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Abstract: In the realm of cardiac health research, accurate fluid dynamics simulations are vital
for comprehending the heart function and diagnosing conditions. Central to these simulations is
the precision of ventricular wall meshes used to model heart geometry. However, segmenting the
wetted surface, particularly in the right ventricle (RV) with its significantly thinner parietal thickness
compared to the left ventricle, presents challenges. This study focuses on qualitatively evaluating an
automated reconstruction model for the RV’s outer wall using Radial Basis function (RBF) morphing.
Two procedural criteria were compared, a random selection of control points and a curvature-based
approach, which differ in terms of the identification of the control points of the RBF function. From
these considerations, it emerges that a controlled use of the RBF function on the basis of the curvatures
guarantees the greater controllability of the shape evolutions of the parietal structure of the RV, but it
is more sensitive to any anomalies in the distribution of the vertices, as can be seen from the number
of outliers, and its controllability is a function of the percentage of points chosen, exerting a greater
impact on the required computational capacity. The definition of a strategic criterion for the selection
of control points could represent a crucial aspect in the definition of an automatic reconstruction
procedure of anatomical elements, which guarantees a morphological variability in line with the need
to expand the pathological sample to be used for statistical formulations in the clinical field.
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1. Introduction

In the research context of cardiac health, the precision of fluid dynamics simulations
plays a pivotal role in understanding the heart function and diagnosing conditions. These
simulations rely heavily on the accuracy of the right ventricle (RV) heart wall meshes used
to model the heart’s geometry.

In the literature, the structural complex of the RV has received a smaller overall number
of studies than the left ventricle, due to the difficulty of the segmentation process, owing
to multiple factors. In more detail, the presence of ill-defined borders and thin parietal
structures prevents the delineation of a clear separation border between one anatomical
region and the adjacent one. This result intensifies with the potential disturbances in
resolution of the associated diagnostic investigations, including the partial volume effect [1].

Because of these complexities, quantifying the regional myocardium wall thickness is
not generally recommended for the cardiac functional analysis of the RV [2].

Compared to the left ventricle, the right ventricle has a wall thickness three times
smaller, with values around 3–5 mm [3]. An accurate reconstruction of the wall of cardiac
structures constitutes a difficult task but is, nevertheless, essential for the recognition of
pathological anomalies, as in the case of muscular hypertrophy and cardiomyopathy [4],
as well as for the predictive analysis of reference hemodynamic evolutions subjected to
fluid dynamic simulation processes [5]. The scientific community suffers from a difficulty
in finding accurate cardiac atlas models of a sufficient sample size to be subjected to fluid
dynamic simulations of various kinds [6].

Computation 2024, 12, 216. https://doi.org/10.3390/computation12110216 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12110216
https://doi.org/10.3390/computation12110216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-1938-8837
https://orcid.org/0000-0002-5843-2805
https://doi.org/10.3390/computation12110216
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12110216?type=check_update&version=1


Computation 2024, 12, 216 2 of 11

Recent studies have explored the possibility of performing simulations of fluid–
structure interaction with an innovative electrical activation of the muscle. These works
represent new frontiers in the understanding and modeling of muscle dynamics, but re-
quire the use of exact geometries of the heart walls, currently reconstructed on the basis of
bibliographical references of a statistical nature, due to the complexity of reconstructing
the heart walls starting from the segmentation of diagnostic acquisitions. In their study,
Augustin et al. [7] developed a personalized electromechanical modeling framework for the
left atrium (LA), which simulates active contraction using patient-specific anatomical finite
element meshes with rule-based myofiber directions. They investigated the relationship
between wall stress, wall thickness, and curvature in the LA, revealing that wall thickness
has a stronger correlation with wall stress than curvature. This finding underscores the
importance of accurately reconstructing the wall thickness in heart wall simulations to
ensure precise stress estimations. Furthermore, Augustin et al. (2020) demonstrated the
limitations of the law of Laplace in estimating local wall stress in the LA, highlighting
the need for more complex models that account for anatomy, fiber structures, boundary
conditions, and active contraction. These findings emphasize the critical role of thickness
reconstruction in heart wall simulations, as it significantly impacts the accuracy of stress
estimations and the overall understanding of atrial function and dysfunction.

The work proposed by [8] highlighted the importance of myocardium thickness in the
simulation scenario for cardiac radioablation. They found that myocardium thickness is
a particularly useful indicator for localizing ventricular tachycardia (VT) sources, which
are more visible on cardiac CT scans with contrast agents compared to traditional slice-
by-slice representations. The researchers developed a process to automatically infer the
myocardium thickness from a cardiac CT scan segmentation, projecting this information
onto a 3D mesh for incorporation into the simulation. The thickness information was
crucial in generating the target volume delineated on the left ventricle’s surface. This ap-
proach was compared to a standard slice-by-slice delineation with mental electroanatomical
mapping (EAM) registration. The main finding is that incorporating myocardium wall
thickness information derived from cardiac CT scan segmentation played a significant role
in defining the target volume for the simulated delineation process. This method enabled a
more accurate representation of the target volume compared to the classical 2D slice-by-
slice approach.

These findings underscore the importance of incorporating myocardium wall thickness
information in cardiac simulations to improve the accuracy of target volume delineation
and enhance the overall effectiveness of cardiac radioablation procedures.

To date, only a few studies have reported a critical investigation of thickness recon-
struction accuracy in heart wall simulations, especially in reference to the right ventricle.
In more detail, there is an evident difficulty in automating the segmentation of the wall
thicknesses of the ventricular regions, with respect to the related wetted surfaces. This
condition is justified by the fact that the contrast medium injected during the diagnostic
acquisition phase highlights the surface in contact with the blood, facilitating the process
of delimiting the contour of the internal wall, a condition which is not applicable to the
outermost thickness contour, making its recognition less remarkable in the first phase of
the visual analysis of the contrast distribution of the digital image.

This report delves into an analysis of right ventricle external wall reconstruction
throughout the use of morphing operations, aiming to evaluate their suitability for accurate
fluid dynamics simulations.

One way to reconstruct the external walls of the ventricle automatically is to expand
the wetted surface relating to the endocardium by a value extrapolated from the literature,
and to do so in a timely manner by generating a surface expansion map in which each
vertex relating to the wet surface mesh corresponds to a point offset value. The anatomical
adaptation of any cardiac region of reference to a specific patient can take place without
incurring the loss of the relative peculiarities of shape or of those physiognomic features
that particularize the anatomical condition of each heart under examination, through the
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use of local morphing processing. Among these, Radial Basis functions (RBFs) represent
a class of interpolation functions capable of guiding the expansion of a discrete surface
through the imposition of origin and arrival control points. These functions are widely used
in the investigation of anatomical complexes to be subjected to investigative analyses [9,10].
A theoretical clarification of the aforementioned functions can be found in [11].

By scrutinizing the geometric characteristics and modifications applied through RBFs,
we seek to identify the optimal mesh configurations for simulating cardiac fluid dynamics.
This study focuses on the degree of accuracy of RV thickness reconstruction in two distinct
control point selection methodologies, employed within an RBF-based morphing function:
a selection of control points starting from a random choice of the vertices of the starting
mesh (random points (RP)), and one starting from the identification of areas with greater
curvature (curvature points (CP)). The choice of control point selection method can signifi-
cantly influence the perception of data variability. Through a detailed quantitative analysis,
we investigate how the reconstruction accuracy varies in relation to the percentage of the
selected control points, using both the RP and CP methods. The objective is to determine
which of the two methods shows a greater sensitivity in approximating the ideal surface
and how this sensitivity can influence the interpretation of the analytical results.

2. Materials and Methods
2.1. Introduction to RBF Functions

Radial Basis functions represent a class of functions widely used in various areas of
computer science and applied mathematics, including interpolation, machine learning, and
neural networks. The distinctive feature of an RBF is that its value depends solely on the
distance from a central point, making it particularly suitable for modeling nonlinear spatial
relationships [12,13].

The morphing RBF function is described by the following formula:

f (x) = ∑N
i=1wi ∗ φ(||x − ci||),

where n is the number of RBF functions (or control points), wi is the weight associated with
the i-th RBF function, and φ is the RBF function itself, which depends on the Euclidean
distance |(|x − c|)| between the input vector x and the center ci of the i-th RBF function.

• Gaussian: φ(r) = e−(ϵr)2
, where ϵ is a parameter that adjusts the width of the function;

• Multiquadric: φ(r) =
√

1 + (ϵr)2;

• Inverse Multiquadric: φ(r) = 1√
1+(ϵr)2 .

Control points, or centers, play a crucial role in defining RBF functions. Their selection
significantly affects the accuracy of the interpolation or classification achieved. Among the
most frequently used selection criteria we find the one based on a uniform distribution, in
which the centers are uniformly distributed in space, used in RBF function interpolation to
evenly distribute the control points across the input space [14]. A second approach is the
Greedy Algorithm type, which selects the centers iteratively, minimizing an error criterion
at each step [15].

The implications arising from the choice of control points correlate to multiple factors
involved in the quality of the result, such as

• Accuracy: An appropriate selection of control points can significantly improve the
accuracy of the interpolation or classification;

• Overfitting: An excessive number of control points can lead to overfitting, reducing
the ability to generalize the model;

• Computational cost: The number of checkpoints affects the computational complexity,
directly impacting the computation time needed.
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RBF functions and control point selection are fundamental elements in interpolation
and machine learning. A thorough understanding of these concepts is crucial for the
effective implementation of RBF-based algorithms.

In the field of the virtual simulation of cardiac models, the work presented by
Xu et al. [16] accurately elucidates the versatility of the RBF in following surface wall
time deformations. The method mentioned the importance of control points, but it focuses
on a procedural points’ interpolation function, without specifying any topological locations
choice. Similarly, the work of Weissman et al. [17] validated the potential of morphing
functions to reproduce different cardiac patient’s models, but with limited attention to the
influence of control points within the effects of RBF functions.

The present work intends to test the accuracy of RBF functions in the reconstruction of
RV walls by comparing two case studies in which the selection of control points is carried
out, respectively, on a random basis (RP) and on the selection of points belonging to areas
relevant to the curvature (CP).

The RBF-type morphing method used here refers to the work presented by [18].

2.2. Data Collection and Preparation

This study utilized a 3D reconstruction of the wet surface of RV heart wall mesh
derived from high-resolution imaging data. The cardiac model was provided by the
work of Viola et al. [6], characterized by its resolution, number of elements, and specific
geometric features pertinent to the RV cardiac anatomy (Figure 1a). The resolution of
the raw diagnostic scans was about 0.410 × 0.410 × 0.625 mm3. The 3D model of the RV
was comprised of 83,970 vertices, globally. Traditionally, numerical simulations encounter
computational and mathematical efforts in solving anatomical dynamics originating from
the use of raw segmentation processes [19]. This phenomenon is also more crucial in the
segmentation task of reconstructing the RV thickness, due to limited scale dimensions
that are even smaller than the diagnostic image pixel spacing (Figure 1b), as depicted by
the state of the art. In this sense, with respect to the original conformation of the cardiac
inner wall surfaces, normally marked by the presence of undulatory roughness, the model
here described underwent a superficial smoothing process, targeting the focus on the
manipulation of virtual structures that follow anatomical adherence, without impacting
on the effective outcome of the simulation analysis. The new mesh was further generated
from the original one, using an RBF function to introduce varying degrees of offset and
curvature, simulating different physiological conditions. In more detail, a series of 3D
models was generated through RBF approximations, with a selection of control RBF points
randomly selected from the original mesh and the curvature selected, respectively, in a
percentage variation going from 10% to 90%. The models were compared against a Gold
Standard model to assess accuracy.

The reference geometrical model taken as the Gold Standard parameter in the evalua-
tion of the obtained results was generated through an expansion procedure of the original
cardiac mesh. In more detail, for each of the total vertices of the wet mesh surface extracted
as a result of the diagnostic acquisition segmentation process, a local shift along the nor-
mal direction was provided on the basis of thickening behavior drawn from a theoretical
bibliography reference [14], distributed along the whole set of vertices by means of an
interpolating spatial distribution procedure. The subsequent morphing results were, then,
compared in their efficacy evaluation in terms of a point-to-point distance computation
from the reference standard thus described, so as to analyze any qualitative change in
the performance exhibited by the radial basis morphing procedure for different criteria of
selection of control points.
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Figure 1. (a) Prospective view of the virtual heart model considered. The right cardiac part, evidenced
in a red color, displays the right atrium, visible at the upper rear, and the right ventricle, at the
bottom front. The clipping plane, p, is representative of a cutting slice from diagnostic acquisition,
augmented in (b), where it lies along the contour curves of the inner and outer surface of the RV. The
slice resolution pixel spacing is enhanced to compare it with the subtle RV wall thickness’ small-scale
dimensions, complicating the segmentation reconstruction process.

With reference to the control points selection mode to be used in the morphing action,
the RP mode defines the RBF control points as a random selection of a defined percentage
of the original vertex. In the CP mode, the random selection was again based on the
random selection of a defined percentage of the original vertex, weighted by a curvature
distribution analysis computed along the entire set of mesh vertices (Dong and Wang, 2005).
The effect of the percentage level was analyzed, testing different values from 10% to 90%.

The data for analysis were extracted from the models’ distances to the Gold Standard.

3. Results

In this study, we generated three samples of Radial Basis function (RBF) control
point selections for each percentage case considered. The goal was to ensure statistical
significance by significantly reducing the variance between the samples for each case
examined. The results obtained from consulting the statistical indices for each percentage
sample strengthened the significance of the analytical evaluations subsequently used. An
example case can be seen in Table 1, where the descriptive values of the repeated samples
for the CP 20% case are presented.

Table 1. Evaluation of statistical indices of three randomly repeated samples for the CP 20% case.

CP 20% Sample 1 Sample 2 Sample 3

mean 1.29 × 10−2 1.05 × 10−2 1.03 × 10−2

std 6.21 × 10−2 3.31 × 10−2 3.22 × 10−2

min 0.00 × 100 0.00 × 100 0.00 × 100

25% 7.25 × 10−4 6.86 × 10−4 7.30 × 10−4

50% 3.60 × 10−3 3.41 × 10−3 3.60 × 10−3

75% 1.03 × 10−2 9.41 × 10−3 1.00 × 10−2

max 2.89 × 100 1.86 × 100 2.43 × 100

For each case considered, a measure of the distance from the reference Gold Standard
was calculated as the average of the distances of the three samples, in order to characterize
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the degree of adherence of each model to the ideal shape to be achieved, evaluating the
behavior exhibited by the RBF function when varying control points (Tables 2 and 3).

Table 2. Random points: descriptive statistics for distances between homologous points [mm].

10% 20% 30% 40% 50% 60% 70% 80% 90%

mean 7.71 × 10−3 5.27 × 10−3 4.86 × 10−3 5.34 × 10−3 6.24 × 10−3 6.60 × 10−3 7.16 × 10−3 6.90 × 10−3 5.00 × 10−3

std 8.93 × 10−3 5.21 × 10−3 6.19 × 10−3 9.24 × 10−3 1.51 × 10−2 2.71 × 10−2 4.29 × 10−2 7.30 × 10−2 7.27 × 10−2

min 2.14 × 10−16 1.48 × 10−3 1.32 × 10−16 4.45 × 10−16 1.05 × 10−15 8.92 × 10−15 8.63 × 10−14 3.87 × 10−13 2.53 × 10−12

25% 2.75 × 10−3 2.05 × 10−3 1.43 × 10−3 1.05 × 10−3 7.20 × 10−4 2.87 × 10−4 1.03 × 10−8 2.39 × 10−8 7.47 × 10−8

50% 4.83 × 10−3 3.77 × 10−3 2.89 × 10−3 2.48 × 10−3 2.07 × 10−3 1.48 × 10−3 8.53 × 10−4 5.70 × 10−7 3.26 × 10−7

75% 8.74 × 10−3 6.72 × 10−3 5.79 × 10−3 5.55 × 10−3 5.43 × 10−3 4.52 × 10−3 3.29 × 10−3 1.84 × 10−3 3.08 × 10−4

max 1.09 × 10−1 9.04 × 10−2 9.17 × 10−2 2.55 × 10−1 4.79 × 10−1 2.47 × 100 2.54 × 100 6.60 × 100 6.55 × 100

Table 3. Curvature points: descriptive statistics for distances between homologous points [mm].

10% 20% 30% 40% 50% 60% 70% 80% 90%

mean 6.87 × 10−2 2.19 × 10−1 2.78 × 10−2 2.05 × 10−2 1.23 × 10−2 9.95 × 10−3 8.73 × 10−3 6.77 × 10−3 6.10 × 10−3

std 3.73 × 10−2 1.52 × 100 2.33 × 10−1 1.75 × 10−1 8.34 × 10−2 8.38 × 10−2 9.97 × 10−2 9.61 × 10−2 1.70 × 10−1

min 2.14 × 10−16 1.48 × 10−16 1.32 × 10−16 4.45 × 10−16 1.05 × 10−15 8.92 × 10−15 8.63 × 10−14 3.87 × 10−13 2.53 × 10−12

25% 2.75 × 10−3 2.05 × 10−3 1.43 × 10−3 1.05 × 10−3 7.20 × 10−4 2.87 × 10−4 1.03 × 10−8 2.39 × 10−8 7.47 × 10−8

50% 4.83 × 10−3 3.77 × 10−3 2.89 × 10−3 2.48 × 10−3 2.07 × 10−4 1.48 × 10−3 8.53 × 10−4 5.70 × 10−7 3.26 × 10−7

75% 2.69 × 10−2 4.99 × 10−2 1.45 × 10−2 8.96 × 10−3 5.67 × 10−3 3.36 × 10−3 1.20 × 10−3 6.90 × 10−7 1.61 × 10−6

max 1.25 × 10−1 4.58 × 101 1.27 × 101 8.48 × 100 4.34 × 100 5.92 × 100 1.08 × 101 1.41 × 101 1.64 × 101

The curves shown in Figure 2 provide a representation of the trend of the distance
values evaluated in the two cases, as the percentage of control points varies.
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Figure 2. Distribution of the average distances from the Gold Standard for each case considered,
curvature points (CP) and random points (RP).

Both curves show how the average distances range as the percentage of control points
varies. This helps us better understand the effectiveness of morphing as a function of
control point density. The difference between the curves of the averages of the differences
relating to the random points and those of the points based on the curvatures highlights
the impact of the choice of control points, in particular the effect of the inclusion of points
in areas of greater curvature. This suggests that the curvature-based approach could offer
advantages in terms of shape adaptation, especially in the presence of complex structures.
The analysis shows that the use of control points in areas of greater curvature (the CP
approach) can significantly influence the results. Focusing on these areas can improve the
adaptation of the morphing to the salient features of cardiac focus, optimizing the quality
of the final result.

From the numerical analysis, the percentage of control points that leads to the shortest
average distance, according to the CP-type criterion, is equal to 90%, demonstrating an
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overall average distance value equal to approximately 6 × 10−3. This indicates that, for
the curvature method, using 90% of the control points minimizes the average distance to
the Gold Standard. This suggests that a greater density of control points, concentrated in
particular in areas of greater curvature, can significantly improve the adaptation of the
morphing to the complex geometric characteristics of the object.

However, the case relating to the selection criterion of control points on the basis
of a uniform random selection is different, with the optimal condition for minimizing
the average distances from the reference Gold Standard appearing to be located in corre-
spondence with a percentage of points equal to 30%, demonstrating an average value of
approximately 5 × 10−3.

The median of the distances provides an indication of a central tendency that is less
sensitive to outliers than the mean. Outlier percentages indicate the proportion of data
points that deviate significantly from the median, offering a measure of the variability and
consistency of the approximation for each RBF configuration.

RBF functions notably follow mathematical approximations whose behavior is not
always stable, so as to determine, sometimes, solutions not geometrically significative. By
eliminating outliers, we perform a filtering of this negative outcome, focusing on the central
characteristics of the distributions and gaining a clearer view of the overall trend. From the
data in Figure 3, we can observe the following trends.
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Figure 3. Boxplot distributions of the cases considered, curvature points (CP) and random points
(RP), for each percentage of the selected reference points, with the exclusion of outliers.

Medians: Medians represent the central value of the distance distribution for each
combination of percentage and method. A lower median indicates a smaller distance from
the Gold Standard, suggesting the greater accuracy of the approach.

IQR (Interquartile Range): The IQR measures the variability of the data, indicating the
difference between the 25th and 75th percentile. A narrower IQR suggests less variability
in distance, indicating more consistent results.

Analyzing the data presented in Table 4, we can see that for the lowest percentages
of control points (10–30%), the random point (RP)-based approach tends to have lower
medians than the curvature-based approach (CP), suggesting a greater initial accuracy.
However, the IQR of the RBF approach shows more variability, especially at 10% and 20%.
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Table 4. Tabulated values for medians and interquartile ranges for RP and CP criteria.

Percentage [%] Method Median IQR

10
RP 4.83 × 10−3 5.99 × 10−3

CP 8.96 × 10−3 2.45 × 10−2

20
RP 3.77 × 10−3 4.68 × 10−3

CP 1.69 × 10−2 4.64 × 10−2

30
RP 2.89 × 10−3 4.36 × 10−3

CP 3.34 × 10−3 1.45 × 10−2

40
RP 2.48 × 10−3 4.50 × 10−3

CP 1.55 × 10−3 8.96 × 10−3

50
RP 2.07 × 10−3 4.71 × 10−3

CP 2.21 × 10−7 5.67 × 10−3

60
RP 1.48 × 10−3 4.23 × 10−3

CP 1.43 × 10−7 3.36 × 10−3

70
RP 8.53 × 10−4 3.29 × 10−3

CP 1.31 × 10−7 1.20 × 10−3

80
RP 5.70 × 10−7 1.84 × 10−3

CP 1.82 × 10−7 6.18 × 10−7

90
RP 3.26 × 10−7 3.08 × 10−4

CP 6.06 × 10−7 1.38 × 10−6

As the percentage of control points increases (40–90%), the CP approach shows a
notable reduction in both medians and IQR, indicating a significant improvement in the
precision and consistency of results. In particular, at higher percentages (70–90%), the CP
approach outperforms the RP approach in terms of the median, suggesting greater accuracy
in approximating the Gold Standard.

The RP approach shows a general trend of decreasing medians and IQRs as the
percentage of control points increases, but the CP approach shows stronger improvements,
especially at high percentages. These results suggest that while the random point-based
approach may be more effective at lower percentages of control points, the curvature-based
approach becomes significantly more precise and consistent at higher percentages, moving
closer to the Gold Standard.

For lower percentages (10–30%), the RP method shows generally lower medians than
the CP method, indicating a higher initial accuracy.

As we increase the percentage of control points (40–90%), the CP method shows
significant improvements in both medians and IQRs, indicating an increase in the precision
and consistency of the results.

At higher percentages (70–90%), the CP method outperforms the RP method in terms
of the median, suggesting greater accuracy in approximating the Gold Standard.

Removing outliers from the graph helps to focus on the central features of the distri-
butions. However, it is important to remember that outliers can also provide significant
information about extreme variations or anomalies in the data. Analyzing how the pres-
ence of outliers affects the surface approximation for both methods can help understand
which method is more robust to outliers, which is crucial for applications where the data
may be subject to noise or measurement errors, as is the case of reconstructions from
diagnostic investigations.

In this context, their contribution was reinstated in the statistical analysis of the two
criteria adopted, in order to highlight the degree of non-homogeneity in the distribution
behavior manifested in the various percentage cases. Below are indicated the percentages
of outliers in the two cases, with respect to each percentage:

• RP: [9.4, 5.9, 8.2, 10.2, 11.3, 12.2, 13.6, 14.3, 19.7]
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• CP: [11.9, 13.8, 9.4, 12.0, 14.0, 15.2, 18.7, 20.2, 15.0]

From the percentage analysis, we can observe that the percentage of outliers generally
increases as the percentage of control points increases for both methods, RP and CP. This
suggests that adding more control points can lead to greater variability in distance measure-
ments. The CP method shows a higher percentage of outliers than the RP in many of the
control point percentages. This may indicate that curvature-based selection (CP) is more
sensitive to variations in the data, leading to greater variability in the measured distances.
In more detail, CP shows the highest percentages of outliers at the highest control point
percentages, suggesting that the CP methodology may be particularly affected by extreme
data when using many control points.

The choice of control points, either randomly or in areas of significant curvature,
affects the presence and distribution of outliers in the RBF results. These two conditions
reflect different strategies in modeling approach and have distinct implications for the
effectiveness and accuracy of the reconstruction. The random selection of control points can
lead to a less optimal distribution of points in space, potentially causing greater variability
in the reconstruction accuracy. This may result in a greater number of outliers, as some
random configurations may not adequately capture the salient features of the data. Outliers
in this case may indicate particularly ineffective control point configurations. Selecting
control points in areas of significant curvature aims to optimize the effectiveness of the
control points by focusing on the areas that contribute most to the overall shape of the
function to be approximated. This approach tends to reduce the variability in reconstruction
accuracy and, consequently, can lead to fewer outliers. Outliers that occur in this context
may reflect the limitations of the RBF model in handling specific geometric or topological
characteristics of the data. In terms of outliers, selecting control points in areas of significant
curvature tends to be a more robust approach, reducing the likelihood of highly variable
results and improving the consistency of reconstruction accuracy. However, the feasibility
of this approach depends on the ability to effectively identify such zones, which may
require a preliminary analysis or the application domain-specific knowledge.

4. Discussion

In this presented work, the control points’ incidence in the effectiveness of a morphing
RBF function of the cardiac inner surface to automatically reconstruct the external wall
was investigated. Two distinctive choosing methods for control points selection were
considered: a curvature-based and a random-based approach. Statistical evaluations were
performed, so as to display RBF behavior in multiple configurations, which differed in
terms of the percentage of points’ density involved in the morphing expansion. Globally,
from the estimation of the results data, evaluated we can deduce the following conclusions.

Curvature-based approach: This method selects control points based on the curvature
of the data, potentially offering a more accurate representation of salient features of the
dataset. With larger datasets, which may have a greater variety of shapes and curvatures,
the curvature-based approach may better adapt to the complexities of the data, improving
the quality of the RBF reconstruction. However, its effectiveness could be influenced by the
specific distribution of the data and by the presence of noise, which is typically considerably
present in surfaces obtained from biomedical images that reconstruct organs of small size
or thickness.

Randomly selected points approach: This method selects a fixed percentage of control
points from the dataset, regardless of the specific characteristics of the data. With small
datasets, this approach may be sufficient to capture the essential information needed for
good RBF reconstruction. However, as the size of the dataset increases, a random or
fixed selection may not be optimal for accurately representing the variety and complexity
of the data, potentially resulting in a lower reconstruction quality than the curvature-
based approach.

The size of the dataset plays a crucial role in the effectiveness of both approaches.
For small datasets, the difference between the two approaches may be less obvious, as
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both are able to capture the main characteristics of the data with a limited number of
control points. In contrast, for large datasets, the curvature-based approach may show
greater effectiveness in capturing data complexities, resulting in a higher reconstruction
quality. In conclusion, while the fixed percentage-based approach may be simpler to
implement and sufficient for small datasets, the curvature-based approach appears to offer
significant advantages for larger datasets, better adapting to the specific characteristics
of the data and the relative complexities of shape. The curvature-based approach with
a moderate number of control points can represent an advantageous compromise in the
morphing process in the presence of complex geometries, resulting in a more effective
tracking of shape characteristics, without, however, resulting in a high computational load
or in the presence of overfitting. The choice of the most suitable approach could therefore
depend on the size of the dataset, as well as its specific characteristics and the objectives of
the analysis.

The procedure here presented can offer support to the reconstruction procedure of the
walls of the heart, not yet fully consolidated by the scientific literature, to implemented
in subsequent fluid dynamic analyses. Through the identification of the optimal control
parameters, the reconstruction of the external thickness of cardiac geometries is compu-
tationally simplified, starting from the segmentation of the wet surface only, more easily
identifiable in the scanning of the diagnostic investigation.

5. Conclusions

The quality of the surface finish plays a decisive role in these studies; surfaces with
higher quality finishes tend to positively compromise the accuracy of the simulations,
potentially reducing uncertainties related to turbulence and fluid resistance. In this context,
the segmentation of the wetted surface emerges as a fundamental process, for which
applicable procedures have already been developed that allow the optimizing of the
interaction between the fluid and the structure under examination.

The result of this analysis highlights how for a small number of control poles, the
function based on a random distribution of points shows a behavior closer to the ideal
one, while as the number of control points increases, the selection of regions with a greater
curvature affects the reconstruction precision, drastically lowering the distance from the
reference Gold Standard. From these considerations, it emerges that a controlled use of
the RBF function on the basis of the curvatures guarantees the greater controllability of
the shape evolutions of the parietal structure of the RV, but it is more sensitive to any
anomalies in the distribution of the vertices, as can be seen from the number of outliers,
and its controllability is a function of the percentage of points chosen, exerting a greater
impact on the required computational capacity.
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