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Abstract: Throughout history, humanity has grappled with infectious diseases that pose serious
risks to health and life. The COVID-19 pandemic has profoundly impacted society, prompting
significant reflection on preparedness and response strategies. In the future, humans may face
unexpected disasters or crises, making it essential to learn from the COVID-19 experience, especially
in ensuring adequate emergency supplies and mobilizing resources effectively in times of need.
Efficient emergency medical management is crucial during sudden outbreaks, and the preparation
and allocation of medical supplies are vital to safeguarding lives, health, and safety. However, the
unpredictable nature of epidemics, coupled with population dynamics, means that infection rates
and supply needs within affected areas are uncertain. By studying the factors and mechanisms
influencing emergency supply demand during such events, materials can be distributed more
efficiently to minimize harm. This study enhances the existing dynamics model of infectious disease
outbreaks by establishing a demand forecasting model for emergency supplies, using Hubei Province
in China as a case example. This model predicts the demand for items such as masks, respirators,
and food in affected regions. Experimental results confirm the model’s effectiveness and reliability,
providing support for the development of comprehensive emergency material management systems.
Ultimately, this study offers a framework for emergency supply distribution and a valuable guideline
for relief efforts.

Keywords: emergency materials; supply scheduling; dynamics model

1. Introduction

Major epidemic diseases, often highly contagious and widespread, pose significant
threats to public health, safety, and overall societal stability. The COVID-19 pandemic
highlighted the urgency of addressing infectious diseases due to their sudden onset, com-
plex impact, and severe consequences. Throughout history, various infectious diseases
have repeatedly affected humanity, yet our capabilities to combat them remain limited.
Therefore, early intervention and accurate forecasting of both case numbers and material
needs are essential for controlling epidemics effectively. In response to COVID-19, the
World Health Organization (WHO, 2020 [1]) developed the COVID-19 Essential Supplies
Forecasting Tool (ESFT) to assist governments and stakeholders in estimating the necessary
supplies and health workforce to combat the pandemic.

Beyond public health emergencies, natural disasters can also trigger outbreaks of
infectious diseases, further intensifying the demand for emergency medical supplies, such
as protective gear, biomedical equipment, diagnostic tools, essential medications, and
consumables. The rapid rise in demand during the pandemic revealed severe shortages
in key areas, necessitating additional external resources to meet supply needs. To address

Computation 2024, 12, 231. https://doi.org/10.3390/computation12110231 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12110231
https://doi.org/10.3390/computation12110231
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-1368-2675
https://doi.org/10.3390/computation12110231
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12110231?type=check_update&version=1


Computation 2024, 12, 231 2 of 16

this issue, this study proposes an improved SEIR (Susceptible-Exposed-Infected-Removed)
model (Bjørnstad et al., 2020 [2]; He et al., 2020 [3]) combined with a safety stock model,
utilizing COVID-19 case data to forecast supply requirements in affected areas over time.
This modified model integrates the actual transmission characteristics of infectious diseases
and accounts for both quarantined and hospitalized patients requiring emergency supplies.
It also distinguishes between quarantined and unquarantined incubating patients and
considers potential cases of rebound positivity among recovered individuals, ultimately
validating its predictions using safety stock theory.

The ongoing waves of COVID-19 infections and global crises, such as the Ukraine-
Russia conflict, have further strained healthcare supply chains (Gleeson, 2022 [4]; Partida [5],
2022; Das et al., 2023 [6]), underscoring the need for robust, adaptable models to manage
demand. In this study, the SEIR model is enhanced to reflect real-world epidemic trans-
mission characteristics, especially for high-transmission outbreaks. Existing forecasting
methods using stochastic or dynamic planning or assuming fixed demand distributions
often lead to inaccuracies. This article introduces a refined model that better accounts for
COVID-19 prevention and treatment dynamics, offering improved accuracy in predicting
demand for various patient categories, closely matching real data.

While the model specifically forecasts demand for COVID-19, it can be adapted to pre-
dict emergency supply needs in response to other infectious disease outbreaks, particularly
those following natural disasters or extreme weather events. This model provides a more
accurate, adaptable tool for epidemic preparedness and response.

2. Literature Review

Epidemics and natural disasters—such as earthquakes, floods, and typhoons—frequently
impact people’s lives and disrupt economic development (Wallemacq and House, 2018 [7];
Meng et al., 2023 [8]). Research on emergency supply chains for these events highlights
consistent theories and methods, especially around managing the inherent randomness in
emergency material supply. Taskin and Lodree (2010) [9] introduced a stochastic inventory
model to address multi-period randomness in emergency supplies, which manifests in un-
certain demand and challenging transportation conditions. To improve emergency supply
readiness, Ma (2025) [10] proposed a two-stage robust model to locate emergency supply
points and pre-position stock amounts. Emergency medical supplies, however, present
unique challenges, as the complexity of medical devices and variability in drug require-
ments underscore the critical role of logistics. To address supply shortages, Mangla et al.
(2023) [11] developed a multi-supplier emergency order allocation strategy to ensure suffi-
cient and timely supply during pandemic peaks. Zhang et al. (2023a) [12] combined safety
stock and capital reserve policies for optimal emergency medical supply planning, while
Zhang et al. (2023b) [13] further incorporated time-space networks for resource allocation,
adapting to evolving needs in emergencies. Luo et al. (2022) [14] addressed these demands
through a multi-period location-allocation model for emergency medical supplies and
patient management.

Advances in information technology and artificial intelligence (AI) bring new oppor-
tunities for emergency preparedness. Machine learning algorithms and predictive models
are increasingly used to forecast emergency supply needs. For instance, AI-driven case
inference helps anticipate supply demands (Fang and Wang, 2021 [15]). Hu et al. (2019) [16]
applied gray system models, enhancing them with a dynamic GM(1,1) prediction model,
while Barrett et al. (2020) [17] used statistical models to forecast ventilator and ICU bed
needs. Li and Su (2021) [18] categorized epidemics into four phases—generation, out-
break, peak, and recession—and developed time-varying and Bayesian decision models for
supply demands, comparing model accuracy. Wan et al. (2023) [19] introduced a hybrid
multi-objective optimization algorithm to minimize unmet demand, distribution costs, and
routing risks. AI and Big Data Analytics (BDA) applications have further bolstered supply
chain resilience, as noted by Shah et al. (2023) [20]. Despite the growing role of AI, BDA,
blockchain, and simulation in emergency supply management, practical applications for
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enhancing resilience in these chains are still limited (Arji et al., 2023 [21]). Thus, exploring
real-time forecasting approaches using intelligent information processing, beyond tradi-
tional ARIMA and CBR models, is essential for effective dynamic demand prediction in
emergencies (Zhu et al., 2019 [22]).

In summary, effective emergency medical supply management requires timely, accu-
rate manufacturing and delivery. BDA and AI-based collaborative platforms are emerging
as mainstream solutions (Bag et al., 2023 [23]). Given the unpredictable nature of new
infectious diseases, traditional case-based reasoning is less suitable for demand forecasting.
Additionally, sudden public health crises exhibit distinct phase characteristics with varying
transmission rates, making phased demand forecasting methods, as explored in this study,
a more effective approach.

3. Data and Methods
3.1. Data Sources and Case Context

In this study, significant challenges arose in obtaining the necessary data. The im-
proved model categorized patients into inpatients and confirmed cases who were not
isolated, further dividing latent infections into isolated and non-isolated groups. This level
of classification detail was not reflected in the data published by the Hubei Provincial
Health Commission, as certain categories ceased to be reported after some time. Despite
extensive searches on multiple data sources, including national, Hubei, and Wuhan Health
Commissions, as well as lists of emergency material demand released by 26 hospitals in
Wuhan from 22 February to 8 March 2020, relevant data remained unavailable. Conse-
quently, the study relied on complex calculations based on other available data.

3.2. Research Methodology

This study develops an enhanced predictive model based on the SEIR model (Hethcote,
2000 [24]), a classical infectious disease dynamic model that accounts for the incubation
period to examine its effects on the epidemiology of infectious diseases. Additionally,
incorporating artificial intelligence algorithms (Ma et al., 2024 [25]; Ma et al., 2025 [10]), the
improved SEIR model is validated using data from Hubei province during the COVID-19
outbreak. Of course, there is a great deal of uncertainty in this model. Even during the peak
period of the epidemic outbreak, the predictions released by various research institutions
have good accuracy and reference value. However, with changes in uncertainty factors and
policies, accurate predictions may become difficult.

3.3. Model Description

The infectious disease transmission dynamic model is a fundamental mathematical
framework used to analyze the transmission speed, spatial spread, pathways, and dynamics
of infectious diseases, thereby supporting effective prevention and control measures.

Infectious disease models are typically classified into types based on disease progression:
SI (Susceptible-Infected), SIS (Susceptible-Infected-Susceptible), SIR (Susceptible-Infected-
Removed), SIRS (Susceptible-Infected-Removed-Susceptible), and SEIR (Susceptible-Exposed-
Infected-Removed). According to their transmission mechanisms, they are further divided into
various forms, including those based on ordinary differential equations, partial differential
equations, and network dynamics. The SEIR model, due to its complexity and closer alignment
with machine-learning algorithms and real transmission patterns of infectious diseases, is
particularly effective for predicting demand and optimizing emergency supply models.

As illustrated in Figure 1, the SEIR model (Zhang et al., 2023b [13]; Luo et al., 2022 [14];
Wang & Nie, 2023 [26]; Liu, 2022 [27]) categorizes the population into four compartments:
susceptible (S), representing the number of individuals at risk of infection; exposed (E),
representing individuals in the incubation phase; infected (I), representing those actively
infected; and recovered (R), representing those who have recovered. Here, represents the
infection probability, represents the transmission rate, i.e., the likelihood of transmission
from an infected individual, and represents the recovery rate. The total population (N) is
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expressed as N = S + E + I + R. The differential equations governing the SEIR model are
as follows:

dS/dt = −βSI/N (1)

dE/dt = βSI/N − σE (2)

dI/dt = σE − γI (3)

dR/dt = γI (4)
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Figure 1. Schematic diagram of SEIR model.

Modeling studies in infectious diseases have contributed to the development of gen-
eralized infectious disease dynamics models. These models serve as essential tools for
quantitative theoretical research, capturing the dynamics of infectious diseases by incorpo-
rating various relevant factors. They enable analysis of disease progression, reveal epidemic
patterns, predict trends, and identify key factors contributing to outbreaks.

4. Infectious Disease Dynamics Modeling
4.1. Existing Models and Shortcomings

Existing models are generally adaptations of the classical SEIR infectious disease
dynamics model, modified using data from specific outbreak transmission cases (Zhou et al.,
2020 [28]). Many of these classical models used in China were developed during the 2003
SARS epidemic, utilizing data from that period. However, the classical SEIR model is
inadequate for modeling the third stage of COVID-19 due to the following limitations:

1. COVID-19, like many other infectious diseases, is transmissible during the incubation
period, meaning individuals in this stage can spread the infection.

2. The model lacks an isolation mechanism, which is essential as exposed or latent
individuals are often isolated. Isolated latent individuals do not transmit the disease,
and susceptible individuals in isolation eventually either become susceptible again or
latent individuals are sent for treatment.

3. Asymptomatic infected individuals are not accounted for; they are similar to uniso-
lated latent infections but have a higher transmission capacity.

4. Re-infection or return of positivity in recovered patients is not considered.

To address these limitations, the model has been enhanced to reflect the unique
characteristics of COVID-19’s third stage.

4.2. Improved SEIR Model

Based on the actual epidemic situation, susceptible individuals are categorized into
two non-infectious groups: those quarantined due to contact history and those not quaran-
tined who can move freely. Similarly, there are two types of latent infections: individuals
infected after contact who are isolated during the incubation period and do not transmit the
virus, and undetected individuals who remain infectious. Infected individuals are divided
into two categories:

1. Non-infectious individuals: those hospitalized with a confirmed diagnosis, who are
considered non-infectious due to isolation, including asymptomatic individuals in
quarantine.

2. Undetected infectious individuals: primarily asymptomatic individuals with a high
transmission potential who go unnoticed and represent a risk category.

Recovered individuals are also divided into two categories: those who have completely
recovered and those who experience re-infection after recovery. The relationship diagram
is shown in Figure 2 (Zhuang and Wu, 2022 [29]).
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4.2.1. Subsubsection

The parameters used in the model are defined as follows:

• S: Susceptible persons, representing the general population not under quarantine.
• SQ: Isolated susceptible persons who had contact with an infected individual and

are under quarantine. If asymptomatic after 14 days, they return to the non-isolated
susceptible category.

• E: Infection latents, unquarantined individuals who are infected and in the incuba-
tion period.

• EQ: Isolated latent infections, individuals identified as infected during the incubation
period and isolated. This includes latent patients identified after exposure to an
infected person or latent patients not previously isolated.

• I: Infected persons, confirmed cases not in isolation, mainly undetected asymptomatic
individuals.

• IQ: Hospitalized infected persons, those confirmed as infected and in isolation.
• D: Deaths, individuals who succumbed to COVID-19.
• R: Recovered persons, those who recovered from COVID-19. Some may be re-infected,

given the cases of re-infection after recovery.
• ρ: Isolation ratio.
• σ: Exposure rate.
• ε: Probability of disease development in exposed individuals.
• β: Infection rate, the probability that a contact results in infection.
• q: De-isolation rate, with q = 1/14, as isolation typically lasts 14 days.
• θ: Rate of conversion from isolated exposure to isolated infection.
• δ: Mortality rate among infected persons.
• γ: Recovery rate among infected persons.
• ω: Probability of an infected individual being isolated.
• α: Probability of re-infection in recovered patients.
• µ: Daily emergency supply requirement per exposed person.
• K: Set of infected areas, defined as K = {1, 2, . . ., k}.
• J: Set of medical supply points, defined as J = {1, 2, . . ., j}.
• T: Duration of the COVID-19 period, defined as T = {1, 2, . . ., t}.

Time-dependent variables:

• N_k(t): Total population in infected area k at time t.
• S_k(t): Number of non-quarantined susceptible individuals in infected area k at time t.
• E_k(t): Number of unquarantined exposed individuals in infected area k at time t.
• I_k(t): Number of non-quarantined infected individuals in infected area k at time t.
• SQ_k(t): Number of quarantined susceptible individuals in infected area k at time t.
• EQ_k(t): Number of isolated exposed individuals in infected area k at time t.
• IQ_k(t): Number of isolated infected individuals in infected area k at time t.
• R_k(t): Number of recovered individuals in infected area k at time t.
• D_k(t): Number of deaths in infected area k at time t.
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• d_k(t): Emergency supply demand in infected area k at time t

4.2.2. Assumptions

The assumptions for this model are as follows:

1. Natural birth and death rates were not included, as these factors typically take a long
time to impact the population structure.

2. The population in each infected area is assumed to be stable. Strong government
control is assumed to prevent population movement after the outbreak.

3. The available quantity of emergency medical supplies is assumed to be known.
4. Individuals in SQ who do not carry the virus after a 14-day observation period rejoin

the susceptible population (S). Assuming 1/14th of SQ returns to S daily may lead
to insufficient demand during rising infection periods and excess demand during
declining periods. To address this, a 10% increase in demand is applied during periods
of rising infections, and a 10% decrease during declining phases is incorporated in the
demand forecast.

5. Recovered patients are considered non-infectious, with the exception of a small
probability of re-infection.

4.2.3. Modeling

Under each of the previous assumptions, the behavior of the spread of the outbreak in
infected area k at moment t, that is, the change in the number of each population, is given
by the following equations:

dSk(t)
dt

= −[σβ +ρσ(1 − β)]
Sk(t)(Ik(t) + Ek(t))

Nk(t)
+ q ∗ SQk(t) (5)

dEk(t)
dt

= σβ(1 − ρ)
Sk(t)(Ik(t) + Ek(t))

Nk(t)
− εEk(t) (6)

dIk(t)
dt

= εEk(t)− ω Ik(t) (7)

dSQk(t)
dt

= σρ(1 − β)
Sk(t)(Ik(t) + Ek(t))

Nk(t)
− q ∗ SQk(t) (8)

dEQk(t)
dt

= σβρ
Sk(t)(Ik(t) + Ek(t))

Nk(t)
− θ ∗ EQk(t) (9)

dIQk(t)
dt

= ωIk(t) + θ ∗ EQk(t)− ( δ + γ) ∗ IQk(t) + αRk(t) (10)

dRk(t)
dt

= γ ∗ IQk(t)− αRk(t) (11)

Equation (5) describes the change in the number of unquarantined susceptible per-
sons in infected area k; the number of susceptible individuals is in a constant process of
reduction, and part of the exposure to infected persons is isolated into isolated suscepti-
ble persons. Undetected infected susceptible persons become non-isolated latent persons,
and uninfected susceptible persons in isolation became susceptible again after 14 days of
isolation. It is assumed that 1/14th of the SQ quit consuming resources every day, and
reverting back to the susceptible will lead to the under-prediction of supplies in the rising
infection period and the error phenomenon of rich supplies in the falling infection period;
thus, the subsequent supply prediction model will be improved with respect to this point.
Equation (6) describes the variation in the number of isolated undetected infection latents.
Undetected infection latents come from susceptible individuals who are in contact with
infected individuals with a probability ρ of being detected for isolation and becoming
isolated infection latents, and a proportion of those become infected after the incubation pe-
riod. Equation (7) describes the variation in the number of infected individuals who are not
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isolated, which comes from the fact that undetected infection latents have a ω probability
of being detected and then isolated for treatment. Equation (8) describes the change in the
number of isolated susceptibles, where some become isolated infection latents and some
return to susceptibility at the end of the isolation period. Equation (9) describes the change
in the number of isolated patients referred to the hospital for treatment. Equation (10)
describes the change in the number of hospitalized patients, some of whom are cured, and
some of whom die. Equation (11) describes the change in the number of recovered patients
with an α probability of re-infection after recovery. Because data are usually reported daily
during an epidemic, the above system of differential equations was transformed into a
system of difference equations as follows:

Sk(t + 1) = Sk(t)− [σβ +ρσ(1 − β)]
Sk(t)(Ik(t) + Ek(t))

Nk(t)
+ q ∗ SQk(t) (12)

Ek(t + 1)= Ek(t) + σβ(1 − ρ)
Sk(t)(Ik(t) + Ek(t))

Nk(t)
− εEk(t) (13)

Ik(t + 1)= Ik(t)+εEk(t)− ω Ik(t) (14)

SQk(t + 1) = SQk(t) + σρ(1 − β)
Sk(t)(Ik(t) + Ek(t))

Nk(t)
− q ∗ SQk(t) (15)

EQk(t + 1) = EQk(t) + σβρ
Sk(t)(Ik(t) + Ek(t))

Nk(t)
− θ ∗ EQk(t) (16)

IQk(t + 1) = IQk(t) + ωIk(t) + θ ∗ EQk(t)− ( δ + γ) ∗ IQk(t) + αRk(t) (17)

Rk(t + 1)= Rk(t) + γ ∗ IQk(t)− αRk(t) (18)

Given the initial values of Sk(0), Ek(0), Ik(0), SQk(0), EQk(0), IQk(0), Rk(0), et cetera,
the number of susceptible persons, contacts, infected persons, recovered persons, and dead
persons in the infected area k can be predicted by the above formula.

4.2.4. Model Elaboration

Epidemics of various scales have always coexisted with humanity. Beyond large-scale
infectious diseases like smallpox and COVID-19, outbreaks of infectious diseases can also
arise following natural disasters such as floods and earthquakes. While the primary focus is
on preventing post-disaster infections, once outbreaks occur, accurate prediction of medical
supply needs becomes critical for effective containment, prevention, and minimizing
additional harm to those in affected areas.

The improved SEIR model, though originally designed for COVID-19, is broadly ap-
plicable to common infectious diseases. With adjustments, it can accommodate other types
of infections; for instance, in the case of lifelong immunity diseases, the recurrent pathway
from recovered (R) to re-infected (IQ) can be removed. The model enables straightforward
estimation of the number of individuals requiring supplies, aiding efficient distribution
and supporting infection control efforts in various scenarios.

4.3. Emergency Material Requirements Model
4.3.1. Safety Stock Model

After forecasting the number of isolated latent and infected individuals, emergency
supply needs are estimated by applying inventory management principles (Guo and Zhou,
2011 [30]). Safety stock, a logistics concept, provides buffer inventory to handle uncer-
tainties in supply and demand. Businesses maintain safety stock to prevent production
disruptions due to unpredictable fluctuations. This concept closely resembles emergency
supply reserves, though with a key difference: emergency supplies prioritize meeting
demand fully, with less emphasis on cost control.

The safety-stock model and its applicability are detailed below. Key factors affecting
safety stock include unpredictable customer demand, fluctuating production processes,
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variable distribution cycles, and differing service levels. The modeling approach varies
based on whether demand and lead times are random.

Equation (19) is the classical model for safety stock.

SS = z

√
σ2

d
(

L
)
+ σ2

L

(
d
)2

(19)

In Equation (19), SS represents safety stock, L denotes the mean lead time, d is the
average daily demand, z is the service level coefficient, σd is the standard deviation of
demand d, and σL is the standard deviation of lead time. Equation (19) shows that safety
stock is calculated as the service-level factor multiplied by the standard deviation of
demand over the replenishment cycle.

This safety stock model is designed to address uncertainties in demand, supply, and
availability, aligning well with the emergency supply demand forecasting in this study.
Thus, based on this safety stock concept, the following section briefly outlines the demand
forecasting model applied in this study.

4.3.2. Symbol Description

Symbol used in this part is as follows:

• EQ(t): Number of isolated latent infections. Non-isolated latent infections are not
immediately considered for medical supply needs.

• IQ(t): Number of inpatients.
• J = {j|j = 1, 2, . . ., J}: Types of emergency supplies.
• N(t): Number of healthcare workers in the area.
• t = 1, 2, . . ., t: Time series, with the initial point of the epidemic designated as time 1,

followed by fixed intervals.
• Nj: Average demand for supply type j across all personnel.
• Ej: Demand criteria for material category j for latent infections.
• Ij: Demand criteria for material category j for inpatients.
• Aj: Current inventory level of materials in category j.
• z: Service level factor, which varies by emergency supply type. For example, critical

medical supplies may have a higher z value, while non-medical supplies like food may
have a lower value. A z value of 1.65 represents a desired 95% demand satisfaction rate.

• L: Average delivery time for emergency supplies, adjustable according to epidemic
severity; shorter in more critical phases.

• σ′jd: Standard deviation of historical demand for supply j.

4.3.3. Mathematical Models

The demand forecasting model constructed based on the above theory can be ex-
pressed by Equations (20)–(23).

Dj
′(t)=

{
z × σ′

jd ×
√

L + σd, j ∈ Food supplies;

MAX
{

z × σ′
jd ×

√
L + σd − Aj

∣∣∣0}, j ∈ Medical supplies;
(20)

σ′
jd =

√
∑t−7

t [σd − σd]
2

7
(21)

σd=

{
Nj × (N(t) + EQ(t) + IQ(t)), j ∈ Food supplies;
EQ(t)× Ej + IQ(t)× Ij, j ∈ Medical supplies;

(22)

σd =
∑t−7

t σd
7

(23)
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Dj(t)=

{
D′

j(t)× (1 + 10%), M(t) ≤ M (t + 1);
D′

j(t)× (1 − 10%), M(t) > M (t + 1);
(24)

Equation (20) is the demand forecasting formula. Equations (21)–(23) are the explana-
tory equations for each variable. The first Equation (20) is the demand forecast for food
supplies, and the second is the demand forecast for medical supplies, in which medical
supplies are ventilators, belong to non-consumable medical supplies, so the past inventory
is considered. Equation (24) implies that since assumption (4) will generate an error, it will
lead to the under-prediction of supplies during the period of increasing infections and the
over-estimation of supplies during the period of decreasing infections. A treatment of a
10% increase in demand during the period of increasing infections and a 10% decrease in
demand during the period of decreasing infections is made. Because real material demand
data are not available, to verify the feasibility of this model, a traditional method, that is,
the number of people multiplied by the average demand, is used to predict the demand,
and the two results are compared to verify the feasibility of the model.

Dj(t)=
{

Nj × (N(t) + EQ(t) + IQ(t)), j ∈ Food supplies;
MAX

{(
EQ(t)× Ej + IQ(t)× Ij

)
− Aj

∣∣0}, j ∈ Medical supplies;
(25)

5. Results and Discussion
5.1. Case Description and Parameter Assignment Test

Since December 2019, several cases of pneumonia of unknown origin were identified
in hospitals in Wuhan, Hubei Province, which were subsequently confirmed as respiratory
infections caused by COVID-19. By the end of January 2020, a large-scale outbreak had
emerged, with Wuhan implementing a lockdown on 23 January amidst a rapid increase
in confirmed cases and fatalities. The background information for this article draws from
leading medical journals, including the Journal of the American Medical Association and
Association of Public Health Interventions with the Epidemiology of the COVID-19 Out-
break in Wuhan, China (Pan et al., 2020 [31]). During the third of five epidemic phases
outlined in these sources, the epidemic reached its peak, prompting the government to en-
force strict preventive and control measures despite a severe shortage of medical resources.

Due to the urgency at this early stage of the epidemic, there were insufficient human
and material resources for comprehensive tracking of case numbers. To obtain data for
comparative analysis, infection data from Hubei Province as of 22 February 2020, served as
a baseline for projecting medical supply and food demand over the next 16 days, including
requirements for medical personnel. Specific material requirements are detailed in Table 1.

Table 1. Material types and demand specifications Unit: per person per day.

Mouthpiece Ventilator Food

IQ 6 0.2 a
EQ 6 0 a

Medical staff 6 0 a

In the table above, the daily mask demand per person was estimated based on the
guideline that masks are replaced every four hours, resulting in an estimate of six masks per
person per day. According to information from a press conference by the Hubei Provincial
Health and Wellness Commission, it is estimated that Hubei has 170,000 frontline medical
personnel. Among inpatients, only critically ill patients required ventilators, with an esti-
mated ratio of 0.2 used in this study. Food intake was calculated based on the assumption
of a standard unit of food per person per day.

5.2. EQ and IQ Numerical Prediction and Error Analysis

This study validated the model by comparing the predicted data for a 30-day period
starting from February 22 in Hubei Province with actual data collected from the 16th day
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onward. The demand forecasting model was then applied to predict requirements for these
16 days. Due to varying parameter conditions across different periods, key variables and
parameters were selected based on the epidemic situation in Hubei at that time. Data on
confirmed cases, contacts, recoveries, and deaths were sourced from the Wuhan Health and
Wellness Commission, while hospitalization numbers were obtained from official bulletins.
The number of isolated latent cases was calculated using Equation (24), as referenced in the
literature (Zou and Liang, 2020 [32]). Initial variable values are displayed in Table 2, with
parameter assignments detailed in Table 3.

En= (In+5 + IQn+5 + Rn+5 + Dn+5)− (In + IQn + Rn + Dn) (26)

Table 2. Initial settings of the improved SEIR infectious disease dynamic model.

Variables I(0) IQ(0) S(0) SQ(0) E(0) EQ(0)

value 46,439 40,127 59,170,000 61,181 1623 1346
(estimated)

description of
the values official data

official data,
number of

people treated
in hospital

obtained from
the total

population
minus the
number of

cured deaths

official data,
number of

people under
medical

observation

number of
cured deaths on

26 February
minus the
number on
22 February

number of people
under medical

observation
multiplied by the

proportion of
incubators

Note: Since the bed data were not updated after 25 February, this study assumed that the total number of beds
remained unchanged after 25 February to estimate the number of hospitalizations.

Table 3. Assignment of parameters to the improved SEIR infectious disease dynamics model.

parameter β σ ρ ε

value 2.05 × 10−9 0.448 1 × 10−6 1/7

parameter δ ω γ α

value 0.0402 0.13 0.1769 0.122
Note: The meanings of the parameters are given in previous symbolic descriptions.

The improved infectious disease dynamic model and parameters were tested using
MATLAB R2016a. The predicted values of EQ and IQ obtained after several experiments
and adjustment of parameters are shown in Figures 3 and 4.
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The model results indicate that the predicted values of EQ and IQ were in line with the
real data trend. Tables 4 and 5 show the predicted values of EQ and IQ during 22 February
to 8 March. Tables 6 and 7 show the true values of EQ and IQ during this time.

Table 4. Predicted values for isolated infection latents (EQ).

date 22 February 23 February 24 February 25 February 26 February 27 February 28 February 29 February

projected
number 1346 1229 1122 1025 936 854 780 712

date 1 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March

projected
number 650 594 542 495 452 413 377 344

Table 5. Inpatient (IQ) predictive values.

date 22 February 23 February 24 February 25 February 26 February 27 February 28 February 29 February

projected
number 40,127 39,028 37,134 34,849 32,434 30,053 27,800 25,728

date 1 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March

projected
number 23,857 22,191 20,723 19,439 18,321 17,352 16,515 15,792

Table 6. True values of isolated infection latents (EQ).

date 22 February 23 February 24 February 25 February 26 February 27 February 28 February 29 February

number 1346 1289 1176 1088 1019 949 865 787

date 1 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March

number 707 625 556 502 463 403 343 291

Table 7. Inpatient (IQ) true values.

date 22 February 23 February 24 February 25 February 26 February 27 February 28 February 29 February

number 40,127 39,073 37,896 36,242 34,978 32,878 31,064 28,912

date 1 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March

number 26,901 25,050 23,039 20,765 19,758 18,518 17,078 15,826
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Next, the fit and error of the predicted values were analyzed. The predicted data of
the isolated latents and hospitalized patients were fitted to the real data obtained from the
query information, and the results are shown in Figures 5 and 6. The goodness-of-fit value
for the predicted value of EQ was 0.988013, and the goodness-of-fit value for the predicted
value of IQ was 0.979685. It can be seen that the model fits well. The average relative error
of the calculated EQ prediction values was 6.4%, and the average relative error value of
IQ prediction values was 6.225%. The prediction accuracy was high, and the relative error
distribution is shown in Figures 7 and 8.
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5.3. Demand Forecast

The data was incorporated into the demand forecasting model, and the urgency of
the epidemic decreased at this point, depending on the case context. The number of new
confirmed cases decreased, that is, M(t) > M(t + 1), and the availability factor z was set to
1.28 for food items and 1.65 for medical items. The average delivery period of the emergency
supplies was assumed to be 4 d. The predicted demand obtained by solving for 1 day as
a timing unit is listed in the following Table. (Since the original volume of the ventilator
cannot be checked, the first day of the estimated volume was taken as the standard here).
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The projected data in Table 8 shows that, the supplies demand also decreases as the
number of patients decrease. The demand for respirator is listed for clarity, but the actual
demand for them is declining, and the subsequent demand would become zero because
the original stock would be sufficient to meet the demand with a decline in the number of
patients. Next, the result data derived from the demand forecasting model is compared
with the number of people times unit demand method to verify the feasibility of the model
in this study.

Table 8. Projected demand for various types of emergency supplies (safety stock theory).

Data
date

22 February 23 February 24 February 25 February 26 February 27 February 28 February 29 February

Mask 1,166,190 1,158,081 1,154,169 1,153,250 1,150,410 1,145,338 1,143,390 1,140,342

Respirator 8056 7769 7624 7588 7495 7326 7263 7173

Food 193,459 a 192,165 a 191,255 a 190,656 a 189,783 a 188,630 a 187,909 a 187,083 a

Data
date

1 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March

Mask 1,115,306 1,105,184 1,093,649 1,081,756 1,070,166 1,059,280 1,049,302 1,040,304

Respirator 6984 6657 6258 5832 5409 5007 4636 4300

Food 185,884 a 184,197 a 182,274 a 180,292 a 178,361 a 176,546 a 174,883 a 173,384 a

Note: “a” refers to the value Nj that is average demand for supply type j across all personnel.

The data in Tables 8 and 9 are compared and analyzed, and the difference between the
two sets of data is small, indicating that the demand forecasting model of this study is in
line with reality. The main difference between the two sets of data is that the number of
mask ventilators in Table 8 is higher compared to Table 9, and the food is lower. This is
due to the setting of availability coefficients, which can be set differently for different stage
characteristics. Compared with the direct method of using the number of people multiplied
by the unit demand, the demand prediction model of this study is designed to be flexible
and consistent with the actual data, and can be designed according to the severity of the
epidemic and different kinds of supplies.

Table 9. Forecasted values of demand for various types of emergency supplies (traditional method).

Data
date

22 February 23 February 24 February 25 February 26 February 27 February 28 February 29 February

Mask 1,268,838 1,261,542 1,249,536 1,235,244 1,220,220 1,205,442 1,191,480 1,178,640

Respirator 8025 7806 7427 6970 6487 6011 5560 5146

Food 211,473 a 210,257 a 208,256 a 205,874 a 203,370 a 200,907 a 198,580 a 196,440 a

Data
date

1 March 2 March 3 March 4 March 5 March 6 March 7 March 8 March

Mask 1,167,042 1,156,710 1,147,590 1,139,604 1,132,638 1,126,590 1,121,352 1,116,816

Respirator 4771 4438 4145 3888 3664 3470 3303 3158

Food 194,507 a 192,785 a 191,265 a 189,934 a 188,773 a 187,765 a 186,892 a 186,136 a

Note: “a” refers to the value Nj that is average demand for supply type j across all personnel.

6. Conclusions

This study addresses demand uncertainty during an epidemic by combining an im-
proved infectious disease dynamics model with post-epidemic demand estimation, utilizing
safety stock theory. This approach enables demand prediction for various epidemic re-
gions and stages, providing a basis for the efficient dispatch and distribution of emergency
supplies and offering valuable guidance for relief efforts.
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However, the demand forecasting model has some limitations: (1) It focuses on
the supply needs for medical sites, not the total population in the affected area. (2) The
probabilities for a susceptible person becoming isolated and a latent person becoming
isolated are approximated as the same, which may introduce errors. (3) The model’s
validation method requires further development. Future studies will classify and predict
demand for the entire population in the affected area, improve parameter selection, and
enhance model validation techniques.
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