that uses mathematical modeling and
computational simulations in order to understand biological systems and relationships.
Therefore, we considered the following FDE system that described the evolution of a cell
population in the human body:

Dp,1,r
0,w,δN(t) = λ − dN(t), (34)

where N(t) is the total cell population produced at rate λ and dying naturally at rate
d. Furthermore, the new fractional derivative used in (34) enabled us to investigate the
dynamical behavior of a cell population with a large variety of parameters that could
account for natural constraints and the multitude of factors influencing cell growth in
the human body, such as nutrition, genetics, environment, stress, competition between
cells, etc.

By applying the Laplace transform to (34), we obtained the following:

L{w(t)Dp,1,r
0,w,δN(t)} = λL{w(t)} − dL{w(t)N(t)}.

According Theorem 2, we had the following:

L{w(t)N(t)}(s) = H(p)w(0)N(0)sr−1

[H(p) + d(1 − p)]sr + dpδ
+

λ(1 − p)sβ + pλδ

[N(p) + d(1 − p)]sr + dpδ
L{w(t)}(s).

Then,

L{w(t)N(t)}(s) = H(p)w(0)N(0)sr−1

apsr + dpδ
+

λ(1 − p)sβ + pλδ

apsr + dpδ
L{w(t)}(s),

where ap = H(p) + d(1 − p). Hence,

L{w(t)N(t)}(s) =
H(p)w(0)N(0)

ap

sr−1

sr + dpδ
ap

+
λ(1 − p)

ap

sr−1

sr + dpδ
aα

sL{w(t)}(s)

+
pλδ

ap

1

sr + dpδ
ap

L{w(t)}(s)

=
H(p)w(0)N(0)

ap
L{Er

(
− dpδ

ap
tr)}

+
λ(1 − p)

ap
L{Er

(
− dpδ

ap
tr)}(L{w′(t)}+ w(0)

)
−λ

d
L{ d

dt
Er
(
− dpδ

ap
tr)}L{w(t)}.

Thus,

w(t)N(t) =
H(p)w(0)N(0)

ap
Er
(
− dpδ

ap
tr)+ λ(1 − p)

ap
Er
(
− dpδ

ap
tr) ∗ w′(t)

+
λ(1 − p)w(0)

ap
Er
(
− dpδ

ap
tr)− λ

d
d
dt

Er
(
− dpδ

ap
tr) ∗ w(t).

However, we had the following:

d
dt

Er
(
− dpδ

ap
tr) ∗ w(t) = Er

(
− dpδ

ap
tr)w(0)− w(t) + Er

(
− dpδ

ap
tr) ∗ w′(t).
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This led to the following:

N(t) =
λ

d
+

H(p)w(0)
apw(t)

(
N(0)− λ

d
)
Er
(
− dpδ

ap
tr)− λH(p)

dapw(t)
Er
(
− dpδ

ap
tr) ∗ w′(t). (35)

When the weight function was constant, Equation (35) became:

N(t) =
λ

d
+

H(p)w(0)
apw(t)

(
N(0)− λ

d
)
Er
(
− dpδ

ap
tr). (36)

For liver cells, also called hepatocytes, λ = 5.04 ± 0.71 × 105 cell/mL/day and
d = 0.0039 day−1 [21]. Figure 2 shows the impact of order p on the dynamical behavior of the
solutions of (34), with two initial conditions, N(0) = 1.1×108 and N(0) = 1.5 × 108 cells/mL,
for δ = 1 and r = 0.95.
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p=0.6
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Figure 2. The solution of (34) with two initial conditions for δ = 1, r = 0.95, and different values of p.

Next, we investigated the impact of the parameter p on the dynamics of (34), with
p = 0.8 and r = 0.95. Figure 3 shows the results.
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Figure 3. The impact of parameter δ on the dynamics of (34), with p = 0.8 and r = 0.95.

8. Conclusions

This study introduced a new mixed fractional derivative in the sense of Caputo and
Riemann–Liouville, which covered many definitions of fractional derivatives, both with sin-
gular and non-singular kernels, including the Riemann–Liouville fractional derivative [1,2];
the Caputo fractional derivative [3]; the CF fractional derivative [4]; the AB fractional deriva-
tive [5]; the weighted-AB fractional derivative [6]; the power fractional derivative [13]; the
fractional derivative with the Mittag–Leffler kernel of two parameters [14]; and also the
GHF derivative [7]. Furthermore, the fractional integral operator associated with the new
mixed fractional derivative was defined to include the many well-known forms of fractional
integrals recorded in the fractional calculus literature. In addition, the fundamental prop-
erties of the fractional operators of differentiation and integration were investigated. We
developed an explicit numerical method based on the Lagrange polynomial interpolation
for finding an approximate solution of differential equations with mixed fractional deriva-
tives. Our method improved and generalized the recent numerical methods presented
in [16–18]. Our results were then effectively applied to a biological system that described
the evolution of a cell population in the human body.

The key advantages of the new mixed fractional derivative operator include its non-
locality and its flexibility. It could accommodate a wide range of parameters in order
to better fit real data and more accurately model real-world problems. Additionally,
the new mixed fractional derivative had a kernel with various parameters that included
exponential, power-law, and Mittag–Leffler kernels. Based on the results and advantages,
the development of a theory with a general derivative, as well as the derivation of a new
version of fractal-fractional operators that can model complex behavior and processes in
real-world phenomena, such as in [22–24], will be considered in future research.
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