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Abstract: The effects of relaxation, convection, and anisotropy on a two-dimensional, two-equation
system of nonlinearly coupled, second-order hyperbolic, advection–reaction–diffusion equations
are studied numerically by means of a three-time-level linearized finite difference method. The
formulation utilizes a frame-indifferent constitutive equation for the heat and mass diffusion fluxes,
taking into account the tensorial character of the thermal diffusivity of heat and mass diffusion. This
approach results in a large system of linear algebraic equations at each time level. It is shown that
the effects of relaxation are small although they may be noticeable initially if the relaxation times
are smaller than the characteristic residence, diffusion, and reaction times. It is also shown that the
anisotropy associated with one of the dependent variables does not have an important role in the
reaction wave dynamics, whereas the anisotropy of the other dependent variable results in transitions
from spiral waves to either large or small curvature reaction fronts. Convection is found to play an
important role in the reaction front dynamics depending on the vortex circulation and radius and the
anisotropy of the two dependent variables. For clockwise-rotating vortices of large diameter, patterns
similar to those observed in planar mixing layers have been found for anisotropic diffusion tensors.

Keywords: second-order hyperbolic; advection–reaction–diffusion equations; relaxation; anisotropic
diffusion; Rankine vortex fields; time-linearized finite difference method

1. Introduction

Most of the heat and mass transfer phenomena that arise in science and engineering are
usually modeled by means of the well-known Fourier and Fick’s second laws, respectively,
whereby the heat and mass transfer fluxes are assumed to be linearly proportional to the
temperature and concentration gradients, respectively, and the proportionality is, in many
cases, assumed to be a scalar rather than a tensor. The application of these laws to problems
where the length scales are small, e.g., microfluidics, and/or the heat and mass flux are
very large and may not be valid because these laws result in parabolic partial differential
equations characterized by an infinite speed of propagation, and delays may occur between,
say, the time at which the temperature gradient is imposed and the time at which the heat
flux is observed. This delay was usually taken care of in the past by the well-known linear
relaxation equation [1]:

dq
dt

= − 1
τ
(q − qe), (1)

where q(t) denotes a variable that depends on time t, qe is its equilibrium value and τ is
the relaxation time, which may also be considered as a delay time.

The solution to the above equation is as follows:

q(t) = qe + (q(0)− qe) exp
(
− t

τ

)
, (2)

which indicates that the equilibrium value/state is reached in an exponential manner.
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Although linear Equation (1) has been frequently used in the past in fluid dynamics,
acoustics, heat, and mass transfer [2,3], high-temperature phenomena, biology [4], epi-
demiology, population dynamics, reaction-diffusion systems [5], thermoelasticity [6], etc.,
it suffers from several problems. First, its use may result in a violation of the second law
of thermodynamics [7]. Second, although its use may be somewhat justified when macro-
scopic variables only depend on time, there remains the question about the time-derivative
that should appear in that equation in moving media [1,8,9]. Third, in moving media,
the use of either a partial derivative with respect to time or a material/substantial time
derivative does not satisfy the principle of frame-indifference of continuum mechanics [10].

It is interesting to note that the above linear relaxation equation may be written as
q + τ

dq
dt = qe which reminds the reader of the Maxwell–Cattaneo–Vernotte constitutive

law [2,11] (cf. Section 2).
As stated above, in many applications of Fourier and Fick laws in heat and mass

transfer problems, thermal conductivity, and mass diffusion tensors are assumed to be
isotropic and, in many cases are considered to be proportional to the unity or identity tensor.
As a consequence, terms associated with the presence of second-order mixed derivatives
and cross-diffusion are ignored, even though they are known to play some role in com-
bustion phenomena, e.g., Soret and Dufour, thermodiffusion, barodiffusion, etc. [12]. In
particular, cross-diffusion in two-equation, two-dimensional systems of parabolic reaction-
diffusion is known to play a paramount role in determining pattern formation and stability,
e.g., [13,14]. However, the effects of second-order mixed derivatives on either parabolic or
hyperbolic, multi-dimensional advection–reaction–diffusion equations have not received
much attention, presumably because these mixed terms couple the two directions of space.

In this paper, we present a numerical study of a two-equation, two-dimensional,
nonlinear system of advection–reaction–diffusion equations that accounts for the pres-
ence of two relaxation times and the anisotropy of the diffusion tensors in a convective
environment.

The formulation and numerical methods presented in this paper apply not only
to models of nonlinear heat and mass transfer phenomena where relaxation, advection,
anisotropy, and chemistry result in second-order hyperbolic, advection–reaction–diffusion
equations, they are also applicable to other models governed by the same type of equations
that might be employed in the study and analysis of biological, ecological, epidemiological,
etc., processes or systems.

This paper has been arranged as follows. In Section 2, the Maxwell–Cattaneo–Vernotte
constitutive law for heat conduction and two constitutive models based on the use of the
material or substantial derivative and Christov’s frame-indifference model is presented
for a single dependent variable in order to emphasize their similarities and differences
and point out which constitutive law for heat conduction may be formulated for either
only the temperature or both the temperature and the heat flux. In the same section, the
one-equation formulation is extended to deal with several dependent variables for the case
that the (heat and mass) diffusion fluxes are given by Christov’s constitutive model. The
numerical method employed in the simulations is presented in Section 4. A summary of a
large set of numerical experiments that have been performed for different relaxation times,
velocity fields, and coefficients that multiply the second-order mixed-diffusion terms is
presented in Section 5. The final section summarizes some of the most common findings
on the effects of the anisotropy of diffusion tensors, relaxation time, and velocity field on
second-order hyperbolic, advection–reaction–diffusion models of heat and mass transfer
and other phenomena described in the manuscript.

2. Formulation

As stated in the introduction, for the sake of clarity, in this section, we first present
and compare three constitutive laws for the conduction heat flux that account for relax-
ation for a single dependent variable. The one-variable formulation is then extended to
several variables.
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2.1. One-Variable Formulation

In this subsection, we consider the following, time-dependent, multi-dimensional,
nonlinear reaction-diffusion equation:

ρc
DT
Dt

= −∇ · q + S, t > 0, x ∈ Ω, (3)

where ρ and c denote the mass density and specific heat, respectively, which may depend
on T, t is time, T denotes the temperature, S is a (nonlinear) source or reaction term, which
may depend on t, x, and T; q is the conduction heat flux vector, x and Ω denote the spatial
coordinates and domain, respectively, DT

Dt = Tt + v ·∇T is the material or substantial
derivative, the subscripts denote partial differentiation, and v is the velocity vector.

When Fourier’s law is applicable [15], q(t, x) = −K∇T(t, x), where K denotes the
positive definite thermal conductivity tensor. Fourier’s law assumes that a temperature
gradient at (t, x) results in a heat flux at the same location and time; conversely, it also
indicates that a heat flux at (t, x) results in a temperature gradient at the same location
and time.

The use of Fourier’s law in Equation (3) yields the following well-known parabolic
equation for T:

ρc
DT
Dt

= ∇ · (K∇T) + S, (4)

which is characterized by an infinite speed of propagation and contains only the temperature.
Equation (4) is subject to the initial condition T(0, x) = T0(x) and boundary conditions

at the domain boundaries, i.e., on ∂Ω. For Dirichlet’s boundary conditions, T(t, xb) = ϕ(t),
where xb denotes the spatial coordinates of the boundary and ϕ(t) is the boundary tem-
perature. For the Neumann boundary conditions, q(t, xb)·n = θ(t), where n is the unit’s
outward-pointing vector normal to the boundary ∂Ω and θ(t) stands for the heat flux
flowing out at the domain boundary. For Robin’s boundary conditions, q(t, xb)·n =
ψ(T(t, xb), T∞), where T∞ denotes the temperature far away from the domain Ω.

For heat transfer phenomena occurring at the micro- or nanoscale or at very fast rates,
it is well known that Fourier’s law is not valid. As indicated in the introduction, Maxwell,
Cattaneo, and Vernotte assumed that a temperature gradient applied at t results in a heat
flux at t + τ, where τ is the relaxation time [2,3], i.e.,

q(t + τ, x) = −K∇T, (5)

which together with Equation (3) provides a system of delay equations in time for T and q.
A Taylor series expansion of Equation (5) up to O(τ2) may be written as follows:

q(t, x) + τqt(t, x) = −K∇T. (6)

By taking the divergence of Equation (6) and using Equation (3), one may easily obtain
the following:

ρc
DT
Dt

+ τ
∂

∂t

(
ρc

DT
Dt

)
= ∇ · (K∇T) + S + τ

∂S
∂t

, (7)

which is a nonlinear, second-order hyperbolic equation for T whose solutions have a finite
speed of propagation. Equation (7) reduces to Equation (4) for τ = 0.

For heat conduction in moving media, it is clear that no information regarding the
velocity field is explicitly included in Equation (6). However, if instead of Equation (6),
one employs the following:

q + τ
Dq
Dt

= −K∇T, (8)
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and then takes the divergence of this equation and makes use of Equation (3), it is easy
to obtain the following:

ρc
DT
Dt

+ τ
D
Dt

(
ρc

DT
Dt

)
= ∇ · (K∇T) + S + τ

DS
Dt

+ τ∇v : ∇q, (9)

which clearly differs from Equation (7) in all the terms containing τ, although it reduces
to Equation (7) for τ = 0. Moreover, unless τ∇v :∇q is nil, Equation (9) contains both T
and q and, therefore, Equations (8) and (9) are coupled and must be solved as a system
of (coupled) equations (cf. compare Equations (7) and (9)). This is closely aligned with
Christov’s frame-indifference formulation of the Maxwell–Cattaneo–Vernotte model of
heat conduction [9], i.e.,

q + τ

(
Dq
Dt

− q ·∇v + (∇ · v)q
)
= −K∇T, (10)

whose divergence may be written as follows:

Q + τ

(
DQ
Dt

+ Q∇ · v
)
= −∇ · (K∇T), (11)

where Q ≡ ∇q.
For solenoidal velocity fields, i.e., ∇ · v = 0, the use of Q from Equation (3) into

Equation (11) yields the following:

ρc
DT
Dt

+ τ
D
Dt

(
ρc

DT
Dt

)
= ∇ · (K∇T) + S + τ

DS
Dt

, (12)

which differs from Equation (9) in that the latter contains a tensor contraction term, i.e., the
last term on the right-hand side of Equation (9).

Equation (11) may also be written as follows:

Q + τ

(
∂Q
∂t

+∇ · (vQ)

)
= −∇ · (K∇T), (13)

which, upon obtaining Q from Equation (3) and substituting it in Equation (11), may be
written as follows:

ρc(1 + τ∇ · v)
DT
Dt

+ τ
D
Dt

(
ρc

DT
Dt

)
= ∇ · (K∇T) + S + τ

(
DS
Dt

+ S∇ · v
)

, (14)

which is a second-order hyperbolic equation for T, which has a finite speed of propagation
and reduces to Equation (4) for τ = 0.

If ρc and K are constant and the velocity field is solenoidal, Equation (14) is as follows:

ρc
DT
Dt

+ τρc
D
Dt

(
DT
Dt

)
= ∇ · (K∇T) + S + τ

DS
Dt

, (15)

which may also be written as follows:

ρcϕ + τρc
Dϕ

Dt
= ∇ · (K∇T) + S + τ Jϕ, (16)

for S = S(T), where J = dS
dT denotes the Jacobian of S, and ϕ = DT

Dt .
The positive definiteness of the thermal conductivity tensor in two dimensions requires

that K11 > 0, K22 > 0 and K11K22 > K12K21, where Kij, i = 1, 2 and j = 1, 2, are the
components of K. Moreover, ∇ · (K∇T) = K11Txx + (K12 + K21)Txy + K22Tyy in two
dimensions, and exhibits anisotropy if K11 ̸= K22 even for K12 = K21 = 0 or if either K12 or
K21 is not nil.
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The eigenvalues of the thermal conductivity tensor may be written as follows:

λ =
1
2
(K11 + K22)±

√
1
4
(K11 − K22)2 + K12K21, (17)

are both positive on account of the positive definiteness of the thermal conductivity ten-
sor and may be used to estimate the speed of propagation of Equations (7), (9), or (12),
as follows.

For a one-dimensional problem with constant heat capacity, i.e., constant ρc, constant
velocity v and constant thermal conductivity, these equations may be written as follows:

ρcτTtt + ρcvTxt − KTxx = F(T, Tt, Tx), (18)

where its right-hand side only depends on T and its first-order partial derivatives with
respect to space and time.

Equation (18) is a linear, second-order, one-dimensional hyperbolic equation whose
characteristic lines have slopes given by the following:

dx
dt

= −v ±
√

v2 + 4
K

ρcτ
, (19)

and indicate that there is propagation at finite speed for τ ̸= 0 in both directions of the
x-axis. For τ = 0, Equation (19) indicates that the propagation speed is infinite, consistent
with the fact that Equation (18) is parabolic when relaxation times are zero.

Estimates of the velocity of propagation in several dimensions may be obtained as

vth =
√

K
ρcτ , which depends on the thermal diffusivity and relaxation time and increases as

the relaxation time increases. This velocity estimate is usually larger than |v| in microflu-
idics and fast heat transfer phenomena at the microscale and nanoscale; however, vth may
be of the same order of magnitude as or even smaller than v in various models, including
biological [4], epidemiological [16,17], virus infection [18], forest fire [19], ecological [20],
chemistry [21–23], chemical engineering [24], etc.

Using vth, Equation (19) may be written as follows:

dx
dt

= −v ±
√

v2 + 4v2
th,

which indicates that dx
dt ≈ ±2vth for vth >> |v|.

2.2. Multi–Variable Formulation

The formulation presented in the previous section has been generalized for coupled
heat and mass transfer problems where there is relaxation for both the temperature and
the species concentration; in addition, the thermal and mass diffusion coefficients are
tensors. This generalization can also be applied to various models, including biological [4],
epidemiological [16,17], virus infection [18], ecological [20], chemical [24], etc., which
are characterized by second-order hyperbolic, nonlinear advection–reaction–diffusion
equations. It reduces to the reaction-diffusion case when the relaxation times or inertia
are negligible, and includes both isotropic and anisotropic diffusion tensors, but does not
account for cross-diffusion effects.

For several dependent variables, i.e., Ym, m = 1, 2, · · · , NV, where NV is the number
of dependent variables, and constants ρc and K, the nondimensional form of Equation (14)
may be written as follows:

(1 + τm∇ · v)DYm

Dt + τm D
Dt

(
DYm

Dt

)
= ∇ · (Km∇Ym) + Sm + τm

(
DSm

Dt + Sm∇ · v
)

, (20)
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where Ym denotes the m-th dependent variable characterized by a relaxation time τm, a
source term Sm, and a diffusivity tensor Km.

Equation (20) corresponds to the Christov’s frame-indifferent constitutive equations [9]
for the diffusion fluxes of all dependent variables, and does not take cross-diffusion effects
into account, i.e., the effects of ∇Ym into the equation for Yl for m ̸= l.

Equation (20) is subject to Ym(0, x) = Gm(x) and ∂Ym

∂t (0, x) = Hm(x), where Gm

and Hm are functions of space. For homogeneous Neumann boundary conditions, i.e.,
n ·∇Ym = 0 at ∂Ω, where n denotes the unit vector normal to the boundary.

3. Numerical Method

In two dimensions, the domain [−A, A]× [−B, B], where 2A and 2B denote the sides of
the rectangular domain, was discretized in equally spaced grids consisting of NX = NI + 1
and NY = NJ + 1 points in the x- and y-directions, respectively, so that the grid spacings
in those directions are ∆x = 2A

NI and ∆y = 2B
NJ , respectively.

The second-order spatial derivatives that appear in the diffusion term in Equation (20),
i.e., (Ym)xx, (Ym)xy, and (Ym)yy, were discretized by means of the well-known, second-
order accurate, central difference formulae, whereas the first-order spatial derivatives were
discretized by means of either first-order accurate upwind differences or second-order
accurate central differences depending on whether the absolute value of the local mesh
Péclet number was greater than, less than, or equal to two, respectively.

The spatial discretization discussed in the previous paragraph results in the following
systems of second-order, nonlinear ordinary differential equations:

Mij
d2Uij

dt2 + Dij
dUij

dt
= Fij(xi, yj, Vij), (21)

where U = (Y1, Y2, · · · , YNV)T , the superscript T represents transpose, and the subscript
ij indicates the (i, j) grid point. Vij depends on UMN , where i − 1 ≤ M ≤ i + 1, and
j − 1 ≤ N ≤ j + 1. The right-hand side of Equation (21) is a nonlinear function owing to
the nonlinear dependence of the source terms of Equation (20) on Ym.

The components of the mass and damping matrices, i.e., Mij and Dij, respectively,
and Fij that appear in Equation (21) may be easily deduced from the spatial discretization
of Equation (20), but are not reported here.

Assembling Equation (21) for all the grid points—including those at the boundaries
where second-order accurate discretizations were used for the first-order spatial derivatives
that appeared in the homogeneous boundary conditions—results in the following system:

Md2U
dt2 +D dU

dt
= F (U ). (22)

Equation (22) was first discretized as follows:

1
∆t2 M

n(Un+1 − 2Un + Un−1) +
1

2∆t
(Un+1 −Un−1) =

1
4
(Fn+1 + 2Fn +Fn−1), (23)

where the superscript n denotes the n-th time level, with tn = n∆t, n = 0, 1, 2, · · · , and ∆t
is the time step.

Equation (23) is second-order accurate in time [25] and represents NX × NY nonlinear
equations, whose solution may be obtained through iterative techniques. However, by lin-
earizing Fn+1 about the n-th time level, i.e., Fn+1 = Fn + J n(Un −Un) +O(∆t2), where
J n = ∂Fn

Un denotes the Jacobian matrix of F , and neglecting the O(∆t2), Equation (23) may
be written as the following system of linear algebraic equations:

PnUn+1 = Qn, (24)
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where

Pn = Mn +
∆t
2
Dn − ∆t2

4
J n, (25)

Qn = Mn(2Un −Un−1) +
∆t
2
DnUn +

∆t2

4
(3Fn +Fn−1 −J nUn), (26)

are both sparse matrices.
Equation (24) was solved by means of a Krylov space method [26–29] for non-symmetric

systems when upwind differences were employed to discretize the first-order spatial deriva-
tives that appear in Equation (20). A Krylov space method for symmetric systems was used
when the mesh Péclet number was less than or equal to two and the advection terms were
discretized by means of second-order, central differences.

Accuracy Assessment

The accuracy of the time-linearized, three-time-level method described above was
first assessed by comparing the numerical results with the exact solution of the following
(scalar) equation:

τutt + αut = Duxx + Euyy + S(u), 0 < x < a, 0 < y < b, t > 0, (27)

subject to homogeneous Dirichlet boundary conditions, as follows:

u(t, 0, y) = u(t, a, y) = 0, u(t, x, 0) = u(t, x, b) = 0, (28)

and
u(0, x, y) = sin

(πx
a

)
sin

(πy
b

)
, (29)

where S(u) = γu, τ ≥ 0, α ≥ 0, D ≥ 0, E ≥ 0 and γ ≤ 0 are constants.
The solution of Equation (27) subject to Equations (28) and (29) may be written as

follows:
uex(t, x, y) = ϕ(t) sin

(πx
a

)
sin

(πy
b

)
, (30)

where

ϕ(t) = exp
(
− αt

2τ

)
for τ = τcr, (31)

ϕ(t) = exp
(
− αt

2τ

)
cosh

(
αt
2τ

Ω
)

for τ < τcr, (32)

ϕ(t) = exp
(
− αt

2τ

)
cos

(
αt
2τ

ω

)
for τ > τcr, (33)

the subscript ex stands for exact solution, τcr = α2/
(

4
(

D π2

a2 + E π2

b2 − γ
))

denotes the

critical relaxation time, Ω =
√

1 − τ
τcr

and ω =
√

τ
τcr

− 1.
The critical relaxation time decreases as the diffusion coefficients in the x- and/or

y-directions increase, is nil when α = 0, i.e., in the absence of temporal damping, and
decreases as the absolute value of the reaction increases. (Recall that γ ≤ 0).

The order of convergence of the numerical method presented above for Equation
(27) is determined as follows. For a time step equal to k and grid spacings in the x- and
y-directions equal to h and H, respectively, the numerical solution may be written as
follows:

u(k,h,h)(t
n, xi, yj) = uex(tn, xi, yj) + Ckp + Fhq + GHr, (34)

where tn denotes the n-th time level, and xi and yj stand for the x- and y-coordinates of
the (i, j)-the grid point, and, therefore, the values of p, q, and r may be easily deduced by
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obtaining numerical solutions with k/2 and k/4, h/2, and h/4, and H and H/2, respectively,
as follows:

p =
1

log 2
log |

u(k,h,H)(tn, xi, yj)− u(k/2,h,H)(tn, xi, yj)

u(k/2,h,H)(tn, xi, yj)− u(k/4,h,H)(tn, xi, yj)
|, (35)

q =
1

log 2
log |

u(k,h,H)(tn, xi, yj)− u(k,h/2,H)(tn, xi, yj))

u(k,h/2,H)(tn, xi, yj)− u(k,h/4,H)(tn, xi, yj)
|, (36)

and

r =
1

log 2
log |

u(k,h,H)(tn, xi, yj)− u(k,h,H/2)(tn, xi, yj))

u(k,h,H/2)(tn, xi, yj)− u(k,h,H/4)(tn, xi, yj)
|, (37)

respectively, where it is understood that the differences that appear on the right-hand sides
of Equations (35)–(37) are taken at the same locations and times.

Once the values of p, q, and r are obtained as indicated above, those of C, F, and G
may be easily obtained from the numerical solutions corresponding to k and k/2, h and
h/2, and H and H/2, respectively, but are not shown here.

It must be noted that Equation (34) is really an asymptotic approximation whose
temporal and spatial errors correspond to the last three terms on the the right-hand side of
that equation. This means that, owing to the discretization in both space and time, p, q, C, F,
and G might depend on k, h, and H and tn, xi, and yj, if the time step and grid spacings are
not small enough. When this occurs, it is convenient to replace the absolute values of the nu-
merators and denominators that appear on the right-hand sides of Equations (35)–(37) with
their discrete L2, L1, or L∞ norms. For example, |u(k,h,H)(tn, xi, yj)− u(k/2,h,H)(tn, xi, yj)| is
replaced with the following:√√√√ 1

NX
1

NY

NX

∑
i=1

NY

∑
j=1

(
u(k,h,h)(tn, xi, yj)− u(k/2,h,H)(tn, xi, yj))

)2
, (38)

1
NX

1
NY

NX

∑
i=1

NY

∑
j=1

|u(k,h,H)(t
n, xi, yj)− u(k/2,h,H)(t

n, xi, yj)|, (39)

or
max

1≤i≤NX, 1≤j≤NY
|u(k,h,H)(t

n, xi, yj)− u(k/2,h,H)(t
n, xi, yj)|, (40)

respectively.
For α = D = E = a = b = 1, γ = 0 and τ = τcr

10 , numerical experiments performed with
∆t = k = 0.1, 0.01, and 0.001, and NX = NY = 41 and 401, show that at t = 0.8, p = 2.13
and q = 1.98, which are consistent with second-order accuracies in both space and time
of the numerical method; max1≤i≤401,1≤j≤401 |u(0.001,0.0025,0.0025)(0.8, xi, yj)− uex(0.8, xi, yj)| =
0.7534 × 10−6 and it occurs at i = j = 201. For the same values of the parameters just
mentioned, except for γ = −1, there is a linear reaction term, and it was found that, at t = 0.8,
p = 2.19, q = 2.04, and max1≤i≤401,1≤j≤401 |u(0.001,0.0025,0.0025)(0.8, xi, yj)− uex(0.8, xi, yj)| =
0.6389× 10−6, occurring at i = j = 201.

Similar results to those described in the previous paragraph have also been found in nu-
merical experiments for τ = τcr and τ = 10τcr, α = D = E = a = b = 1, and γ = 0 and −1. For
example, for γ = −1 and τ = τcr, p = 2.02, q = 1.94, and max1≤i≤401,1≤j≤401 |u(0.001,0.0025,0.0025)

(0.8, xi, yj)− uex(0.8, xi, yj)| = 0.9809× 10−6, while, for γ = −1 and τ = τcr, p = 1.97, q = 1.88
and max1≤i≤401,1≤j≤401 |u(0.001,0.0025,0.0025)(0.8, xi, yj)− uex(0.8, xi, yj)| = 1.1105 × 10−6. This
indicates that the temporal and spatial orders of convergence decrease slightly whereas the
error slightly increases as the relaxation time is increased from subcritical to critical and
then supercritical values. This should not come as a surprise since, as stated at the begin-
ning of this subsection, supercritical relaxation times are characterized by a trigonometric
dependence on time (cf. Equation (33)), which results in damped oscillatory solutions.
On the other hand, a comparison between Equations (31) and (32) indicates that since
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the hyperbolic cosine is larger than one, supercritical relaxation times result in monoton-
ically decreasing solutions that are less damped than those corresponding to the critical
relaxation time.

Numerical experiments were also performed with nonlinear source terms, e.g.,
S(u) = u(1− u) in Equation (27), for which no analytical solution is available with and with-
out velocity fields. In such cases, the accuracies of the numerical solutions were assessed by
determining both the orders of convergence in time and space, i.e., p, q, and r, respectively,
as in Equations (35)–(37), respectively, and Et

k,h,H ≡ max1≤i≤NI, 1≤j≤NJ |u(k,h,H)(tn, xi, yj)−
u(k/2,h,H)(tn, xi, yj)|, Ex

k,h,H ≡ max1≤i≤NI, 1≤j≤NJ |u(k,h/2,H)(tn, xi, yj) − u(k,h,H)(tn, xi, yj)|,
and Ey

k,h,H ≡ max1≤i≤NI, 1≤j≤NJ |u(k,h,H/2)(tn, xi, yj)− u(k,h,H)(tn, xi, yj)|, which denote the
differences in the numerical solutions obtained with time steps equal to k and k/2, grid
spacings in the x-directions equal to h and h/2, and grid spacings in the y-direction equal
to H and H/2, respectively. The time step and grid spacings were considered to be ade-
quate and, therefore, the solution was considered to be accurate and acceptable whenever
Et

k,h,H ≤ 10−4, Ex
k,h,H ≤ 10−4 and Ey

k,h,H ≤ 10−4 were satisfied.
For the results presented in the next section, the convergence of the Krylov space

method used to solve Equation (24) was set to 10−6, and the time step and grid spacings
were determined by trial ande erroor until Et

k,h,H , Ex
k,h,H , and Ey

k,h,H were less than or equal
to 10−4, 5 × 10−4 and 5 × 10−4, respectively, for t ≤ 100.

4. Results

The multi-dimensional formulation presented in Section 2.2 has been applied to a
two-equation, two-dimensional problem characterized by the following: u ≡ Y1, v ≡ Y2,
τu ≡ τ1, τv ≡ τ2, Du ≡ K1, Du

11 = Du
22 = 1, D12 ≡ Du

12 + Du
21, Dv ≡ K2, Dv

11 = Dv
22 = 0.6,

d12 ≡ Dv
12 + Dv

21,

Su =
1
ϵ

(
u − u2 − f v

u − q
u + q

)
, Sv = u − v, (41)

and a time-independent velocity field corresponding to a Rankine vortex whose azimuthal
velocity component is as follows:

uθ =
Γ

2π

r
R2 for r ≤ R, uθ =

Γ
2πr

for r > R, (42)

ϵ = 0.01, f = 1.4, q = 0.002, the subscripts u and v refer to the dependent variables u(t, x, y)
and v(t, x, y), respectively, and Γ and R denote the circulation and core radius of the vortex,
respectively. The velocity field in Cartesian coordinates is given by v = (U, V), where U
and V are the velocity components in the x- and y-directions, respectively, which may be
easily obtained from the azimuthal velocity component of Equation (42). Positive values
of Γ or ω correspond to counter-clockwise rotating velocity fields.

For Γ = D12 = d12 = τu = τv = 0, i.e., in the absence of convection and with isotropic
constant diffusion tensors for u and v, it is known that the two-equation system considered
in this study has constant-period counter-rotating spiral wave solutions [30]. Therefore,
a comparison of these solutions with those obtained with relaxation times τu ̸= 0 and/or
τv ̸= 0, non-zero velocity fields v ̸= 0, and mixed diffusion terms D12 ̸= 0 and/or d12 ̸= 0,
will allow us to determine the effects of these parameters on wave propagation.

Equation (20), as well as Equations (41) and (42), were solved in a square domain
[−L, L]× [−L, L] with L = 7.5, and the numerical method presented in Section 3, using
equally spaced meshes consisting of, at least, 101 × 101 grid points and a time step less
or equal to 0.0001, homogeneous Neumann conditions, and initial conditions identical to
those employed in other studies [30]. Since the numerical method presented in Section 3 is
second-order accurate in time and second-order accurate in space if the local Péclet number
is less than or equal to two, the temporal discretization errors are much smaller than the
spatial ones for the numerical experiments reported here. In addition, ∆t < max(τu, τv).
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Since Equation (23) contains three time levels, the numerical method presented in
Section 3 is not self-starting. In order to start the method, the value of U 1, i.e., U (∆t), must
be given. This value may be obtained from the following Taylor series expansion:

U (∆t) = U (0) + Ut(0)∆t +
1
2
Utt(0)∆t2 +O(∆t3), (43)

where, as stated above, U (0) and Ut(0) are provided by the initial conditions, and Utt(0)
may be obtained by making use of Equation (20) at t = 0.

Numerical experiments were performed to determine the effects of τu and τv, ω ≡ Γ
πR2

and R, and D12 and d12, i.e., the relaxation, velocity field, and anisotropy of the diffusion
tensors for u and v, respectively, on the numerical solution, and some of the characteristics
of the observed wave dynamics and the wave’s period, are reported in Tables 1 and 2,
where we have assigned a set number to each numerical experiment. Hereon, the set
number will be used instead of specifying the values of all the parameters that correspond
to each set.

Table 1. Period and shape of the propagating front. (τu = τv = 0.01, D12 and d12 denote the sums of
the off-diagonal elements of the diffusion tensors Du and Dv corresponding to the two dependent
variables u and v, sw = spiral wave, scf = small curvature front, lcf = large curvature front.).

Set No. ω R D12 d12 Period Shape

1000 0.0 0.5 0.0 0.0 1.68 sw
1001 0.0 0.5 0.1 0.0 1.68 sw
1002 0.0 0.5 0.0 0.1 4.21 scf
1003 0.0 0.5 0.1 0.1 4.21 scf

1004 0.5 1.0 0.0 0.0 1.68 sw
1005 0.5 1.0 0.1 0.0 1.68 sw
1006 0.5 1.0 0.0 0.1 4.21 lcf
1007 0.5 1.0 0.1 0.1 4.21 lcf

2004 0.5 1.0 0.05 0.0 1.68 sw
2005 0.5 1.0 0.0 0.05 4.21 scf
2006 0.5 1.0 0.05 0.05 4.21 scf

3004 0.5 2.5 0.05 0.0 1.68 sw
3005 0.5 2.5 0.0 0.05 4.21 scf
3006 0.5 2.5 0.05 0.05 4.21 scf

1016 −0.5 1.0 0.0 0.0 1.68 sw
1017 −0.5 1.0 0.1 0.0 1.68 sw
1018 −0.5 1.0 0.0 0.1 4.21 scf
1019 −0.5 1.0 0.1 0.1 4.21 lcf

4004 −0.5 1.0 0.05 0.0 1.68 sw
4005 −0.5 1.0 0.0 0.05 4.21 scf
4006 −0.5 1.0 0.05 0.05 4.21 scf

5004 −0.5 2.5 0.05 0.0 1.68 sw
5005 −0.5 2.5 0.0 0.05 4.21 scf
5006 −0.5 2.5 0.05 0.05 4.21 scf
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Table 2. Period and shape of the propagating front. (τu = τv = 0.01, D12 and d12 denote the sums of
the off-diagonal elements of the diffusion tensors Du and Dv corresponding to the two dependent
variables u and v, sw = spiral wave, scf = small curvature front, lcf = large curvature front.).

Set No. ω R D12 d12 Period Shape

1000 0.0 0.5 0.0 0.0 1.68 sw
1001 0.0 0.5 0.1 0.0 1.68 sw
1002 0.0 0.5 0.0 0.1 4.21 scf
1003 0.0 0.5 0.1 0.1 4.21 scf

1011 2.5 1.0 0.0 0.0 1.68 sw
1008 2.5 1.0 0.1 0.0 1.68 sw
1009 2.5 1.0 0.0 0.1 4.21 scf
1010 2.5 1.0 0.1 0.1 4.21 scf

1015 2.5 2.5 0.0 0.0 4.21 lcf
1012 2.5 2.5 0.1 0.0 4.21 lcf
1013 2.5 2.5 0.0 0.1 4.21 lcf
1014 2.5 2.5 0.1 0.1 4.21 lcf

2008 2.5 1.0 0.05 0.0 1.68 sw
2009 2.5 1.0 0.0 0.05 4.21 lcf
2010 2.5 1.0 0.05 0.05 4.21 lcf

20008 2.5 1.0 0.01 0.0 1.66 sw
20009 2.5 1.0 0.0 0.01 4.28 lcf
20010 2.5 1.0 0.01 0.01 4.28 lcf

2012 2.5 2.5 0.01 0.0 4.28 lcf
2013 2.5 2.5 0.0 0.01 4.28 lcf
2014 2.5 2.5 0.01 0.01 4.28 lcf

1023 −2.5 1.0 0.0 0.0 1.82 sw
1020 −2.5 1.0 0.1 0.0 1.82 sw
1021 −2.5 1.0 0.0 0.1 4.19 lcf
1022 −2.5 1.0 0.1 0.1 4.19 lcf

1027 −2.5 2.5 0.0 0.0 2.27 sw
1024 −2.5 2.5 0.1 0.0 2.27 sw
1025 −2.5 2.5 0.0 0.1 4.19 lcf
1026 −2.5 2.5 0.1 0.1 4.19 lcf

2020 −2.5 1.0 0.05 0.0 1.82 sw
2021 −2.5 1.0 0.0 0.05 4.19 scf
2022 −2.5 1.0 0.05 0.05 4.19 scf

2024 −2.5 2.5 0.05 0.0 2.27 sw
2025 −2.5 2.5 0.0 0.05 2.27 lcf
2026 −2.5 2.5 0.05 0.05 2.27 lcf

20020 −2.5 1.0 0.05 0.0 1.88 sw
20021 −2.5 1.0 0.0 0.05 1.88 sw
20022 −2.5 1.0 0.05 0.05 1.88 sw

20024 −2.5 2.5 0.01 0.0 2.28 sw
20025 −2.5 2.5 0.0 0.01 2.28 sw
20026 −2.5 2.5 0.01 0.01 2.28 sw

4.1. The Effects of Anisotropy in the Absence of the Velocity Field

For set 1001 of Tables 1 and 2, i.e., there is no velocity field but there is anisotropy for
v, i.e., d12 = 0.1 and D12 = 0. The results presented in Figures 1 and 2 clearly indicate the
presence of a counter-rotating spiral wave at different times. A similar wave was found for
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set 1000 from the same tables, where there is neither a velocity field nor anisotropy for u
and v, i.e., d12 = 0 and D12 = 0. Figure 2 also indicates that the thickness of the spiral wave
arm is thicker for v than for u.

Figure 1. (Color online) u(t, x, y) at (from left to right and top to bottom) t = 50, 55, 60, 65, 70, 75, 80,
85, and 90 for parameter set 1001.

Figure 2. (Color online) v(t, x, y) at (from left to right and top to bottom) t = 50, 55, 60, 65, 70, 75, 80,
85, and 90 for parameter set 1001.
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For set 1002, the results presented in Figures 3 and 4 also correspond to a zero-velocity
field, indicating that no spiral wave seems to be present; instead, the spatial distribution of
u exhibits very small values for long periods of time, large curvature fronts as illustrated in
the third and ninth frames, and very small curvature fronts, as shown in the sixth frame in
Figure 3. However, the spatial distribution of v presented in Figure 4 indicates the presence
of fronts of larger curvatures than those observed in Figure 3.

Although not shown here, similar results to those in Figures 3 and 4 were obtained for
set 1003 of Table 1, indicating that d12 has a much larger effect on the spiral wave dynamics
than D21. In fact, as indicated in Table 1, the results for sets 1000 and 1001 have the same
periods, which are much smaller than those of sets 1002 and 1003.

Figure 4 also indicates that even though v undergoes large changes, they are smaller
than those seen in Figure 3. The reason for this behavior will become clear later on after pre-
senting the time histories of u and v at three fixed locations within the computational domain.

In order to understand in greater detail the dynamics of the solution, the values of
u and v at three spatial locations were monitored as functions of time. These points are
located at

(
− L

2 ,− L
2

)
, (0, 0) and

(
L
2 , L

2

)
, i.e., they are located along the main diagonal of

the computational square domain, at the center and halfway between the center of the
domain, and at the lower-left and upper-right corners, respectively.

Figure 5 shows the time traces at the three monitoring locations for sets 1000, 1001,
1002, and 1003 of Table 1, clearly indicating that the periods of u and v for sets 1000 and
1001 are nearly identical, indicating that D12 does not play an important role in the wave
dynamics. By way of contrast, Figure 5 also shows that the results corresponding to sets
1002 and 1003 are nearly identical, but have larger periods than those of the results of sets
1000 and 1001.

Figure 3. (Color online) u(t, x, y) at (from left to right and top to bottom) t = 50, 55, 60, 65, 70, 75, 80,
85, and 90 for parameter set 1002.
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Figure 4. (Color online) v(t, x, y) at (from left to right and top to bottom) t = 50, 55, 60, 65, 70, 75, 80,
85, and 90 for parameter set 1002.

Figure 5. (Color online) u(t, x, y) (left) and v(t, x, y) (right) at (x, y) =
(
− L

2 ,− L
2

)
(continuous line,

red), (0, 0) (dashed line, green) and
(

L
2 , L

2

)
(dashed-dotted line, blue) for parameter set 1000 (first

row), 1001 (second row), 1002 (third row), and 1003 (third row).
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A detailed view of the first two rows in Figure 5 also indicates that the magnitude of v
at

(
L
2 , L

2

)
is much smaller compared to the other two monitoring locations. Figure 5 also

shows that the largest amplitudes of u and v for sets 1000 and 1001 are smaller and larger,
respectively, than those for sets 1002 and 1004.

4.2. The Effects of Anisotropy in the Presence of Velocity Field

Figure 6 shows the time histories of both u and v for sets 1011, 2008, 2009, and
2010 in Tables 1 and 2. These sets correspond to a counter-rotating vortex field char-
acterized by ω = 2.5, R = 1 and various values of D12 and d12. The results obtained
for (D12, d12) = (0.05, 0) have been found to differ very little from those corresponding
to (D12, d12) = (0, 0), i.e., the isotropic case, and quite a lot from those corresponding
to (D12, d12) = (0, 0.05) which, in turn, were found to differ very little from those for
(D12, d12) = (0.05, 0.05), once again indicating that D12 does not play an important role in
the wave dynamics.

Consistent with previously discussed results for ω = 0, the results presented in
Figure 6 show that the maximum values of u and v for (D12, d12) = (0, 0) and (0.05, 0) are
smaller and larger, respectively, than those for (D12, d12) = (0, 0.05) and (0.05, 0.05), and
the period of the latter is larger than that of the former. Figure 6 also shows that the peak
values of u and v are nearly of the same magnitudes for (D12, d12) = (0, 0) and (0, 0.05) (cf.
compare with Figure 5).

Figure 6. (Color online) u(t, x, y) (left) and v(t, x, y) (right) at (x, y) =
(
− L

2 ,− L
2

)
(continuous line,

red), (0, 0) (dashed line, green) and
(

L
2 , L

2

)
(dashed-dotted line, blue) for parameter set 1011 (first

row), 2008 (second row), 2009 (third row) and 2010 (third row).
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Similar trends to those corresponding to the two last rows in Figure 6 have also been
found in the results corresponding to sets 1002, 1006, 1009; 1003, 1007, 1009; 1002, 5005,
2025; 2009, 2013, 2021, 2025; 1008, 4005, 5005; etc. However, some surprising results were
obtained for sets 1023 and 2025 and are illustrated in Figures 7 and 8.

Figure 7 shows similar trends to those observed previously in Figures 5 and 6. How-
ever, a major difference is seen for sets 1023 and 2025, i.e., u and v reach very small values
at

(
L
2 , L

2

)
, but their values at the other two monitoring locations differ very little from

each other and exhibit a saw tooth pattern. This indicates that no front passes through the
location

(
L
2 , L

2

)
.

The time histories at the three monitoring locations for sets 2009, 2013, and 2021 pre-
sented in Figure 8 show similar trends to those exhibited in the last two rows in Figure 7;
however, those for set 2025, corresponding to a larger and faster clockwise-rotating ve-
locity field, are nearly identical at the monitoring locations

(
− L

2 ,− L
2

)
and (0,0). On the

other hand, the v history profile at
(

L
2 , L

2

)
is of a smaller magnitude and exhibits two

relative maxima. The reason for this behavior will become clear when the two-dimensional
distributions of u and v at selected times are presented.

In order to further illustrate the effects that anisotropy may have on two-dimensional
systems of second-order hyperbolic, nonlinear advection–reaction–diffusion equations, the
two-dimensional distributions of v for sets 1024 and 1026 are presented at selected times in
Figures 9 and 10, respectively.

Figure 7. (Color online) u(t, x, y) (left) and v(t, x, y) (right) at (x, y) =
(
− L

2 ,− L
2

)
(continuous line,

red), (0, 0) (dashed line, green) and
(

L
2 , L

2

)
(dashed-dotted line, blue) for parameter set 1023 (first

row), 2020 (second row), 2021 (third row) and 2022 (third row).
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Figure 8. (Color online) u(t, x, y) (left) and v(t, x, y) (right) at (x, y) =
(
− L

2 ,− L
2

)
(continuous line,

red), (0, 0) (dashed line, green) and
(

L
2 , L

2

)
(dashed-dotted line, blue) for parameter set 2009 (first

row), 2013 (second row), 2021 (third row), and 2025 (third row).

Figure 9. (Color online) v(t, x, y) at (from left to right and top to bottom) t = 50, 55, 60, 65, 70, 75, 80,
85, and 90 for parameter set 1024.
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Figure 10. (Color online) v(t, x, y) at (from left to right and top to bottom) t = 50, 55, 60, 65, 70, 75,
80, 85, and 90 for parameter set 1025.

Figure 9 clearly illustrates the presence of a counter-rotating spiral wave, which is
thicker and rotates much more slowly than that exhibited in Figure 2. The reason for this
slowdown is that the results in Figure 9 correspond to a clockwise rotating field, which is
contrary to the counter-rotating spiral wave, and the vortex diameter is large. No velocity
field was used to obtain the results reported in Figure 2.

Although not shown here, analogous results to those in Figure 9 have been obtained
for set 1027, corresponding to the same parameters as those of Figure 9 except for D12 = 0.1,
thus indicating once again that the anisotropy of the variable u does not play an important
role in the qualitative and quantitative characteristics of the solution to Equation (20).

For the parameters in set 1025, the results presented in Figure 10 are quite different
from other results presented previously in this manuscript. For example, the first frame
in that figure illustrates a small curvature thick front, whereas the remaining eight frames
show vortex-like shapes that remind the reader of the engulfment of fluids in, for example,
planar mixing layers (cf., e.g., Figures 3 and 9 in Reference [31]).

4.3. The Effects of Relaxation Times on Wave Propagation

The effects of τu and τv on the solution were found to be small for relaxation times
less than 0.05, which, according to the estimates discussed in this paper, correspond to a
velocity along the characteristics equal to

√
20 and

√
12 for u and v, respectively. For the

domain considered in this study, whose dimensions in the x and y directions are 15, the
times required for the propagation from, say, the left to the right boundary range from 3.35
to 4.33. By way of contrast, the characteristic diffusion times for u and v based on L are
56.25 and 93.75, respectively. These times are clearly much larger than those associated
with propagation along the characteristic lines. This means that the effects of the relaxation
times are expected to be small and, in fact, they have been found to be small, except in a thin
initial layer near t = 0 whose time duration is on the order of the relaxation time consistent
with the asymptotic analysis of singularly perturbed wave equations, e.g., [32–34].

In order for the characteristic time based on the velocity along the characteristic lines
and the diffusion time to be of the same order of magnitude, Equation (19) demands that
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τ = O(L2) which, for the domains considered here, implies that τ ≈ 56.25, and, for such
a large relaxation time, the Taylor series expansion of Equation (5), i.e., Equation (6), is
not valid.

5. Conclusions

A time-linearized, three-time-level finite difference method for the numerical solu-
tions of multivariable, multi-dimensional, second-order hyperbolic, advection–reaction–
diffusion equations has been presented and applied to analyze the effects of relaxation,
convection, and anisotropy on the heat and mass diffusion fluxes in a two-variable, two-
dimensional problem. The equations are based on a frame-indifferent constitutive model
for the diffusion flux that, for zero relaxation times, reduces to the Fourier law. This model
has been formulated for both temperature and species concentrations and can also address
the variables of their diffusion fluxes.

It has been shown that the anisotropy of one of the dependent variables plays a very
minor role in the numerical solution, whereas the anisotropy of the other variable leads
to transitions from spiral waves to fronts of large curvature, and then to fronts of smaller
curvature. The solutions corresponding to these fronts have been found to have longer
periods than those associated with isotropic diffusion. It has also been found that the
concentration peak values of the two dependent variables differ from those obtained for
isotropic diffusion.

For small anisotropy in the diffusion tensors and counterclockwise-rotating vortices of
small radii, the effect of the velocity field is to stretch and strain the spiral waves, whereas,
for clockwise vortices, convection leads to wave compression and deceleration. Simi-
lar results to those just described have been found for isotropic diffusion. However, for
clockwise-rotating vortices of large diameters in anisotropic media, complex transitions
have been observed as the vortex circulation increases. These transitions are characterized
by highly distorted spiral waves for small vortex circulations, large curvature fronts for
moderate circulations, and wave trapping for large circulations. The wave trapping ob-
served in large-diameter, clockwise-rotating vortical fields exhibits similarities with vortex
development and entrainment seen experimentally in non-reactive planar mixing layers.

For large-diameter, counterclockwise-rotating vortices, it has been found that the
effects of anisotropy are almost identical at three points located on the main diagonal of
the computational square domain employed in the numerical experiments reported here.
Only transitions from spiral waves to fronts of large curvatures and then fronts of small
curvatures are observed as the vortex circulation increases.

The effects of the relaxation times of the two dependent variables considered in this
study are important primarily within an initial layer. This layer’s duration is on the order of
the largest relaxation time, where the solution undergoes a rapid transition from the initial
conditions to those corresponding to parabolic advection–reaction–diffusion equations,
consistent with well-known results of the asymptotic analysis of singularly perturbed,
second-order hyperbolic equations. This initial adjustment has been solved accurately
in the numerical experiments reported here, where a time step two orders of magnitude
smaller than the smallest relaxation time was used, and does not have a cumulative effect in
time, so that the long-term behaviors of the equations considered in this paper are identical
to those for parabolic advection–reaction–diffusion equations.

For the conditions considered in this study, it has also been shown that relaxation
effects may be important for large relaxation times, for which the well-known linear
relaxation equation is not valid. Therefore, studies based on such large relaxation times
may be of academic interest but may not be relevant to heat and mass transport phenomena,
which are usually characterized by small relaxation times, although they may be relevant
for the modeling of forest fires, virus infections, the spread of epidemics, chemical reactions,
biology, ecology, population dynamics, etc.
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