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Abstract: Accurate predictions of molecular properties are crucial for advancements in drug discov-
ery and materials science. However, this task is complex and requires effective representations of
molecular structures. Recently, Graph Neural Networks (GNNs) have emerged as powerful tools
for this purpose, demonstrating significant potential in modeling molecular data. Despite advance-
ments in GNN predictive performance, existing methods lack clarity on how architectural choices,
particularly activation functions, affect training dynamics and inference stages in interpreting the
predicted results. To address this gap, this paper introduces a novel activation function called the Sine
Linear Unit (SLU), aimed at enhancing the predictive capabilities of GNNs in the context of molecular
property prediction. To demonstrate the effectiveness of SLU within GNN architecture, we conduct
experiments on diverse molecular datasets encompassing various regression and classification tasks.
Our findings indicate that SLU consistently outperforms traditional activation functions on hydration
free energy (FreeSolv), inhibitory binding of human β secretase (BACE), and blood brain barrier
penetration (BBBP), achieving the superior performance in each task, with one exception on the GCN
model using the QM9 data set. These results underscore SLU’s potential to significantly improve
prediction accuracy, making it a valuable addition to the field of molecular modeling.

Keywords: chemical graph theory; graph neural networks; molecular graph; molecular property
prediction; Sine Linear Unit

1. Introduction

Chemistry relies heavily on the creation of accurate molecular models. Traditionally,
this has been achieved through methods like IUPAC names, formulas, and various struc-
tural drawings. Glycerol, for instance, has the IUPAC name propane-1,2,3-triol. Figure 1
illustrates its skeletal, structural, and molecular formulas. However, these representations
cater primarily to human comprehension and are not directly usable by machine learning
algorithms. To bridge this gap and empower computers to understand and utilize molecu-
lar data, Molecule Representation Learning (MRL) emerges. MRL tackles this challenge by
transforming molecules into a low-dimensional space, represented as dense vectors (em-
bedding). These learned embedding unlock a vast array of applications, including organic
reaction prediction [1,2], predicting molecular property [3], molecule generation [4], drug
detection [5], planning chemical syntheses [6], chemical text mining [7], and knowledge
graph prediction [8].

Several MRL methods have been proposed by researchers, such as MolBERT [9],
ChemBERTa [10], SMILESTransformer [11], SMILES-BERT [12], Molecule-Transformer [13],
and SABiLSTM [14]. These methods predominantly utilize SMILES strings as input and
employ natural language models like Transformers [15] or BERT [16] as their foundation
model. SMILES, or Simplified Molecular-Input Line-Entry System, is a powerful tool for
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chemists. It allows them to represent complex molecular structures using short, easy-
to-read strings of characters. For example, the SMILES string “OCC(O)CO” accurately
describes the structure of glycerol.
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While powerful language models excel at processing sequential data, their perfor-
mance suffers when dealing with SMILES strings, a 1D representation of molecular struc-
tures. This linear format limits their ability to capture the inherent complexities of molec-
ular graphs. Further details can be found in [17]. Presently, a number of computationally 
favorable deep learning [18] techniques have been introduced for processing data and 
representing molecules as graphs. Deep learning architectures have become the founda-
tion for many state-of-the-art MRL methods. This is exemplified by recent work in simu-
lating oscillators and biochemical systems using deep neural networks [19,20]. Under-
standing these deep learning architectures is vital for researchers in MRL. Various MRL 
methods leverage GNNs [21] for processing molecules as graphs [22,23].

GNNs are revolutionizing how we understand molecules. Unlike traditional meth-
ods, GNNs treat molecules as graphs, where atoms are nodes and bonds are edges. This 
approach effectively captures the complex, non-Euclidean nature of molecular structures. 
GNNs boast exceptional flexibility, working seamlessly with various molecule represen-
tations, including chemical graphs, 3D structures, and more. Fueled by research across 
various domains, GNNs have found a valuable application in chemistry, particularly for 
analyzing molecules [24]. GNN models have consistently surpassed traditional methods
in a critical task for drug discovery: predicting molecular properties [25–28]. This success 
highlights the immense potential of GNNs in accelerating drug development. A major 
challenge in drug discovery is predicting a molecule’s properties. This challenge has at-
tracted growing attention in recent years [29–32], leading to the development of various 
GNN architectures specifically designed to excel at molecular property prediction tasks 
in the field of chemistry.  

In the realm of MRL, there isn’t a single “one-size-fits-all” GNN architecture that can 
effectively predict all types of molecular properties. Different tasks require specific GNN 
architectures to achieve the best performance. The search for the ideal GNN architecture 
for property prediction in MRL is an ongoing challenge. The goal is not just to create a 
single architecture that outperforms all others, but to develop GNNs that are inherently 
flexible and capable of addressing the diverse nature of molecular properties. 

While standard GNN architectures possess significant capabilities, their effectiveness 
can be limited by design choices that restrict their ability to capture the nuances of various 
molecular properties. Additionally, while the architecture of a model is important, GNN 
performance is also heavily influenced by hyperparameters. Unfortunately, these hy-
perparameters are often not thoroughly optimized, which can introduce variability in per-
formance that is independent of the architecture itself. In GNN architectures, hyperpa-
rameters play a crucial role, and the choice of activation function is especially significant. 
Understanding how different activation functions affect the learning process and the com-
plexity they can capture is essential for optimizing GNN performance in molecular
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While powerful language models excel at processing sequential data, their perfor-
mance suffers when dealing with SMILES strings, a 1D representation of molecular struc-
tures. This linear format limits their ability to capture the inherent complexities of molecu-
lar graphs. Further details can be found in [17]. Presently, a number of computationally
favorable deep learning [18] techniques have been introduced for processing data and
representing molecules as graphs. Deep learning architectures have become the foundation
for many state-of-the-art MRL methods. This is exemplified by recent work in simulating
oscillators and biochemical systems using deep neural networks [19,20]. Understanding
these deep learning architectures is vital for researchers in MRL. Various MRL methods
leverage GNNs [21] for processing molecules as graphs [22,23].

GNNs are revolutionizing how we understand molecules. Unlike traditional meth-
ods, GNNs treat molecules as graphs, where atoms are nodes and bonds are edges. This
approach effectively captures the complex, non-Euclidean nature of molecular structures.
GNNs boast exceptional flexibility, working seamlessly with various molecule represen-
tations, including chemical graphs, 3D structures, and more. Fueled by research across
various domains, GNNs have found a valuable application in chemistry, particularly for
analyzing molecules [24]. GNN models have consistently surpassed traditional methods
in a critical task for drug discovery: predicting molecular properties [25–28]. This success
highlights the immense potential of GNNs in accelerating drug development. A major
challenge in drug discovery is predicting a molecule’s properties. This challenge has at-
tracted growing attention in recent years [29–32], leading to the development of various
GNN architectures specifically designed to excel at molecular property prediction tasks in
the field of chemistry.

In the realm of MRL, there isn’t a single “one-size-fits-all” GNN architecture that can
effectively predict all types of molecular properties. Different tasks require specific GNN
architectures to achieve the best performance. The search for the ideal GNN architecture
for property prediction in MRL is an ongoing challenge. The goal is not just to create a
single architecture that outperforms all others, but to develop GNNs that are inherently
flexible and capable of addressing the diverse nature of molecular properties.

While standard GNN architectures possess significant capabilities, their effectiveness
can be limited by design choices that restrict their ability to capture the nuances of var-
ious molecular properties. Additionally, while the architecture of a model is important,
GNN performance is also heavily influenced by hyperparameters. Unfortunately, these
hyperparameters are often not thoroughly optimized, which can introduce variability in
performance that is independent of the architecture itself. In GNN architectures, hyperpa-
rameters play a crucial role, and the choice of activation function is especially significant.
Understanding how different activation functions affect the learning process and the com-
plexity they can capture is essential for optimizing GNN performance in molecular property
prediction tasks. By selecting an activation function that encourages the learning of a wide
range of molecular features, captures non-linear relationships between atoms, and regulates
information flow, researchers can create GNNs that are more adaptable to various property
prediction tasks. Traditional activation functions like Rectified Linear Unit (ReLU) [33],
LeakyReLU [34], and Amplifying Sine Unit (ASU) [35] are effective in many situations, but
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they may not be ideal for capturing complex relationships within molecules. For example,
ReLU neurons can become inactive during training when they output zero for all inputs.
Moreover, LeakyReLU poses challenges in determining the optimal slope for the negative
input region. To address the issues related to dying ReLU and other limitations of existing
activation functions, we introduce a novel activation function called the Sine Linear Unit
(SLU). Our aim in developing this new activation function is to significantly enhance the
capabilities of GNNs in managing the complexities associated with various molecular
property prediction tasks.

Our main contributions in this paper are the introduction of the Sine Linear Unit
(SLU), a novel activation function specifically designed to enhance the performance of
GNNs for predicting molecular properties. We provide a rigorous mathematical analysis
of SLU, demonstrating its advantageous characteristics that make it particularly effective
for GNN architectures. Furthermore, we integrate SLU into various GNN architectures
and conduct a comprehensive performance comparison against traditional activation
functions using publicly available molecular datasets. Figure 2 presents a visual overview
of our contributions.
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2. Preliminaries on Molecular Representations and GNNs

In mathematical chemistry, chemical graph theory has been concerned with repre-
senting the arrangement of compounds using graphs since 1874 [36]. Modern chemical
graph theory goes beyond just representing structure. It explores various mathematical
properties of the graph, such as connectivity, cycles, and shortest paths, to gain insights
into the molecule’s behavior and properties. Typically, an undirected graph depicts the
molecular structure, with atoms as nodes and chemical bonds as edges. Molecules can
be easily visualized in this way, as shown in Figure 3. Considering a graph G = (V , E)
where V indicates the vertices or nodes, with each node vi ∈ Rdv representing an atom
in molecular graphs. These nodes may possess various characteristics, including atomic
number and chirality. The edges typically signify covalent bonds between the atoms. Each
edge eij ∈ Rde is defined by a certain number of attributes, commonly indicating the type
of bond.

GNNs are highly proficient in addressing tasks involving the categorization or estima-
tion of graph properties across diverse hierarchical levels, showcasing modern efficiency.

• Graph-level tasks encompass a multitude of applications, such as forecasting dis-
tinct features across the entirety of the graph. This task can enclose activities like
determining toxicity or carrying out regressions. Within this guide, we will focus on
implementing regression tasks aimed at anticipating molecular properties. Another
vital graph-level endeavor involves predicting entirely novel graphs or molecules, a
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pivotal aspect, especially within the realm of drug discovery, which revolves around
identifying new drug candidates.

• Tasks at the node level involve the ability to make predictions about a specific node
within a graph, such as determining the atomic charges associated with each atom.
Another aspect is the ability to foreseeing the addition of a new node into the graph.
This is commonly seen in the context of molecule creation, where the goal is to
sequentially incorporate multiple atoms to generate novel molecules.

• Edge-level tasks entail predicting edge characteristics, such as molecular forces or the
formation of new connections within a graph. In the context of generating molecules,
the goal is to speculating potential links between atoms. Edge forecasting also serves
to deduce relationships or interactions, like those in a genetic regulatory network.
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In the realm of chemistry, most tasks revolve around projecting outcomes at the graph
level. We will emphasize the prediction of molecular properties through the analysis
of molecular structure. Molecular property prediction deals with two types of target
properties: categorical properties (e.g., toxicity [37]) for classification and continuous
properties (e.g., energy [38]) for regression. The predictive task aims to unravel the valuable
properties of a molecule. Molecular property prediction takes a molecule c and its graph
representation Gc. GNNs leverage molecular graphs as input data, effectively capturing
the essential features that govern the prediction of specific target properties.

GNN networks leverage both the molecular structure and atom attributes to generate
a vector representation for each atom as well as the entire molecule. In GNNs, a prevalent
approach is neighborhood aggregation, where an atom’s representation is iteratively refined
by integrating information from its neighboring atoms and its own features. Equation (1)
formally defines the k-th layer of a GNN as follows.

hk
i = AGGREGATE

({
hk−1

j

}
j∈N(i)∪{i}

)
, k = 1, . . . , K (1)

The vector representation of atom ai at the k-th layer is symbolized as hk
i (where h0

i
set as the initial feature xi of ai). The set of atoms directly connected to ai is represented
as N(i), and K denotes the quantity of layers within the GNN architecture. The careful
selection of the AGGREGATE function stands as a cornerstone in the architecture of GNNs,
a fact underscored by the diverse array of GNN designs that have emerged.

Equation (2) defines the final step. This step involves utilizing a readout function to
combine all node representations produced by the last GNN layer. This ultimately derives
the complete representation of the entire molecule as hG :

hG = READOUT
({

hK
i

}
ai∈V

)
(2)

An illustration of the GNN encoder alongside molecular structure is presented in
Figure 4.
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With their widespread popularity and versatility, a diverse range of GNN architectures
have emerged, including the versatile MPNN framework [22] and the SchNet architecture
designed for quantum interactions [39]. Wieder et al. [40] provide an in-depth analysis of
various GNN variants and their real-world applications across multiple fields.

The following section introduces a new activation function with a compelling set of
characteristics. Notably, it overcomes the shortcomings of existing functions and offers the
potential for superior performance in molecular property prediction, which we will discuss
in detail later.

3. Sine Linear Unit

This section introduces a new activation function known as Sine Linear Unit (SLU),
which is especially well-suited for deep learning networks. Mathematically, the function is
formally defined as,

f (x) =

{
x if x ≥ 0
sin(x) if x < 0

(3)

aiming to offer superior properties compared to other activation functions. The function is
straightforward, acting as the identity function when given positive input and as sin(x)
when given negative input. The graphical representation of the SLU and its derivative can
be found in Figure 5.
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Next, we examine certain characteristics of SLU that a suitable activation function
should possess.
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I. Continuity: In Figure 5, SLU is portrayed as a continuous activation function with
a unique characteristic compared to traditional activation functions.

For x ≥ 0:

• The function is defined as f (x) = x for x ≥ 0.
• The identity function f (x) = x is continuous everywhere, including at x ≥ 0.

For x < 0:

• The function is defined as f (x) = sin(x) for x < 0.
• The sine function f (x) = sin(x) is continuous for all real numbers, including

x < 0.

As f (x) is defined as continuous functions in both cases, it implies that f (x) maintains
continuity across all real numbers. Therefore, the function f (x) is continuous throughout
its domain, encompassing all real numbers R.

II. Differentiability: The differentiability of f (x) across its domain requires examining
its differentiability at each point.

For x > 0:

• The function is f (x) = x, which is a polynomial function. Polynomials are
differentiable everywhere, so f (x) is differentiable for x > 0.

For x < 0:

• The function is f (x) = sin(x), which is also differentiable for all real numbers.
The derivative of f (x) = sin(x) with respect to x is cos(x), and since cos(x) is
defined for all real numbers, f (x) = sin(x) is differentiable for x < 0.

At x = 0:

• We need to check the differentiability at x = 0. To do this, we need to verify if
the left-hand derivative and the right-hand derivative at x = 0 match.

• Left-hand derivative at x = 0:

lim
h→0−

f (0 + h)− f (0)
h

= lim
h→0−

sin(h)− 0
h

= lim
h→0−

sin(h)
h

= 1 (by the Squeeze theorem)

• Right-hand derivative at x = 0:

lim
h→0+

f (0 + h)− f (0)
h

= lim
h→0+

h − 0
h

= 1

• Since both left-hand and right-hand derivatives at x = 0 exist and are equal, f (x)
is differentiable at x = 0.

Consequently, f (x) exhibits differentiability throughout its entire domain. Expression (4)
captures the first derivative of SLU.

f (x) =

{
1, if x ≥ 0
cos(x), if x < 0

(4)

III. Nonmonotonicity: The function defined in (3) is non-monotonic because it doesn’t
consistently increase or decrease across its entire domain.
For x ≥ 0:

f (x) = x

is a linear function. As x increases, f (x) also increases. This portion of the function is
monotonic.
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For x < 0:

f (x) = sin(x)

is a periodic function. It oscillates between −1 and 1 as x changes. Therefore, the
function is not monotonic in this region because it doesn’t consistently increase
or decrease.

The function exhibits a shift in behavior at x = 0, transitioning from an increasing
trend for x ≥ 0 to an oscillatory pattern for x < 0. This change violates monotonicity
across the entire domain. So, SLU exhibits a non-monotonic behavior, fluctuating in a more
intricate way.

IV. Boundedness: It is noteworthy that SLU has a lower bound and an unbounded upper
limit within the range of approximately −1 to infinity.

For Bounded Below:

• For x ≥ 0, f (x) = x, which is non-negative for all x ≥ 0.
• For x < 0, f (x) = sin(x), which ranges between −1 and 1, inclusive.
• Therefore, f (x) ≥ −1 for all x in its domain, indicating that f (x) is bounded

below by −1.

For Not Bounded Above:

• For x ≥ 0, f (x) = x, which increases without bound as x approaches positive infinity.
• For x < 0, f (x) = sin(x), which oscillates between −1 and 1, and there is no upper

limit as x approaches negative infinity.
• Therefore, f (x) is not bounded above because it can take arbitrarily large positive

values for x ≥ 0 and oscillates between −1 and 1 for x < 0.

SLU, an unbounded above activation function, has the advantage of avoiding satura-
tion which can slow down training by causing near-zero gradients. This can have a drastic
impact on the efficiency of the learning process. Additionally, SLU being bounded below
also brings benefits as it leads to strong regularization effects. This means that using SLU
can help prevent overfitting and improve the model’s generalization abilities.

V. Vanishing gradient: A good activation function is crucial for deep learning networks
because it should not cause the gradient to vanish, as this can hinder the training
process. SLU fulfills this requirement by guaranteeing the gradient’s stability. This
makes SLU a solid choice for deep learning networks, as it allows for effective training
without facing the issue of vanishing gradients.

VI. Non linearity: Unlike traditional activation functions like ReLU or LeakyReLU, SLU
offers a unique method for introducing non-linearity into neural networks.

Overall, SLU unique properties make it a valuable tool in training deep learning
models effectively. This innovative approach aims to improve the efficacy of GNNs to
accurately predicting a molecule’s properties based on its structure.

4. Experiments

We perform experiments on four molecular property benchmarks from Molecu-
leNet [28], comprising small datasets that lack spatial information (like FreeSolv, BACE,
and BBBP) and big datasets (like QM9) with spatial information. Following, we provide a
concise description of each tasks.

• The FreeSolv dataset is designed for regression applications, specifically for estimating
the hydration free energy of 642 small molecules in water. The SMILES format used to
depict the molecules is devoid of spatial information.

• The QM9 dataset, which includes 133,885 molecules with 12 target attributes, is
used for problems involving the regression of quantum mechanical parameters. The
dataset’s exact spatial information for each molecule makes it perfect for applications
like chemical property prediction based on quantum chemistry computations. Out
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of the diverse regression targets within the dataset, we will specifically address the
prediction of the dipole moment µ.

• BACE, a binary classification task for predicting the inhibition of human β-secretase
(BACE), an enzyme linked to Alzheimer’s disease. The dataset contains 1513 molecules
represented in SMILES format and is used to evaluate potential inhibitors for
drug discovery.

• BBBP (Blood-Brain Barrier Penetration) is used for binary classification tasks, predicting
whether a compound can penetrate the blood-brain barrier. It contains 2039 molecules
labeled as either permeable or non-permeable to the blood-brain barrier.

The dataset was split into three subsets to enable robust model evaluation: 80% for
training, which lets the model learn from most of the data; 10% for validation, which helps
to fine-tune and choose the best model; and the remaining 10% for testing, which evaluates
the model’s generalization performance.

To leverage the power of the SLU function for predicting properties, a key factor in
molecular interactions, this study explores its integration with GNN models. The success
of an existing methods, Graph Isomorphism Network (GIN) [41] and Graph Convolutional
Network (GCN) [21], will be used to evaluate how well the SLU function performs within
these architectures in predicting molecular properties. A variety of activation functions,
listed in Table 1, are used to evaluate the SLU function’s performance. Our final evaluation
is based on the lowest RMSE for FreeSolv, the lowest MAE for QM9, and the highest
ROC-AUC for BACE and BBBP, where RMSE, MAE, and ROC-AUC refer to the root mean
square error, mean absolute error, and receiver operating characteristic area under the
curve, respectively.

Table 1. List of activation functions used in evaluation.

Activation Function Mathematical Expression Graphical Representation

ReLU
{

x if x ≥ 0
0 if x < 0
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4.1. Experimental Results on FreeSolv

Table 2 presents the regression outcomes of GNN models applied to the FreeSolv
dataset, highlighting their performance with different activation functions. SLU stands
out as the clear leader, achieving the lowest RMSE scores of 1.8433 in GIN and 1.9702 in
GCN. While SLU may not have achieved the absolute lowest score, it significantly outper-
formed traditional activation functions with notable improvements. SLU surpassed ReLU
with improvements of 0.7847 for GIN and 0.8311 for GCN, demonstrating a considerable
reduction in error. These results underscore SLU’s effectiveness in accurately predicting
hydration energy.

Table 2. RMSE score of GNN models on FreeSolv.

Model GIN GCN

ReLU 2.6280 2.8013

LeakyReLU 2.5732 2.2138

ELU 2.4384 2.3141

SELU 2.0215 2.2992

SLU 1.8433 1.9702

Figure 6 illustrates how the GNN model’s training loss curves with various activation
functions show diverse performance patterns. As can be seen in Figure 6, the SLU activation
function is better at learning from the training data on both model evidence as its constantly
reduced training loss over all epochs. Unlike other activation functions, SLU efficiently
reduces the loss and exhibits exceptional stability across the training process. There are
some discrepancies in other functions with noticeable increases in training loss at the
conclusion. As seen in Figure 7, SLU stands out in the validation phase with a consistent
decline in validation loss, exhibiting good generalization to unseen data, making it more
reliable than alternatives. Overall, SLU shows strong performance in both models trained
on the FreeSolv dataset.
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4.2. Experimental Results on QM9

Figure 8 provides important insights into how different activation functions perform
in the GIN and GCN models. In Figure 8a, the SLU activation function shows a clear
advantage, with its training loss curve consistently decreasing across all epochs, indicating
effective learning. In contrast, the training loss curves for other activation functions,
especially ReLU, show smaller improvements or fluctuating patterns, suggesting they may
have difficulty optimizing learning. Figure 8b presents the GCN model’s training curves,
where SLU demonstrates a steady decrease in error with each epoch. However, despite
this steady progress, SLU performs worse than ReLU and LeakyReLU in both training
and validation loss. This is particularly evident in Figure 9b, where the validation loss
curves show SLU struggling to generalize as well as ReLU and LeakyReLU. Even though
SLU’s loss decreases, it does not outperform these functions, indicating that SLU might
face challenges in optimizing GCN models as effectively as its counterparts. On the other
hand, the validation loss curves in Figure 9a illustrate how well SLU performs in the GIN
model and its ability to generalize to new data.
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Table 3 shows the MAE scores achieved by GNN models using different activation
functions (ReLU, LeakyReLU, ELU, SELU, and SLU). With an MAE score of 0.3315 in the
GIN model, the SLU activation function performs better than ReLU (0.3741), LeakyReLU
(0.3738), ELU (0.3558), and SELU (0.3652). On the other hand, the GCN model performs
better with LeakyReLU (0.6614) but shows a higher MAE score of 0.7598 with SLU com-
pared to all others except ELU. This suggests that the SLU function helps the GIN model
learn complex quantum mechanical properties more effectively, while the GCN struggles
to capture the finer details of the dataset.

Table 3. MAE score of GNN models on QM9.

Model GIN GCN

ReLU 0.3741 0.6742

LReLU 0.3738 0.6614

ELU 0.3558 0.7648

SELU 0.3652 0.7542

SLU 0.3315 0.7598

Now we visualize the effectiveness of SLU on the regression task by comparing the
actual target values with the predicted values using the testing data. By utilizing the GIN
model trained with SLU, we created two scatter plots, shown in Figure 10, illustrate the
predicted and target values for the FreeSolv and QM9 datasets. In these scatter plots, the
y-axis represents the actual target values, while the x-axis shows the predicted values.
When points are above the diagonal line, it means that the predicted values are higher
than the actual target values. This suggests that the model is overestimating the results for
those particular samples. Conversely, points below the diagonal suggest that the predicted
values are lower than the actual targets, indicating inaccuracies in the model’s predictions.
An ideal scenario would be a balanced distribution of points, suggesting that the model
is reliable and effective, with most points clustering closely to the diagonal and only a
few significantly above or below. As we can see in Figure 10, the scatter plots reveal
a strong correlation between the actual and predicted values, as demonstrated by the
concentration of points near the diagonal line. This close clustering illustrates how well the
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GIN model trained with SLU captures the relationships in the FreeSolv and QM9 datasets.
The few outliers that deviate from the diagonal further affirm the model’s performance
and reliability. The alignment of points with the diagonal indicates the model’s good
generalization, showcasing SLU’s ability to optimize predictions across these molecular
datasets. The consistent clustering of samples around the diagonal line in both scatter
plots highlights SLU’s effectiveness in generating accurate and dependable predictions in
various molecular scenarios.
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4.3. Experimental Results on BACE

Table 4 highlights the ROC-AUC scores of five activation functions used with GNN
models on the BACE dataset. SLU stands out with scores of 0.8243 for the GIN model and
0.8264 for the GCN model, showing strong predictive potential for BACE inhibition. In
comparison, ReLU and LeakyReLU trailed SLU by 0.0483 and 0.0529 in GIN, and by 0.0678
and 0.0661 in GCN, respectively, indicating significant performance gaps. SELU, while
closer to SLU, still showed improvements of 0.0241 in GIN and 0.0244 in GCN. Overall, the
data reveal a clear trend where SLU significantly enhances ROC-AUC scores, making it a
promising activation function for improving model performance on the BACE dataset.

Table 4. ROC-AUC score of GNN models on BACE.

Model GIN GCN

ReLU 0.7760 0.7585

LReLU 0.7744 0.7603

ELU 0.8121 0.7706

SELU 0.8002 0.8020

SLU 0.8243 0.8264

As shown in Figures 11 and 12, SLU consistently achieved the lowest training and
validation losses than its competitors, while also avoiding the chaotic behavior that other
activation functions display.
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4.4. Experimental Results on BBBP

Table 5 discloses the classification results on BBBP that were obtained via the acti-
vation functions ReLU, LeakyReLU, ELU, SELU, and SLU. Evidently, SLU consistently
outperformed the other four activation functions, achieving the highest ROC-AUC value
for both models. In GCN, SLU demonstrated better predictive performance compared to
ReLU and LeakyReLU. Although the differences with ELU and SELU were not statistically
significant, SLU still outperformed them, achieving improvements of 0.3409 and 0.1303,
respectively. Surprisingly, SLU exhibited remarkable performance in the GIN model as
well, with a ROC-AUC value of 0.9683, demonstrating its potential for use in complex
models compared to other activation functions.
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Table 5. ROC-AUC score of GNN models on BBBP.

Model GIN GCN

ReLU 0.9209 0.9056

LeakyReLU 0.9211 0.9049

ELU 0.9410 0.9257

SELU 0.9396 0.9292

SLU 0.9683 0.9376

The training and validation loss curves for the BBBP dataset, shown in Figures 13 and 14,
highlight the impressive performance of the SLU activation function in both GIN and GCN
models. SLU consistently achieves the lowest loss values, showing its effectiveness in
reducing prediction errors related to blood-brain barrier penetration. It demonstrates rapid
convergence during training and lower validation loss, indicating strong generalization
and reduced overfitting.
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The bar charts in Figure 15 visually compare the overall performance in both regression
and classification tasks. In the regression tasks using the FreeSolv dataset, SLU is clearly
distinguished, showing better performance than the other activation functions. It has the
lowest bars in both the GIN and GCN models, indicating that it effectively minimizes error
values. For the QM9 dataset, SLU continues to perform well, achieving the lowest error in
the GIN model, yet it performs less effectively in the GCN model.
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5. Conclusions and Future Directions 
In conclusion, our study highlights the advancements achieved through the intro-

duction of the Sine Linear Unit (SLU) activation function in GNNs for predicting molecu-
lar properties. We assessed the performance of two GNN models using five activation 
functions: ReLU, LeakyReLU, ELU, SELU, and SLU. To do this, we utilized four bench-
mark datasets, which included two regression tasks (FreeSolv and QM9) and two classifi-
cation tasks (BACE and BBBP). This approach allowed us to compare the effectiveness of 
each activation function in various predictive scenarios. Our results show that SLU con-
sistently outperforms traditional activation functions across all tasks, with one excep-
tion—the GCN model on the QM9 dataset. The impressive performance of SLU demon-
strates its potential to significantly improve prediction accuracy in molecular modeling. 
However, the GCN model’s performance on the QM9 dataset remains an exception, indi-
cating a potential area for further research. Overall, SLU emerges as a valuable tool for 
enhancing the capabilities of GNNs in the complex field of molecular property prediction, 
paving the way for future research and applications in chemical analysis and molecular 
engineering. 

Author Contributions: Conceptualization, A.R. and J.U.R.; methodology, J.U.R.; software, A.R.; val-
idation, J.U.R. and Q.I.; formal analysis, A.R.; investigation, A.R. and J.U.R.; resources, A.R.; writ-
ing—original draft preparation, A.R.; writing—review and editing, J.U.R. and Q.I.; visualization, All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The molecular SMILES strings and corresponding data sets are avail-
able https://moleculenet.org/datasets-1.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Jin, W.; Coley, C.; Barzilay, R.; Jaakkola, T. Predicting organic reaction outcomes with weisfeilerlehman network. Adv. Neural 

Inf. Process. Syst. 2017, 30. 
2. Schwaller, P.; Gaudin, T.; Lanyi, D.; Bekas, C.; Laino, T. “Found in Translation”: Predicting outcomes of complex organic chem-

istry reactions using neural sequence-to-sequence models. Chem. Sci. 2018, 9, 6091−6098. 
3. Zhang, X.C.; Wu, C.K.; Yang, Z.J.; Wu, Z.X.; Yi, J.C.; Hsieh, C.Y.; Hou, T.J.; Cao, D.S. MGBERT: Leveraging unsupervised atomic 

representation learning for molecular property prediction. Brief. Bioinform. 2021, 22, bbab152. 

Figure 15. Analysis of SLU via different activation functions on Benchmark datasets. (a) Comparison
of GIN and GCN models on FreeSolv and QM9 datasets. (b) Comparison of GIN and GCN models
on BACE and BBBP datasets.

In the classification tasks, SLU demonstrates its strength on the BACE and BBBP
datasets. The bars representing SLU in these tasks are significantly higher than those for
the other activation functions, highlighting its exceptional predictive ability. The tall bars
in the ROC-AUC scores for the BBBP dataset reflect SLU’s strong performance, while the
bars for the BACE dataset further confirm its superiority.

Overall, these findings underscore the effectiveness of SLU in both regression and
classification tasks, especially when it comes to predicting molecular properties. Its strong
performance in the molecular domain establishes SLU as an essential tool for future research
in molecular modeling.

5. Conclusions and Future Directions

In conclusion, our study highlights the advancements achieved through the introduc-
tion of the Sine Linear Unit (SLU) activation function in GNNs for predicting molecular
properties. We assessed the performance of two GNN models using five activation func-
tions: ReLU, LeakyReLU, ELU, SELU, and SLU. To do this, we utilized four benchmark
datasets, which included two regression tasks (FreeSolv and QM9) and two classification
tasks (BACE and BBBP). This approach allowed us to compare the effectiveness of each
activation function in various predictive scenarios. Our results show that SLU consistently
outperforms traditional activation functions across all tasks, with one exception—the GCN
model on the QM9 dataset. The impressive performance of SLU demonstrates its potential
to significantly improve prediction accuracy in molecular modeling. However, the GCN
model’s performance on the QM9 dataset remains an exception, indicating a potential area
for further research. Overall, SLU emerges as a valuable tool for enhancing the capabilities
of GNNs in the complex field of molecular property prediction, paving the way for future
research and applications in chemical analysis and molecular engineering.
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