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Abstract: Patients with Parkinson’s disease (PD) can present several biomechanical alterations, such
as tremors, rigidity, bradykinesia, postural instability, and gait alterations. The Movement Disorder
Society–Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) has a good reputation for uniformly
evaluating motor and non-motor aspects of PD. However, motor clinical assessment depends on
visual observations, which are mostly qualitative, with subtle differences not recognized. Many
works have examined evaluations and analyses of these biomechanical alterations. However, there
are no reviews on this topic. This paper presents a scoping review of computer models based on
expert knowledge and machine learning (ML). The eligibility criteria and sources of evidence are
represented by papers in journals indexed in the Journal Citation Report (JCR), and this paper
analyzes the data, methods, results, and application opportunities in clinical environments or as
support for new research. Finally, we analyze the results’ explainability and the acceptance of such
systems as tools to help physicians, both now and in future contributions. Many researchers have
addressed PD biomechanics by using explainable artificial intelligence or combining several analysis
models to provide explainable and transparent results, considering possible biases and precision and
creating trust and security when using the models.

Keywords: Parkinson; human reasoning; knowledge; machine learning; expert system; explicable;
artificial intelligence; fuzzy inference system

1. Introduction

The Movement Disorder Society–Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [1] has become highly recognized. It considers the non-motor and motor aspects
of PD. However, the MDS-UPDRS guidelines for motor examination (Part III) are intended
for evaluation by an expert rater. Therefore, the assessments use visual interpretations,
which are more qualitative than quantitative, and subtle distinctions are not recognized [2].
An expert rater performs a patient’s motor evaluation and provides an appraisal or rating
based on their perception, which may vary from another expert’s opinion. Monitoring
disease progress or the patients’ evolution with confidence, among other relevant aspects,
can be difficult. Computerized systems based on expert knowledge, machine learning
(ML), and measurements have advantages, such as quantified and repeatable results for
the same patient’s behavior.

However, different approaches or methods, such as fuzzy inference systems and ML
models, have advantages and limitations. Interpretability involves understanding the
models’ internal workings; explainability expounds on the decisions made. Therefore, in-
terpretability requires more detail than explainability [3]. Consequently, results can be very
interesting and appropriate for diverse specialists. In some cases, computer models require
numerous or balanced data, and others use expert knowledge. Their results may be more or
less explainable, influencing their acceptance in clinical environments. Explainability helps
to describe the results and their possible biases, precision, and transparency, in addition to
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creating trust and security when putting the models into production (ready to be used),
adopting a responsible approach [4,5].

Many works have been published on interpretability and explainability, which are
considered essential principles for ML models in diverse applications, including medicine,
natural sciences, economics, and law [6–11]. Despite the highly significant advances in
several ML models, they often lack transparency; their black-box nature allows for powerful
predictions, but the results cannot be directly explained [8]. However, interpretability is
frequently contingent on the application domain. Depending on the type of application,
authors should consider ML models with the most adequate interpretability and explain-
ability or use interpretable models. A widely cited specialized work on the subject is “Stop
explaining black box ML models for high stakes decisions and use interpretable models
instead” [12].

Following the PRISMA extension for scoping reviews [13,14], our paper considers
models based on expert knowledge and ML methods. PD motor signs in Part III (motor
examination) of the MDS-UPDRS were initially considered, such as “speech, facial expres-
sion, rigidity, finger tapping, hand movements, pronation-supination movements of hands,
toe tapping, leg agility, arising from chair, gait, freezing of gait, postural stability, posture,
global spontaneity of movement (body bradykinesia), postural tremor of the hands, kinetic
tremor of the hands, rest tremor amplitude, constancy of rest tremor” [1]. However, a
subset of these motor signs was emphasized because others have scarcely been addressed
computationally. Nevertheless, the presented works allowed us to consider interpretability
and explicability and generalize application opportunities in clinical environments or as
support for new research.

The eligibility criteria and sources were scientific articles in journals indexed in the
Journal Citation Report (JCR) and their analyzed data, methods, results, and application
opportunities in clinical environments or as a basis for new research. Likewise, the mea-
surements, devices, sampling rates, preprocessing, and study participants were considered.

2. Methods

This review included English-language documents published online from 2015 to 2024
in journals indexed in the JCR, as these have more consultations and citations. All informa-
tion sources were obtained from the bibliographic databases of Elsevier, Springer, IEEE,
MDPI, Wiley Online Library, World Scientific Publishing Co Pte Ltd., and Websites, without
the need for additional contact with authors or the identification of supplementary sources.

The bibliographic databases are freely accessible to subscribed academic institutions
or open access publications. The selected sources address computer models on the biome-
chanics of PD.

Appraisal of Individual Sources of Evidence

Measurements of two tremor types using accelerometers were evaluated in 42 patients
with PD [15,16]. Specific features were compared, such as the peak frequency, peak fre-
quency amplitude, and root mean square (RMS) amplitude. Accelerometers included in
smartphones and smartwatches were used in [17]. However, the signals from these device
types are restricted by their constructive characteristics, such as the resolution or frequent
calibrations of the magnetometers. Likewise, the three previous works did not use fuzzy
inference systems or ML methods. The work in [17] states that ML algorithms could be
beneficial in discriminating features more precisely and making differential diagnoses of
other tremor types.

Linear regression, applied to process tremors in [18], uses mathematical expressions,
and the model may be difficult to understand. Some classifiers used to determine the
severity of tremors employ support vector machines (SVMs), decision trees (DTs), k-nearest
neighbor (KNN), and neural networks [19]. However, the classification does not show
disease progression until the tremors exceed determined thresholds; likewise, its results
are hardly explainable.
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Tremor severity quantification using wrist sensor-based signals acquired from 92 PD
patients is presented in [20]. The tremor score prediction algorithm uses a convolutional
neural network (CNN) with deep learning, reporting an average accuracy of 85% and a
linear weighted kappa of 0.85. The authors claim that optimizing the structure’s design
could improve the estimation accuracy. PD was identified based on a handwritten dynamics
assessment with a CNN using a deep learning approach in [21]. In both works, improving
explainable results for clinical utilization may be worth considering.

A wearable system for motor assessment to support the diagnosis of PD is presented
in [22]; several motion parameters are extracted, although the classification only distin-
guishes healthy control subjects and patients. Many spatiotemporal and frequency pa-
rameters are calculated in the study to improve visual examinations. Supervised learning
classifiers are applied, such as SVM, random forest (RF), and Naïve Bayes (NB).

A wearable sensor system and ML algorithms are presented in [23]. The sensor system
comprises three inertial measurement units (IMUs), four custom mechanomyography
(MMG) sensors, and one force sensor. The system predicts Unified Parkinson’s Disease
Rating Scale (UPDRS) scores based on a quantitative assessment of rigidity, bradykinesia,
and tremor in Parkinson’s patients. A total of 23 patients were examined using the sensors,
together with exams conducted by clinicians, with ten healthy subjects as a control group.
The reported prediction result for the UPDRS scores for all symptoms was 85.4%, matching,
on average, the physicians’ assessments. Three classifiers were selected based on a pre-
selection process using 13 typical classification methods. However, the study covered
many items of the MDSUPDRS through wearable sensors and ML algorithms, and a
computational method was not developed to evaluate individual items in detail; likewise,
the explainability of the results must be considered.

The remote measurement and home monitoring of tremors are addressed in [24], but
the methods are not presented in detail. An ML method using signals from a triaxial
accelerometer attached to patients’ waists was used to assess bradykinetic gait in [25]. It
employed an SVM to identify parts of the gait signals. The stride frequency content was
used to determine bradykinetic walking bouts and estimate bradykinesia severity using
an epsilon support vector regression model. A total of 12 PD patients with idiopathic PD
participated in the experiments without healthy control subjects, but it would be interesting
to use more than one sensor.

Insole and IMU-based solutions for assessing gait impairment to support clinical prac-
tice instrumentation are presented in [26]. The assessment applied two datasets obtained
from a clinical study. However, the MDS-UPDRS guidelines were not strictly followed;
therefore, the study did not intend to detail the evaluations’ specific causes or their rela-
tionships with biomechanical indicators.

Current and future perspectives on hand-tracking methods employing deep learning
and video-based assessments are presented in [27], which examines many studies on
video-based assessments and inertial signals.

We note that evaluations and analyses are more precise and robust when combining
techniques consisting of videos and inertial signals, as well as ML models and systems
based on expert knowledge, for example, for exercises established in the MDS-UPDRS,
such as pronation/supination of the hand, hand postural tremors, hand kinetic tremors,
hand rest tremors, and gait.

An analysis of turns during gait in individuals with PD was conducted in [28], compar-
ing biomechanical strategies and their clinical subtypes. The cross-sectional study included
43 individuals with idiopathic PD, divided into subgroups: akineto-rigid, dominant tremor,
and mixed. The authors found no statistically significant difference among the subgroups.

A biomechanical posture analysis with ML was conducted in healthy individuals
in [29], exploring the data through principal component and cluster analyses. A group of
200 healthy subjects with a mean age of 24.4 ± 4.2 years was photographed from dorsal,
frontal, and lateral views. The study found potential new patterns in postural analyses,
with possible applications in physical therapy, ergonomics, and sports.
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A PD gait classifier [30] based on spatial–temporal gait features acquired from 23 pa-
tients and 26 age-matched controls was applied with multiple regression normalization,
which considered the subjects’ age, gender, height, body mass, and self-selected walking
speed to identify differences between PD patients and controls, evaluating the effectiveness
of classification ML after gait normalization. Significant differences between the PD patients
and healthy control subjects were found to be related to the stride length, step length, and
double support time after data normalization.

One study used ML algorithms to distinguish patients with PD from matched healthy
subjects, discriminating PD stages using spatial–temporal parameters, including asymmetry
and variability [31]. Gait information was analyzed in 63 people with PD with a distinct
severity of motor symptoms and in 63 subjects from a matched control group with a self-
selected walking speed. It achieved an accuracy of 84.6%, a precision of 0.923, and a recall
of 0.800 using the NB algorithm for the PD diagnosis. The most relevant gait features for PD
diagnosis were step width variability, step length, velocity, and width. RF performed better
in PD stage recognition than the other ML algorithms studied. The two gait features found
to be outstanding in PD stage identification were stride width variability and step double
support time variability. The ML algorithms studied were DT, NB, RF, SVM, multilayer
perceptron (MLP), and logistic regression (LR).

An ML technique employing an incremental SVM and modified Frank–Wolfe method
was used to classify and predict PD in [32]. Data were taken from the PPMI database [33]
and downloaded on 24 April 2018. The technique’s results were compared with other
state-of-the-art techniques. In [34], an exploratory ML study was used to evaluate hand rest
tremors in both healthy and PD individuals. Time and frequency domain characteristics
were used to feed seven ML algorithms: logistic regression, support vector classifier, KNN,
RF, linear discriminant analysis, DT, and Gaussian NB. However, the work did not follow
the MDS-UPDRS guidelines for evaluating hand rest tremors.

ML approaches to human movement analysis are examined in the short editorial [35],
which states that human movement is inherently complex, dynamic, highly non-linear, and
multi-dimensional. ML models tackle this complexity by conducting three tasks: classifi-
cation, predictive modeling, and dimensionality reduction. Combining an unsupervised
principal component analysis (PCA), a linear discriminant analysis, and a Gaussian mix-
ture model can allow for pattern recognition. Likewise, computer vision and estimations
of kinetics and kinematics using wearable sensors, as well as artificial intelligence, are
highlighted in the document.

A study examining musculoskeletal biomechanics with ML highlights deep learning
for describing musculoskeletal dynamics. The study approximates “the posture-dependent
moment arm and muscle length relationships of the human arm and hand muscles” [36].
The authors use a light gradient boosting machine and an artificial neural network (ANN)
to solve the wrapping kinematics of the arm and hand muscles with several degrees
of freedom.

Using videos to assess finger-tapping in PD offers results that can be integrated into
clinical decision-making processes [37]. This work used 75 videos of 50 PD patients. Expert
assessors agreed that the classification performance and the characteristics chosen by
the decision tree aligned with clinical knowledge. The DT approach was primarily the
classification method to improve interpretability and quantification. As a limitation, the
authors recognized that the number of patient videos used to train the model was small; a
more extensive dataset would enhance the model’s generalizability and robustness.

Combining ANNs and fuzzy logic systems allows for the development of intelligent
and adaptive systems. ANNs can learn, and computer models based on fuzzy reasoning
offer excellent systems in medical approaches. A neuro-fuzzy system integrates adaptive
structures and can perform pattern recognition in medical applications [38] and expert
systems to help physicians. Different types of cooperative fuzzy neural networks are
presented in [38].
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Type-2 fuzzy systems are frequently used to predict PD. Fuzzy logic shows greater
precision in PD detection than common ML approaches [39]. Hybrid methods combine su-
pervised learning, unsupervised learning, and feature selection methods. The membership
functions of a type-1 fuzzy system fuzzify the inputs, mapping them to single numbers.
Nevertheless, these numbers are denoted as intervals in a type-2 fuzzy approach, adding
a dimension to the membership function definition [39]. Results have confirmed that
combining the Expectation–Maximization (EM) technique, backward stepwise regression,
and a type-2 Sugeno fuzzy inference system provides the greatest accuracy in predicting
Motor-UPDRS and Total-UPDRS outcomes.

Other combined methods use deep learning and neuro-fuzzy techniques orientated
toward the early diagnosis of PD [40] based on the Motor-UPDRS. These combinations
apply an ensemble learning approach that can learn online from large clinical datasets.
Neuro-fuzzy and Deep Belief Network (DBN) approaches are used. EM, a clustering
method, is used to handle datasets. The PCA technique is used to remove data noise.
KNN is used to manipulate missing data. Incremental ML is used to improve the methods’
efficiency. Findings have revealed that this approach can improve the prediction accuracy
of the UPDRS and the time complexity of preceding systems in large datasets.

A neuro-fuzzy system using a learning method for an interpretable classifier analyzing
the gait cycle in PD is presented in [41]. Wearable sensors were used to measure the vertical
ground reaction force (vGRF). The method uses the features obtained from these signals.
The authors believe that experts can verify the decision made by this method. A type-
2 fuzzy system increases robustness in the case of noisy sensor data. The initial fuzzy
rules are created utilizing KNN. Later, a quasi-Levenberg–Marquardt learning approach
is employed to fine-tune the initial rules, minimizing the cross-entropy loss function and
using a trust region optimization method. Lastly, online learning improves rules and helps
identify new labeled samples. The model’s performance is contrasted with that of previous
supervised and unsupervised ML systems, and patients and healthy subjects participated
in the experiments.

An approach using a PD dataset of speech cues and integrating two methods, namely,
Ensembles of Self-Organizing Map and a neuro-fuzzy and unsupervised learning algo-
rithm, was used to predict UPDRS outcomes in PD [42]. The authors found that the method
effectively predicts UPDRS outcomes by combining speech signals. The statistical anal-
ysis presented in [43] examined twenty-four people with PD who were separated into
two subtypes: tremor-dominant and postural instability and gait disturbance subtypes.
The assessed outcome measures were sit-to-walk overall performance and kinetic and
kinematic data.

A biomechanical system is compared with an observational rating scale tremor assess-
ment in [44]. The work compares a biomechanical system and the MDS-UPDRS regarding
test–retest reliability. The authors claim that the comparison eliminates some of the tools’
inconsistencies and assists as a guideline for selecting a tool that can improve tremor assess-
ments. Nevertheless, further work is necessary to consider other variabilities that influence
the overall situation. This review presents several works that quantify tremors following
the MDS-UPDRS guidelines, presenting two evaluations—one based on the MDS-UPDRS
and the other quantified to two decimal places—allowing for better monitoring of the
motor evolution of patients.

A comparison of kinetic–rigid and hyperkinetic PD considering postural adjustments
and biomechanics based on starting gait with obstacles is presented in [45]. The work
reports a cross-sectional study of thirty-three volunteers separated into two groups ac-
cording to clinical motor manifestations. Another paper studied computerized assessment
methods to classify the motor dysfunction of patients with PD on a clinical scale [46]. The
biomechanical parameters of six exercises measured through wearable inertial sensors were
used. Feature selection methods, SVM, logistic regression, and neural networks allowed the
classification of the two groups of patients. However, the authors claim that the significant
features are only valid when using this dataset to classify the two groups of patients.
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Some initial biomechanical PD characteristics may appear in hand-drawn images.
A computer-assisted diagnosis of PD was made using fuzzy optimum-path forest and
Restricted Boltzmann Machines in [47]. The work compared these results with those of
baseline models, such as SVMs, KNN, and the optimum-path forest (OPF) classifier. The
authors show that the proposed model mostly outperforms the baselines, and that the
fuzzy OPF is an alternative method for detecting PD. In [48], a methodology for detecting
PD based on a neuro-fuzzy system with minimized feature selection is presented. In [49], a
classification method with a three-stage fuzzy system for PD diagnosis is presented, and it
uses dynamic handwriting analysis. A biomechanical signal analysis for gait evaluation in
PD is presented in [50], employing biomechanical signals acquired with the wireless sensor
networks Bluetooth and XBee. The model presents good results for assessment according to
the parameters established by the MDS-UPDRS; however, this work performed a partial gait
analysis as the sensors were only placed on the ankles. Swinging arms were not considered,
which may play an important role in PD gait. In [51], the detection of PD with keystroke
data is presented; ML models were developed using keyboard keystroke dynamics.

Several works evaluate and quantify the biomechanical alterations presented by
Parkinson’s patients, such as turns, rigidity in the arms and legs, rest tremors, hand tremors,
kinetic tremors, reemergence tremors, and walk alterations. They address individual
items of the MDS-UPDRS in detail, conducting qualitative assessments following the
MDS-UPDRS guidelines that are familiar to medical experts and performing quantitative
evaluations of up to two decimal places, facilitating motor evolution monitoring. All these
works were based on measurements of 60 patients with PD at different stages and 20 healthy
control subjects. In total, 400 measurement sessions were performed for eight exercises,
each bilateral (800 measurements), established using the MDS-UPDRS. Each computerized
measurement session took 30 min and was repeated every three to six months. These
works used fuzzy inference systems, but the research could be improved by using hybrid
methods, i.e., fuzzy logic and ML. Computer science and medicine experts participated
in the design and validation, as the systems were based on human reasoning and expert
knowledge. Six IMUs were used. Two were placed on the upper extremities (one on each
hand), two were placed on the trunk, and two were placed on the lower extremities (on the
ankles to reduce the accelerometer noise when the foot contacts the ground). A gyroscope,
accelerometer, and magnetometer were included in each IMU. Data acquisition employed
a sampling frequency of 50 samples per second. IMU–computer communication used
Bluetooth. Figure 1 shows the distribution of the sensors. The following nine referenced
works used these measurements to assess each item individually [50,52–59].

A fuzzy inference model was used to evaluate turn in PD patients [52], using four
biomechanical characteristics during gait. The model design was based on clinician expert
knowledge. The model outputs were verified through comparison with expert evalua-
tions. The results were explicable, and the model has already been applied in clinical
environments as an expert system to help physicians.

A pronation and supination analysis was conducted based on biomechanical signals
from PD patients [53]. Using eight biomechanical features, a fuzzy inference model was
used to evaluate upper extremity rigidity based on the MDS-UPDRS.

Rest tremor was quantified based on fuzzy inference systems and wearable sensors [54].
A tremor severity estimation model using a Takagi–Sugeno-type fuzzy inference system
was used. The model used the MDS-UPDRS to perform rest tremor quantification, which
was found to be instantly applicable to clinical environments. Rest tremor amplitude data
concerning the timeline were reported. Adding a continuous range improved the resolution
of the tremor ratings.

A computer model based on a fuzzy inference system was developed for leg agility
quantification and an assessment of Parkinson’s patients [55]. Leg agility is an item of the
MDS-UPDRS; nevertheless, only a visual analysis of the features is conducted, leading
to subjectivity. The proposed model can capture all details regardless of the task speed,
reducing the inherent uncertainty of an examiner’s observations. This model is feasible for
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quantifying and assessing leg agility based on inertial signals. Experts in computer science
and medicine participated in the design and result validation.
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Figure 1. Six sensors (IMU) are distributed on the trunk and upper and lower extremities.

A fuzzy inference model based on triaxial signals for pronation and supination assess-
ments in PD patients is presented in [56]. This model considers biomechanical affectations
not included in the MDS-UPDRS. It uses a weighted score for the medical experts and
fuzzy inference models using an Analytic Hierarchy Process [60,61]. Twelve different
biomechanical characteristics are quantified based on IMUs. This study [61] evaluates the
wobble of the arm and the change in the speed rate during hand movements at different
stages of the exercise.

Computer models for evaluating hand tremors in Parkinson’s patients are presented
in [57], using five biomechanical indicators that characterize the hand tremors. The three
fuzzy inference models recognize postural or resting tremors, differentiating them from
normal hand movements, and, if detected, their severity is evaluated. The evaluations
follow the MDS-UPDRS guidelines, providing an assessment with an accuracy of two
decimal digits. They are applicable in clinical environments due to their simplicity. Experts
in medicine and computer science participated in the design and validation.

A computer method for pronation/supination assessments in PD based on latent
space representations of biomechanical indicators is presented in [59], using scalable and
adaptable computing systems. It quickly adapts to new expert knowledge and includes new
characteristics in a self-supervised training approach. The method employs a training phase
with an encoder/decoder to represent the patients’ biomechanical indicators in latent space;
later, based on clinical knowledge, each patient’s latent space representation is labeled
according to the MDS-UPDRS. Figure 2 presents an overview of this computer method.

A kinetic tremor analysis was conducted using wearable sensors and fuzzy inference
systems in PD patients in [58], evaluating kinetic tremors of the hands. It evaluated patients
based on the MDS-UPDRS; additionally, the method achieved an accurate evaluation using
approaches such as the amplitude of the tremors in the different stages of the finger-to-nose
exercise, the frequencies of the tremors, and voluntary movements. The five biomechanical
characteristics used to evaluate each patient included the tremor amplitude before reaching
the finger, during the transition, and before reaching the nose, as well as tremor and
voluntary movement frequencies.
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3. Results

This section presents Table 1, which shows the sources of evidence selected, evaluated
for eligibility, and included in the review.

Table 1. Sources of evidence included in the review.

Source of Evidence Characteristics Critical Appraisal Relevant Information Related
to the Review

1.

“Wrist Sensor-Based Tremor
Severity Quantification in
Parkinson’s Disease Using

Convolutional Neural
Network” [20].

Tremor score prediction
algorithm uses a CNN with a

deep learning architecture.

The explainability of results for
use in clinical environments

should be considered.

Application opportunities in
clinical environments as a tool to

help physicians.

2.

“Wearable System to Objectify
Assessment of Motor Tasks for

Supporting Parkinson’s Disease
Diagnosis” [22].

Spatiotemporal and frequency
parameters are calculated.

Supervised learning classifiers,
such as SVM, RF, and NB,

are applied.

Classification is only performed
between healthy control subjects

and patients.

Visual examinations can be
improved in clinical

environments. Support for
specialized diagnosis.

3.

“A Heterogeneous Sensing Suite
for Multisymptom

Quantification of Parkinson’s
Disease” [23].

One force sensor, three IMUs,
and four MMG sensors are used.

A quantitative assessment of
bradykinesia, rigidity, and

tremor is conducted in 23 PD
patients. Three base classifiers

are used (ML).

It covers several items of the
MDS-UPDRS and may be unable
to evaluate individual items in
detail. Explainability must be

considered.

Detailed evaluations of
individual items.

Result explainability in clinical
environments.

4.

“Estimating Bradykinesia
Severity in Parkinson’s Disease

by Analysing Gait through a
Waist-Worn Sensor” [25].

Signals are provided by a triaxial
accelerometer placed on the
waist of PD patients. It uses
SVM and an epsilon support

vector regression model.

A total of 12 PD patients with
idiopathic PD participated in the

experiments. Healthy control
subjects did not participate in

the tests—only a sensor.

Biomechanics of PD with
systems based on ML and

inertial sensors.
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Table 1. Cont.

Source of Evidence Characteristics Critical Appraisal Relevant Information Related
to the Review

5.

“Deep Learning for Hand
Tracking in Parkinson’s Disease

Video-Based Assessment:
Current and Future
Perspectives” [27].

On-hand tracking and many
studies on video-based

assessment and inertial signals
are examined.

Assessments are more precise
and robust, combining videos,

inertial signals, ML, and systems
based on expert knowledge.

Biomechanics of the
pronation/supination of the
hand, hand postural tremor,

hand kinetic tremor, and hand
rest tremor.

6.

“Classification of Parkinson’s
Disease Gait Using

Spatial-Temporal Gait
Features” [30].

Based on spatial–temporal gait
features, multiple regression

normalization is applied,
considering subject age, height,

body mass, gender, and
self-selected walking speed,
evaluating the effectiveness

of ML.

Important differences in the
stride length, step length, and

double support time are
identified between PD patients

and healthy control subjects.

Biomechanics of gait in PD
patients.

7.

“Machine Learning Models for
Parkinson’s Disease Detection
and Stage Classification Based

on Spatial-Temporal Gait
Parameters” [31].

ML algorithms are used to
distinguish patients with PD

from matched healthy subjects,
discriminating PD stages.

RF performs better than the
other ML algorithms studied.

The most relevant gait features
in PD diagnosis are step length,

velocity, and width, and step
width variability.

ML algorithms, such as NB,
SVM, DT, RF, LR, and MLP, are
analyzed for PD detection and

stage classification.

8.
“Solving Musculoskeletal

Biomechanics with Machine
Learning” [36].

Musculoskeletal biomechanics.
Deep learning describes

musculoskeletal dynamics. The
study approximates “the

posture-dependent moment arm
and muscle length relationships

of the human arm and
hand muscles”.

A light gradient-boosting
machine and a fully connected

artificial neural network are
used to solve the wrapping

kinematics of the muscles for the
arms and hands.

Possible applications of ML to
analyze the biomechanics of PD.

9.

“Clinically Informed Automated
Assessment of Finger Tapping

Videos in Parkinson’s
Disease” [37].

This work offers results that can
be integrated into clinical

decision-making processes. The
work used 75 videos of 50 PD

patients. The DT approach was
the primary classification
method used to improve

interpretability and
quantification.

Expert assessors agreed that the
classification performance and
the features selected by the DT

aligned with clinical knowledge.

Interpretability and
quantification were considered.
The authors recognized that a
more extensive dataset would

enhance the model’s
generalizability and robustness.

10.

“Accuracy Analysis of Type-2
Fuzzy System in Predicting
Parkinson’s Disease Using

Biomedical Voice
Measures” [39].

A hybrid method combines
supervised learning,

unsupervised learning, and
feature selection techniques. The

membership functions of a
type-1 fuzzy system fuzzify the
inputs, mapping them to single
numbers. Nevertheless, these
numbers are represented as
intervals in a type-2 fuzzy

system, adding a dimension to
the definition of the

membership function.

Results confirmed that
combining the EM technique,
backward stepwise regression,

and type-2 Sugeno fuzzy
inference system led to the best

accuracy in predicting the
Motor-UPDRS and

Total-UPDRS outcomes.

Hybrid methods combining ML
and fuzzy inference systems can

lead to excellent results in a
clinical environment. These
hybrid methods can be more

robust and precise.

11.

“Early Diagnosis of Parkinson’s
Disease: A Combined Method

Using Deep Learning and
Neuro-Fuzzy Techniques” [40].

Combining deep learning and
neuro-fuzzy techniques. It uses
an ensemble learning approach
with the ability to learn online

from large clinical datasets. DBN
and neuro-fuzzy approaches are
used. EM handles datasets. The
PCA technique removes the data

noise. KNN is used to
manipulate missing data.

Incremental ML improves the
method’s efficiency. Findings
reveal that the approach can

improve the UPDRS prediction
accuracy and the time

complexity.
It is only compared with

preceding methods to
manipulate large datasets.

The hybrid method can improve
the UPDRS prediction accuracy

and the time complexity,
combining ML and neuro-fuzzy

techniques.
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Table 1. Cont.

Source of Evidence Characteristics Critical Appraisal Relevant Information Related
to the Review

12.

“A Type-2 Neuro-Fuzzy System
with a Novel Learning Method

for Parkinson’s Disease
Diagnosis” [41].

The gait cycle in PD is analyzed.
Wearable sensors are used to

measure the vGRF. The method
uses features obtained from

these signals. Fuzzy systems are
combined with ML models.

An interpretable classifier; the
authors believe that experts can
verify the decision made by the

proposed method. The
performance is compared with
that of previously supervised

and unsupervised ML
approaches. The MDS-UPDRS

guidelines are not used.

Neuro-fuzzy systems can
improve PD diagnosis (using the
gait cycle in PD). However, other

signs of PD patients are not
measured.

13.
“Fuzzy Inference Model

Evaluating Turn for Parkinson’s
Disease Patients” [52].

Four biomechanical
characteristics are used for turn
assessments during gait, and the

model design is based on
clinician expert knowledge.

Model outputs are verified
through comparison with expert

evaluations. The model has
already been applied in clinical

environments as an expert
system to help physicians.

Based on the MDS-UPDRS.
Interpretability and explicability.

Application opportunities in
clinical environments.

14.

“Pronation and Supination
Analysis Based on

Biomechanical Signals from
Parkinson’s Disease

patients” [53].

Using eight biomechanical
features, a fuzzy inference model

is used to evaluate upper
extremity rigidity based on the

MDS-UPDRS.

Results are verified with expert
evaluations. The model has

already been applied in clinical
environments as an expert
system to help physicians.

Interpretability and explicability.
Application opportunities in

clinical environments.

15.

“Rest Tremor Quantification
Based on Fuzzy Inference

Systems and Wearable
Sensors” [54].

A tremor severity estimation
model using a

Takagi–Sugeno-type fuzzy
inference system is presented.

The model performs rest tremor
quantification using the

MDS-UPDRS. This method is
applicable to clinical

environments.

Rest tremor amplitude data
concerning the timeline are

provided. Adding a continuous
range improves the resolution of

tremor ratings.

Interpretability and explicability.
Application opportunities in

clinical environments.

16.

“Computer Model for Leg
Agility Quantification and

Assessment for Parkinson’s
Disease Patients” [55].

A model based on a fuzzy
inference system is presented.

Leg agility is an item of the
MDS-UPDRS; nevertheless, only
a visual analysis of the features

is conducted, leading to
subjectivity. Experts in computer

science and medicine
participated in the design and

result validation.

The model captures all details,
regardless of the task speed,

reducing the inherent
uncertainty of an examiner’s
observations. This model is
feasible for quantifying and

assessing leg agility based on
inertial signals.

Interpretability and explicability.
Application opportunities in

clinical environments.

17.

“Fuzzy Inference Model Based
on Triaxial Signals for Pronation
and Supination Assessment in

Parkinson’s Disease
Patients” [56].

A model considering
biomechanical affectations not
included in the MDS-UPDRS is
presented. The wobble in the
arm and the change in speed

rate during hand movements at
different stages of the exercise

are evaluated in this paper.
Design and validation by experts

in medicine and computer
science.

It uses a weighted score for
medical experts and fuzzy
inference models using an

Analytic Hierarchy Process.
Twelve biomechanical

characteristics are quantified.

Interpretability and explicability.
Application opportunities in

clinical environments.

18.
“Computer Models Evaluating
Hand Tremors in Parkinson’s

Patients” [57].

Models using five biomechanical
indicators of hand tremors are

presented. The three fuzzy
inference models recognize
postural or resting tremors,
differentiating them from

normal hand movements, and, if
they are detected, then their

severity is evaluated.

The models follow the
MDS-UPDRS guidelines,

conducting an assessment with
an accuracy of two decimal

digits. Experts in medicine and
computer science participated in

the design and validation.

Interpretability and explicability.
Application opportunities in

clinical environments.



Computation 2024, 12, 230 11 of 18

Table 1. Cont.

Source of Evidence Characteristics Critical Appraisal Relevant Information Related
to the Review

19.

“A Computer Method for
Pronation-Supination

Assessment in Parkinson’s
Disease Based on Latent Space

Representations of
Biomechanical Indicators” [59].

The method uses a training
phase using an encoder/decoder

to represent the patients’
biomechanical indicators in
latent space; later, based on

clinical knowledge, each
patient’s latent space

representation is labeled
according to the MDS-UPDRS.

The method uses scalable and
adaptable computing systems. It
can quickly adapt to new expert

knowledge and includes new
characteristics in a

self-supervised
training approach.

Interpretability and less
explicability. More easily

scalable. Application
opportunities in clinical

environments.

20.

“Kinetic Tremor Analysis Using
Wearable Sensors and Fuzzy

Inference Systems in Parkinson’s
Disease” [58].

A method for evaluating a
patient’s kinetic hand tremors
based on the MDS-UPDRS is
presented; additionally, the

method achieves an accurate
evaluation by using approaches,

such as the amplitude of the
tremors in the different stages of
the finger-to-nose exercise, the
frequencies of the tremors, and

voluntary movements.

The five biomechanical
characteristics used to evaluate

each patient are tremor
amplitude before reaching the

finger, during the transition, and
before reaching the nose, as well

as tremor and voluntary
movement frequencies.

Interpretability and explicability.
Application opportunities in

clinical environments.

4. Discussion
4.1. Summary of Evidence and General Considerations

Multiple studies address PD biomechanics using systems based on expert knowledge
and ML, but not all follow the MDS-UPDRS guidelines. However, the MDS-UPDRS has
obtained notoriety and is widely used in evaluations of non-motor and motor disturbances.
If computerized models use measurements, then their assessments, both qualitative and
quantitative, can be repeatable, given the same patient behavior.

Models based on fuzzy inference systems and ML have advantages and limitations.
In medical applications, and particularly in works on the biomechanics of Parkinson’s
disease, interpretable models represent good practice. In this sense, interpretability involves
understanding the internal workings of the models; explainability helps to describe the
results and their precision, possible biases, and transparency. These factors create trust
and security when models are put into production and promote a responsible approach to
their use.

ML methods generally require numerous or balanced data or use black box models.
Fuzzy systems demand expert knowledge, and interdisciplinary research improves both
design and result validations, influencing the systems’ acceptance in clinical environments.
Any explainable artificial intelligence model is recommendable for applications involving
humans, such as biomechanics; thus, their results can be motivating or appropriate for
non-specialists in computer science, increasing the possibilities for use in medical practice.
These principles formed part of the qualification criteria for the studies in this review. Other
elements were considered in the qualification process, such as the analyzed data, wearable
system use, whether classification was only conducted between healthy control subjects
and patients, MDS-UPDRS’s evaluated items, detailed evaluations of individual items,
hybrid methods, and application opportunities in clinical environments.

The evaluated studies used different data sources. Several works used data obtained
from inertial sensors, force sensors, and triaxial accelerometers or video-based data. These
characteristics were identified for each work and were subject to critical appraisal. The
studies’ conclusions were affected by the variation in their data sources. Table 1 presents
20 evidence sources that meet the proposed eligibility criteria. Each selected source includes
its characteristics, a critical appraisal, and the relevant information related to the review.

How accurate and clinically applicable are the machine learning techniques presented
for PD assessments (e.g., SVM, neural networks)? The answer depends on how the au-
thors have developed their applications to be more interpretable and explainable, crucial
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considerations in medical applications. In this sense, noninterpretable ML models, for
example, deep learning, artificial neural networks (ANNs), and SVM, have great predictive
capabilities, high performance in pattern recognition, and increasing importance in analyz-
ing and modeling scientific data across various areas [62]. However, noninterpretable ML
models are frequently presented as black boxes, limiting their acceptance in critical decision-
making procedures [62]. When developing high-stakes decision applications, it is essential
to consider the evaluated proposals in specialized scientific and technological works, such
as [3,6–8,10,12,62] to name just a few, which evaluate the interpretability and explainability
of ML techniques considered to be noninterpretable and intrinsically interpretable.

Explainable artificial intelligence (XAI) in interdisciplinary research directions [63]
and the evolution from black box to glass box [64] highlight the advancements in XAI and
its application in diverse scenarios and ongoing challenges, emphasizing perspectives and
interdisciplinary collaboration. Other artificial intelligence techniques, such as fuzzy infer-
ence systems, are interpretable and explainable, facilitating multidisciplinary collaboration
during design, validation, and use in clinical environments. Likewise, hybrid models are a
growing trend in applications related to the biomechanics of Parkinson’s disease, such as
neuro-fuzzy systems and combined ML models, as the potential of each artificial intelli-
gence technique is exploited, reducing limitations and disadvantages. A fuzzy inference
system (FIS) uses fuzzy logic to associate inputs and outputs. It utilizes fuzzy reasoning
and rules (If/Then) similar to human reasoning. FIS can be applied to making decisions,
recognizing patterns, and simulating biological or physical systems, intelligent automatic
control, and expert systems, among other applications [65]. Neuro-fuzzy systems (NFSs)
combine the human-like reasoning of FIS and ML models as neural networks. NFSs can be
used in diverse applications [38,41,66].

Interestingly, some works, for example, [34], use neuro-fuzzy systems; however, they
do not use the MDS-UPDRS, which is widely used in clinical environments and is familiar
to medical experts. In addition, the classification of PD gait [30] requires data on the age,
gender, height, body mass, and self-selected walking speed of patients to evaluate ML
effectiveness. Nevertheless, several fuzzy boundaries of membership functions in fuzzy
inference systems allow for classification without data on the age, height, body mass, and
gender of patients, although they may be incorporated for additional analysis.

ML models for PD detection and stage classification [31] only use gait parameters;
however, other works report patients with disturbances in tremors and upper extremity
rigidity without gait alterations.

The progress in wireless and miniaturized wearable sensors has improved sensor-
based Parkinson’s biomechanics analysis. They are inexpensive, accurate, easy to calibrate,
and can detect a wide range of motor changes. These characteristics contribute to their
potential use in multiple clinical settings and portable assessments. No difficulties have
been reported regarding their use. The analysis of their signals can be verified in several
ways, including comparisons with expert evaluations or with optical- and vision-based
reference systems, usually installed in specialized laboratories at a considerably high cost.
Adequate system validation based on inertial sensors may involve comparison against
robust 3D motion analysis [67].

The selection of the sampling frequency is essential in digital signal processing appli-
cations; it is not sufficient that Shannon’s sampling theorem is fulfilled [68,69]. Analyzing
Parkinson’s disease motor symptoms requires calculating the signals’ peak values. A min-
imum sampling rate of 50 samples per second ensures that the signal is sampled five
times for the highest frequency harmonic, which is 10 Hz for a postural tremor [70]. If the
measurement system does not allow a higher sampling frequency, then the signals must be
interpolated to obtain a higher equivalent sampling frequency, as was the case in [55], as
the impact of the feet with the ground produces higher frequency harmonics.

Common limitations of some of the revised studies are the lack of interpretability
and explainability of the results and the small number of patients analyzed; classification
between only healthy control subjects and patients; not all works following the MDS-
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UPDRS guidelines; and no detailed evaluations of the items presented. In this review,
suggestions that can help to overcome these limitations by improving further research
are highlighted.

External validation of the proposed models using independent datasets from differ-
ent regions or clinical settings is recommended for several works. Another validation
method is cross-validation with external datasets to ensure broader applicability. Some
examples of the validation techniques applied include data acquired in various clinical
environments, patients at different stages of PD, comparisons between PD patients and
healthy control subjects, patients’ assessments in medical consultations spaced X months
apart, assessments with no change in the medication doses taken between 4 and 5 h before
the evaluation, and patients’ assessments for consultations spaced a month apart and at
separate medication times.

Several algorithms have been applied to the biomechanics of Parkinson’s disease using
machine learning. ML expert researchers know that the most frequently used algorithms
can be grouped into supervised, unsupervised, and reinforcement learning algorithms [71].
Supervised learning requires labeled input/output data for training and tests, including
SVM, Naïve Bayes Classification (NBC), Mathematical Regression, DTs, and ANNs [72].
Unsupervised learning does not require labeled input/output data and involves clustering
and the Hidden Markov Model (HMM) [72]. Reinforcement learning employs trial and
error, and the algorithm interacts with an environment to achieve an objective [71,72].
Further, random forest (RF) is a supervised ML algorithm with a treelike structure. RF
uses a collection of decision trees to make predictions [71,73]. Deep learning is a machine
learning algorithm with intrinsic learning rules and representative data sample levels using
large neural networks with multiple layers; it has been well received for its automatic
feature extraction capabilities, being applied in diverse areas such as [74–76].

The strengths and weaknesses of these ML algorithms generally depend on the appli-
cation type, such as industrial, environmental, biomedical, social, or marketing. Although
documents on their main features exist, general comparisons of some ML algorithms are
linked to specific applications [73,77–80]; for Parkinson’s disease recognition [81–84] and
Parkinson’s disease progression [85]. In Parkinson’s biomechanics, the strengths and weak-
nesses would depend on how the authors applied their ML algorithms or combined them
with other artificial intelligence methods, including fuzzy inference systems [52–59]. The
publications on Parkinson’s biomechanics that apply one or several ML methods evaluate
their specific results in an individualized manner. However, for high-stakes decisions, such
as diverse medical applications, it is recommended that references that emphasize using
interpretable models, such as [12], and explainability and interpretability concepts [63]
are consulted.

4.2. Recommendations and Best Practice

Recommendations and best practice for integrating machine learning models into clinical
workflows facilitating model deployments are as follows: a large set of patients should be
used covering the stages of Parkinson’s disease to be assessed or analyzed; the data must
represent the variety in PD patients’ alterations or impairments described in the MDS-UPDRS
guidelines for motor examination (Part III); physicians and expert raters should participate
in the design, measurement supervision, and verification of the developed models, which is
facilitated by the systems being based on expert knowledge [65,86–88] or interpretable and
explainable ML models being used [3,12,63,64]; data should be acquired from a subset of
healthy control subjects of all genders, ages, and physical characteristics compatible with
the PD patients; if necessary, external validations and independent datasets from different
regions or clinical environments can be considered, with diverse validation techniques to
ensure broad applicability.

Based on ML models and expert knowledge, the analyzed studies consider the ethical
implications of diagnosing, monitoring, and conducting motor evaluations in PD patients.
The published works cite the authorizations of bioethics committees and the informed con-
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sent of patients and healthy control subjects. A particular focus was on patient data privacy
and security. Ethical implications must continue to be addressed, because the research
involves humans, which is easier when studies are conducted with the participation of a
multidisciplinary team, following best practices.

4.3. Limitations

There are no key limitations that should be highlighted. Numerous papers on the
biomechanics of PD that applied systems based on expert knowledge and ML were re-
viewed; 20 papers were selected, including aspects that represent multiple published works
on the subject.

4.4. Conclusions

The sources of evidence include papers in journals indexed in the JCR that analyze the
data, methods, results, and application opportunities in clinical environments or as support
for new research. Works with less explicable results can form a basis for future contributions
combining several ML models, fuzzy inference systems, vision, and statistical analyses.

Although the MDS-UPDRS has gained recognition, the assessment uses visual in-
terpretations, making it more qualitative than quantitative, and subtle distinctions are
not recognized. In this sense, computerized systems that employ measurements improve
assessments, which can be qualitative and quantitative, showing repeatability, given the
same patient behavior. When the requirements of interpretability and explicability are
sufficient, they can constitute expert systems that help physicians.

Currently, many researchers are addressing the biomechanics of PD. This scoping
review can support future research, especially regarding the interpretability and explain-
ability of results in terms of the acceptability of such systems as tools to help physicians.
Interpretability involves understanding the internal workings of models; explainability
centers on explaining the decisions made. The biomechanics of PD based on explainable
artificial intelligence or combining several analysis models provides explainable and trans-
parent results, as well as possible biases and precision, creating trust and security when the
models are put into production and promoting a responsible approach to their use.

If the economic conditions of clinical environments are favorable, combining certain
measurement technologies, such as inertial sensors (wearable sensors) with video-based
data, pressure-sensitive walkways, and robust 3D motion analysis, can improve PD biome-
chanics assessments.

Interpretable and explainable measurement-based models for the biomechanics of
Parkinson’s disease can provide physicians with quantitative and qualitative motor evalua-
tions in PD patients. The assessments are repeatable (the same inputs produce the same
outputs) without depending on subjective factors. Their results facilitate patient tracking
and can correlate medication doses with motor conditions, as well as suitable intervals for
follow-up consultations with doctors.
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