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Abstract: Isthmic spondylolysis is characterized by a stress injury to the pars interarticularis bones of
the lumbar spines and is often missed by conventional magnetic resonance imaging (MRI), necessi-
tating a computed tomography (CT) for accurate diagnosis. We compare MRI techniques suitable
for producing CT-like images. Lumbar spines of asymptomatic and low back pain (LBP) subjects
were imaged at 3-Tesla with multi-echo ultrashort echo time (UTE) and field echo (FE) sequences
followed by simple post-processing of averaging and inverting to depict spinal bones with a CT-like
appearance. The contrast-to-noise ratio (CNR) for bone was determined to compare UTE vs. FE
and single-echo vs. multi-echo data. Visually, both sequences depicted cortical bone with good
contrast; UTE-processed sequences provided a flatter contrast for soft tissues that made them easy to
distinguish from bone, while FE-processed images had better resolution and bone–muscle contrast,
which are important for fracture detection. Additionally, multi-echo images provided significantly
(p = 0.03) greater CNR compared with single-echo images. Using these techniques, progressive
spondylolysis was detected in an LBP subject. This study demonstrates the feasibility of using spine
bone MRI to yield CT-like contrast. Through the employment of multi-echo UTE and FE sequences
combined with simple processing, we observe sufficient enhancements in image quality and contrast
to detect pars fractures.

Keywords: MRI; low back pain; bone fracture; pars interarticularis

1. Introduction

Low back pain (LBP) affects a significant proportion of young athletes, with up to 36%
reporting it annually [1]. Isthmic spondylolysis [2] is characterized by a stress injury to the
pars interarticularis of the vertebral arch of the lumbar spine [3,4]. It is a prevalent condition
among young athletes engaged in activities that place repetitive stress on the lumbar spine.
While the exact incidence of isthmic spondylolysis is not well documented, studies have
reported it as a frequent cause of low back pain in young athletes, with prevalence rates
ranging from 20% to 50% [5]. These findings highlight the need for accurate, radiation-free
diagnostic tools for young individuals.

Isthmic spondylolysis presents with varying severity, necessitating different imaging
techniques for its accurate assessment. In the initial stage of stress injuries to the pars
interarticularis characterized by bone marrow edema without fracture, magnetic resonance
imaging (MRI) is the most sensitive tool for detecting bone stress reactions [6,7]. As
the condition progresses, both bone stress reactions and fractures may be present, while
the terminal stage involves only fractures. Computed tomography (CT) is superior for
visualizing bone fractures. This variability in presentation makes it challenging for a single
imaging modality to fully characterize the stage of isthmic spondylolysis. Both MRI and
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CT play crucial roles in the evaluation, and frequently, both modalities are necessary for a
definitive diagnosis.

Due to concerns about ionizing radiation exposure in young patients, particularly those
of reproductive age, MRI is the preferred initial imaging modality for detecting isthmic
spondylolysis. However, due to the limited ability to visualize bone detail, conventional
MRI frequently fails to identify a significant number of bone fractures that are later detected
by CT scans [6–8]. A follow-up CT scan, providing excellent contrast and visualization for
fine bone details [9], is then needed to ascertain the diagnosis for bone fracture at the pars.
While multiple CT scans are detrimental for the long-term health of adolescent subjects,
increasing the risk of cancer [10–12], it can be unavoidable in those who sustain recurrent
low back injury, known to occur in as many as 33% of sport back injury patients within a
year [13]. Reduction or avoidance of radiation would be highly beneficial for the imaging
of young athletes suffering from low back pain.

Newer MRI techniques are gradually being adapted for bone imaging, with the
development of sequences like ultrashort echo time (UTE) [14] and zero echo time (ZTE) [15].
These techniques have shown potential in visualizing the bone structure in several joints,
including the knee [15,16], shoulder [17], and lumbar spine [18]. Nonetheless, they are
hampered by inherent limitations, such as a low signal-to-noise ratio (SNR) and lower
resolution, compared with CT. Thus, the continued study and development of bone-
oriented MR techniques is warranted.

In this study, our objective was to introduce and compare two MRI techniques for
imaging bone—multi-echo UTE and multi-echo field echo (FE) acquisitions—combined
with simple post-processing to enhance appearance, SNR, and image contrast, with the
aim of providing CT-like image characteristics. The use of multi-echo images to improve
SNR has been proposed previously [19,20], and it will likely benefit UTE imaging for
depicting cortical bone. FE sequences have also been suggested for bone imaging [21], with
notable strengths including the wide availability of the sequence from major MRI vendors,
high spatial resolution, and high contrast between muscle and bone, which are useful
for bone visualization. In this study, we combined UTE and FE acquisitions with simple
post-processing techniques to provide a CT-like appearance and to improve image quality.

2. Materials and Methods
2.1. Subjects

Lumbar spines of four subjects (1 male, 3 females; 19.5 ± 5.5 years old) were imaged
at 3-T (Canon Galan) with a posterior spine coil. Two health volunteers were recruited with
the inclusion criteria of no low back pain or history of low back surgery. Two of the subjects
were adolescent (16 yo female, 14 yo male) athletes with non-specific and non-radiating
low back pain for the past 4–8 weeks. The symptoms did not improve with conservative
treatment, and the patients’ primary care physician referred them to be evaluated for the
presence of spondylolysis.

2.2. MRI

The subjects were imaged with a 3-Tesla MRI scanner (Galan, Canon Medical Systems
Corp., Otawara, Japan) fitted with a posterior receive-only spine coil. One anatomical se-
quence and two bone-oriented sequences were used to image each subject. The anatomical
sequence was a sagittal T2-weighted fast spin echo (FSE T2) with fat suppression with
the following scanning parameters: repetition time (TR) = 5600 milliseconds (ms), echo
time (TE) = 80 ms, field of view (FOV) = 220 millimeters (mm), image matrix = 320 × 416,
slice thickness = 3 mm, and echo train length (ETL) = 19. The bone-oriented sequences
were (1) an axial 3D UTE multi-echo sequence with scan parameters of TR = 16.7 ms;
TE = 0.1, 2.7, 5.3 ms; number of projections = 19,968; FOV = 300 ms; matrix = 320 × 320;
and slice = 1 mm, reformatted to the sagittal plane and (2) a sagittal 3D field echo (FE)
multi-echo sequence with scan parameters of TR = 21.8 ms; TE = 4, 8.6, 13.2 ms; FOV =
170 mm; matrix = 320 × 240; and slice = 1 mm. The source images are shown in Figure 1.
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While no formal optimization was performed, we initially tried different numbers of radial
projections for the 3D UTE, and different TE values for the 3D FE.

Computation 2024, 12, x FOR PEER REVIEW 3 of 9 
 

 

= 0.1, 2.7, 5.3 ms; number of projections = 19,968; FOV = 300 ms; matrix = 320 × 320; and 
slice = 1 mm, reformatted to the sagittal plane and (2) a sagittal 3D field echo (FE) multi-
echo sequence with scan parameters of TR = 21.8 ms; TE = 4, 8.6, 13.2 ms; FOV = 170 mm; 
matrix = 320 × 240; and slice = 1 mm. The source images are shown in Figure 1. While no 
formal optimization was performed, we initially tried different numbers of radial projec-
tions for the 3D UTE, and different TE values for the 3D FE. 

 
Figure 1. Raw MRI images of a lumbar spine acquired by (A) T2-weighted fat-suppressed fast spin 
echo (FSE T2 FS), (B,C) 3D ultrashort echo time (UTE) at varying echo times (TEs), and (D,E) 3D 
field echo (FE) at varying TEs. 

2.3. CT-like Image Processing 
To create a CT-like appearance from the bone-oriented MRIs, and to demonstrate the 

advantage of using multiple images from multi-echo acquisition, the images were pro-
cessed directly on the scanner console in the following 2 ways. First, a set of CT-like im-
ages were created from the first-echo images from the UTE (TE = 0.1 ms, Figure 1B) and 
FE (TE = 4 ms; Figure 1D) were simply inverted (Equation (1)) to make the bone tissues 
bright and the surrounding tissues dark (Figure 2A,C).  𝐹𝑖𝑟𝑠𝑡 𝐸𝑐ℎ𝑜 𝐶𝑇-l𝑖𝑘𝑒 𝐼𝑚𝑎𝑔𝑒 ൌ ଵௌ௢௨௥௖௘ ூ௠௔௚௘  (1)

A second set of CT-like images were created from all images (with varying TEs) in 
the multi-echo series. For each sequence of the UTE and the FE, all of the source images 
from different TEs were averaged and then inverted to yield the final CT-like images (Fig-
ure 2B,D) following Equation (2), where i = the source images corresponding to each TE 
and n = the number of TEs. 𝑀𝑢𝑙𝑡𝑖-𝐸𝑐ℎ𝑜 𝐶𝑇-𝑙𝑖𝑘𝑒 𝐼𝑚𝑎𝑔𝑒 ൌ 𝑛∑ 𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑚𝑎𝑔𝑒௜௡௜ୀଵ  (2)

The intention was that the averaging would reduce the noise, and the inversion 
would provide high signal intensity to the bone. Representative processed images from 
both approaches using the UTE and the FE are shown in Figure 2. 

Figure 1. Raw MRI images of a lumbar spine acquired by (A) T2-weighted fat-suppressed fast spin
echo (FSE T2 FS), (B,C) 3D ultrashort echo time (UTE) at varying echo times (TEs), and (D,E) 3D field
echo (FE) at varying TEs.

2.3. CT-like Image Processing

To create a CT-like appearance from the bone-oriented MRIs, and to demonstrate
the advantage of using multiple images from multi-echo acquisition, the images were
processed directly on the scanner console in the following 2 ways. First, a set of CT-like
images were created from the first-echo images from the UTE (TE = 0.1 ms, Figure 1B) and
FE (TE = 4 ms; Figure 1D) were simply inverted (Equation (1)) to make the bone tissues
bright and the surrounding tissues dark (Figure 2A,C).

First Echo CT-like Image =
1

Source Image
(1)

A second set of CT-like images were created from all images (with varying TEs) in
the multi-echo series. For each sequence of the UTE and the FE, all of the source images
from different TEs were averaged and then inverted to yield the final CT-like images
(Figure 2B,D) following Equation (2), where i = the source images corresponding to each
TE and n = the number of TEs.

Multi-Echo CT-like Image =
n

∑n
i=1 Source Imagei

(2)

The intention was that the averaging would reduce the noise, and the inversion would
provide high signal intensity to the bone. Representative processed images from both
approaches using the UTE and the FE are shown in Figure 2.
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Figure 2. Processed images to create CT-like contrast from (A) the UTE 1st-echo image, (B) UTE
multi-echo images, (C) the FE 1st-echo image, and (D) FE multi-echo images. Differences between
sequences (UTE vs. FE) and improvements in contrast and image quality from multi-echo processing
are apparent.

2.4. Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR)

Regions of interest (ROI) were drawn on a sagittal slice of the processed CT-like im-
ages that depicted cortical bone of the pars interarticularis and the surrounding paraspinal
muscles (Figure 3). The ROIs were placed manually by a scientist with over 10 years of ex-
perience in imaging research. ROIs for the bone were placed along the pars interarticularis,
and ROIs for the muscle were placed in the adjacent paraspinal muscle posterior to the
bone ROI. Within each ROI, we determined the mean signal intensity (SImean). An ROI was
also placed in the background (air) to determine the standard deviation (SISD) of the noise
signal intensity. We evaluated slice-to-slice variability by the coefficient of variation in the
mean signal intensity of bone ROIs in 5 consecutive slices of two datasets and found less
than 2% variability, regardless of the sequence used.

The SNR was determined from the mean signal intensity divided by the standard
deviation of the noise in the air [22] (Equation (3)).

SNR1 =
SI1

mean

SInoise
SD

(3)

The CNR was determined from the difference in mean signal intensity between se-
lected ROIs divided by the standard deviation of the noise [23] (Equation (4)).

CNR1−2 =
SI1

mean − SI2
mean

SInoise
SD

(4)
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Figure 3. Regions of interest (blue-enclosed areas), including bone of the pars interarticularis,
paraspinal muscles, and air, which were analyzed to determine the SNR and CNR.

2.5. Statistics

SNR and CNR values between the four types of CT-like images (processed from UTE
1st-echo, UTE multi-echo, FE 1st-echo, and FE multi-echo images) were compared using
fully-factorial two-way ANOVA [24,25] to determine the effects of the sequence (UTE vs.
FE) and the use of 1st-echo image vs. all three images from the multi-echo processing. The
Systat statistical analysis software (v12, Grafiti LLC, Palo Alto, CA, USA) was used. The
significance level was set at 5%.

2.6. Spondylolysis Evaluation

For the two subjects with low back pain, we compared the conventional SE T2, multi-
echo-processed UTE, and multi-echo-processed FE images to evaluate the presence of
spondylolysis (Figure 4).
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Figure 4. Detection of a moderately sized pars defect (arrows) in an adolescent athlete with persistent
low back pain using FSE T2 FS (A), UTE multi-echo processing (B), and FE multi-echo processing (C).
The processed images may enable an easier and more confident diagnosis of isthmic spondylolysis.

3. Results
3.1. Observations

Compared with FSE T2 (Figure 1A), CT-like processed images from first-echo
(Figure 2A,C) and multi-echo (Figure 2B,D) UTE and FE images all depicted spinal bone
distinctly with high signal intensity, similar to CT. UTE (Figure 2A,B) and FE (Figure 2B,C)
images, while both providing CT-like contrast, had notable differences. UTE images were
softer, while providing a flatter contrast for the soft tissue, making it easier to distinguish
the bone if the reader is unfamiliar with the anatomy. In contrast, FE images were markedly
sharper and depicted bone with a higher contrast. But FE images depicted many non-bone
tissues (e.g., fascia of muscle) with a similarly high signal intensity as bone. This makes
FE imaging less desirable for tasks such as the automatic segmentation and visualization
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of bone but more desirable for evaluating small features such as hairline fractures. When
comparing CT-like images from first-echo (Figure 2A,C) vs. multi-echo (Figure 2B,D),
the multi-echo images showed an improvement, with less noise and better contrast for
bone overall.

3.2. SNR and CNR

Table 1 summarizes the SNR and CNR values for the CT-like processed images. CT-
like images from the UTE data had mean SNR values for the bone ranging from 90 to 100,
which were significantly higher (p = 0.0002) than the values from the FE data (mean SNR
range of 38 to 53). However, the CNR (bone–muscle) values were slightly higher (p = 0.09)
for FE (mean CNR ranging from 15 to 22) compared with UTE (CNR of 13 to 16). The use
of multi-echo images, for both UTE and FE data improved the CNR values significantly
(p = 0.03): for UTE, the CNR on average improved by 2.7, while for FE, the CNR improved
by 6.9. This corroborates the visual improvements in bone contrast observed in the image
comparison in Figure 2.

Table 1. (Top) Mean and standard deviation of SNR and CNR values from various regions of
interest. (Bottom) p-values from two-way ANOVA to assess the effects of sequence (UTE vs. FE) and
processing (first-echo vs. multi-echo) on the SNR and CNR. Bold faced p-value indicates statistical
significance (p < 0.05).

Mean (+/− Std. Dev.) Values for Each Sequence
Measurement UTE 1st Echo UTE Multi FE 1st Echo FE Multi

Bone SNR 107 (66) 89.8 (29.5) 38.1 (10.3) 53.3 (16.3)
Muscle SNR 94.4 (65.4) 74.0 (32.8) 23.4 (7.0) 31.9 (14.2)

Bone–Muscle CNR 13.0 (5.2) 15.7 (5.0) 14.6 (4.2) 21.5 (8.5)

Two-Way ANOVA: Effect of

Measurement UTE vs. FE 1st- vs.
Multi-echo Interaction

Bone SNR 0.0004 0.9289 0.2235
Muscle SNR 0.0002 0.6556 0.2864

Bone–Muscle CNR 0.0935 0.0311 0.3327

3.3. Spondylolysis Depiction

In one of the low back pain subjects, we detected progressive spondylolysis with a
moderate-sized bone defect seen as a gap with high signal intensity in FSE T2 (Figure 4A,
arrow) and a clear non-union in both the multi-echo-processed UTE (Figure 4B, arrow) and
multi-echo-processed FE (Figure 4C, arrow) images. We also measured the signal profile
across the bone defect in UTE-processed and FE-processed images. The defect widths,
measured as full width at half maximum, were 2.75 mm and 2.39 mm for UTE and FE,
respectively.

4. Discussion

This study has demonstrated the feasibility of spine bone MRI to yield CT-like contrast.
Through the employment of multi-echo UTE and FE sequences combined with straightfor-
ward image processing techniques, we have observed discernible enhancements in image
quality and bone contrast compared with using single-echo approaches. Our findings are
encouraging, suggesting that these approaches can be used to obtain CT-like images useful
for evaluating spondylolysis, albeit with limitations.

Our study compared multi-echo UTE and multi-echo 3D FE sequences and demon-
strated that, while both sequences can depict cortical bone reasonably well, UTE imaging
provided a flatter contrast for soft tissues that made distinguishing bone (appearing dark)
from surrounding tissues (appearing bright) easier, while FE images had greater spatial
resolution and bone–muscle contrast than UTE, which will be invaluable for detecting finer



Computation 2024, 12, 152 7 of 9

fractures. We also showed that processing all images from multi-echo acquisition provided
significantly a greater CNR for bone for both UTE and FE acquisitions.

Our study builds upon past studies with a similar purpose of imaging bone using MRI.
Many utilized a similar approach of acquiring images that depict bone with a signal void
and surrounding tissue with higher signal intensity and inverting the image to provide a
CT-like appearance [21,26,27]. These studies have demonstrated that these conventional
sequences can indeed provide a good depiction of cortical bone structure, and in one
study [27], high accuracy (>90%) in detecting bone fractures was demonstrated. Our
result generally corroborated these past results and suggested the benefit of using multi-
echo images for improving image quality. While we did not formally investigate the
effect of different processing techniques, our simple averaging and inverting approach
can be performed on any MRI console using built-in image processing tools. Various
other processing techniques such as rescaled echo subtraction [28], simple inversion of
a single echo [27], or summation of all but the last echo followed by the last echo [21]
have been attempted with varying degrees of success. There are even more advanced
approaches available, such as using deep learning to create CT-like (pseudo-CT) images
from MRI [18,29,30], but these currently require extensive off-line processing that may
delay clinical evaluation.

This is an early study with many limitations. While the feasibility has been shown,
a comparative study using CT reference images is needed. Since it is difficult to acquire
both CT and MRI images without a clinical need, an initial study could utilize cadaveric
specimens, as performed previously [18]. Also, the number of subjects used was very
small, but this is typical in early technical development. Nonetheless, a larger study will be
needed in the future to confirm the present findings and to make the results generalizable
for the intended application. We found that the differences in the SNR and the CNR
between MR sequences were substantial, and the trend will likely be similar with a greater
number of subjects, since the signal intensity of cortical bone and muscle may not vary
markedly between subjects without a particular pathology. While it would have been ideal
to involve radiologists to compare the image quality and the diagnostic performance for
detecting pars fractures, that would have required quite a large number of subjects, as
well as reference CT images. This is a likely future extension of the current work. As an
early study, we were able to enroll two young athletes with persistent low back pain and
positively showed spondylolysis in one of them in Figure 4, demonstrating the clinical
feasibility.

Despite advances in pulse sequences and post-processing techniques, there is still no
MRI-based method that can produce images equivalent to CT scans. In terms of techniques
appropriate for bone fracture evaluation at the pars, both techniques discussed in this paper,
along with past similar approaches based on conventional image processing [19,21,27],
might provide value. The use of artificial intelligence to synthesize pseudo-CT images
from MRI images [18,31,32], while yielding the best bone contrast (reaching CNRs of 100
to 150 [18], compared with about 20 in this study) and CT-like appearance, are not yet
practical. Future work will explore the possibility of improving bone imaging by using
more advanced image processing and/or deep learning techniques.

5. Conclusions

In conclusion, this study has demonstrated the feasibility of two MRI techniques to
provide a radiation-free alternative for the evaluation of spondylolysis, with their clinical
application shown on a young subject with a pars defect. Further advancements in MRI
technology with multi-echo UTE and FE have the potential to transform the standard of
care for adolescent athletes and others with isthmic spondylolysis, offering a safer, equally
effective, and radiation-free imaging alternative.
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