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Abstract: The primary goal of this research is to lessen the high vibration that the model causes
by using an appropriate vibration control. Thus, we begin by implementing various controller
types to investigate their impact on the system’s reaction and evaluate each control’s outcomes.
The controller types are presented as proportional (P), proportional-integral (PI), and proportional-
integral-derivative (PID) controllers. We employed PID control to regulate the torsional vibration
behavior on a dynamical system. The PID controller aims to increase system stability after seeing the
impact of P and PI control. This kind of control ensures that there are no unstable components in the
system. By using the multiple time scale perturbation (MTSP) technique, a first-order approximate
solution has been obtained. Using the frequency response function approach, the stability and steady-
state response of the system at the primary resonance scenario (Ω1 ∼= ω1, Ω2 ∼= ω2) are considered as
the worst resonance and addressed. Additionally examined are the nonlinear dynamical system’s
chaotic response and the numerical solution for various parameter values. The MATLAB programs
are utilized to attain simulation outcomes.

Keywords: MSPT; P; PI; PID controllers; nonlinear differential equations; active control; stability;
torsional vibration

1. Introduction

Torsional vibration occurs in some form in all rotating machinery. Even when the
vibration is nearing destructive amplitude, there are situations in which it cannot be
identified without specialized monitoring equipment. After the shaft bending stiffness
and diametral moment of inertia have been replaced by the twisting stiffness and polar
moment of inertia, respectively, many elements of torsional vibration are equivalent to
shaft vibration. When something mediates the connection between the vibration and the
ground, or when gear teeth or coupling jaws are empty, torsional vibration can be detected
by the noise level and vibration (perceptible to touch). Torsional vibration can interact with
the ground through gear sets used to change the speed of power transmission systems; in
reciprocating machines, the path to the ground is provided by sliding crank mechanisms
found in engines and compressors. Typically, torsional vibration manifests as a complicated
vibration signal with numerous frequency components. Some systems experience brief
torsional vibrations due to shock from sudden starts and the unloading of gear teeth;
synchronous electric motor systems may also experience torsional resonance at startup.

Conventional PID controllers have been widely adopted in numerous industrial ap-
plications due to their simple design, affordable price, simplicity of maintenance, and
there being ready-made modules [1–3]. Ref. [4] offers the implementation of nonlinear
state-dependent (SDP-PID+) control employing the SDP transfer function model, a type
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of nonlinear description of dynamical structures. Fine-tuning traditional PID control is
problematic owing to the specific properties of numerous procedures, including binary
sample time delays, longer durations, higher-order TF models, and nonlinearities [5–7].
Sayed et al. [8] developed a nonlinear resilient SDP PID control approach for a discrete
transfer function with nonlinear properties. This research emphasized robust response
processes, for which the robust PID and SDP-PID techniques were specifically designed.
Dano and Julli’ere [9] studied how MFC actuators controlled oscillations in a composite
structure. Kumar and Ray [10] examined vibrations in sandwich shells with between one
and three piezoelectric composites and layering damping techniques. The PD controller is
designed to decrease oscillations of a hung Jeffcott rotor through two pairs of poles [11]. A
PD controller can effectively relax a beam system’s steady-state amplitude vibrations [12].
Eissa et al. [13,14] suggested a PD controller and a time-delayed PD controller to reduce
the vibrations of magnetic systems with cubic and quadratic nonlinear coefficients un-
derneath parametric principal forces. Bauomy and El-Sayed employed a PD controller
to control the behavior of the MFC laminated shell structure. The purpose of employing
the PD controller is to improve system stability by increasing control, as it can forecast
future errors in the framework response [15]. More than 90% of industries still utilize PID
controllers due to their simplicity, functionality, and ease of usage [16]. PID controller gains
are acquired by matching the frequency response of the closed-loop control system [17].
Recently, a systematic approach was used to select PID parameters for nonlinear uncertain
structures [18]. PID controllers offer advantages over passive approaches for controlling
semi-active suspension systems [19–21]. Ref. [22] investigates the control of a quarter-car
semi-active suspension system utilizing a PID controller. The typical PID controller is
constructed using the Ziegler–Nichols approach and is used to regulate the suspension
system. The torsional vibrations of a one-degree-of-freedom nonlinear dynamical structure
are regulated with active control [23]. Wenzhi and Zhiyong [24] suggested an active control
to decrease torsional vibration in a big turbogenerator with a rotor shaft. Whole-state
feedback control using a linear quadratic regulator (LQR) effectively reduces torsional vi-
bration energy and response in the turbogenerator shaft system. El-Sayed and Bauomy [25]
they succeeded in reducing the torsional vibration of a nonlinear dynamical system using
passive and active control methods. The research study [26] proposes an adaptive PI
event-triggered control approach for MIMO nonlinear systems with unpredictable input
delay. An adaptive proportional/proportional-integral (P/PI) control strategy is proposed
for a solar-driven volumetric methane/steam reforming reactor (SVMSR) with passive
thermal management. The strategy aims to stabilize product components and reduce
fluctuations in the hydrogen production rate under fluctuating radiation conditions [27].
Previous research, such as studies [28–30], has demonstrated the successful application
of the multiple-scale perturbation technique to derive approximate solutions for various
vibrating systems. These studies often utilize MATLAB programs to analyze and solve
vibration problems.

A cantilever beam model was explored and derived to load an intermediate lumped
mass under harmonic excitation. The vibration suppression can be succeeded by using IRC+
NSC controller. To determine the unstable and stable zones for each frequency response
curve, numerical stability research was carried out [31].This research investigates the use of
a nonlinear spring pendulum for the vibration control of ship roll motion. Three second-
order nonlinear differential equations—one for the rotation angle, one for the relative
elongation of the absorber spring, and one for the elongation of the absorber spring—make
up the mathematical model that depicts the ship roll motion with the absorber. The authors
use a series solution in which they account for terms up to the fourth order in trigonometric
functions of the rotational angle. According to the authors, the nonlinear spring-pendulum
system’s two modes may be made to respond to multi-parametric excitation forces in a
way that reduces their maximum values by 8.8% and 0.02% [32]. The PPF control of the
nonlinear GMA framework has been described in [33]. The basic resonance and framework
amplitude stability can be successfully constrained by tuning the PPF limitations. A few
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experiments have been carried out to verify the accuracy of the findings. The investigation
illustrated the growth of the framework and contrasted its usefulness to earlier research.
The 3D plot improves and illustrates the work’s correctness. Ref. [34] suggests using NIPPF
controllers to manage the nonlinear vibration of a spinning shaft’s primary resonance
vibration. Among these is a comparison between the controllers for the FRCs under
study, NIPPF, and ANIPPF. A two-degree-of-freedom system, counting quadratic and cubic
nonlinearities among the parametric and external forces, demonstrate the calculated system.
Multiple scales are joined in a connected manner to analyze the stability of the measured
structure and obtain approximations of solutions. From the mathematical solution, every
resonance is retrieved. The Runge–Kutta fourth-order process is used to gauge the system’s
performance. Within the numerical results, the examined structure’s scheduled frequency
response curves are examined for influences including significant coefficients [35]. A low-
speed and high-torque permanent magnet synchronous motor powers the semi-direct
drive-cutting gearbox system of a shearer, which uses nonlinear integral positive position
feedback (NIPPF) and adaptive nonlinear integral positive position feedback (ANIPPF)
controllers. Using the averaging technique to solve the nonlinear differential equations and
modeling the system with controllers yields an analytic solution in the case of primary and
1:1 internal resonance. The MATLAB program was used to compare the numerical and
analytical solutions for time history and FRCs in order to verify their comparability [36].

In this work, we utilized PID control to suppress the torsional vibration after studying
the model on a website [37]. A two-degree-of-freedom system under multiple excitations
results from this. To provide an estimated solution up to the first-order approximations,
MSPT is employed throughout. Using frequency response functions, the stability of the
system is examined in the vicinity of the principal resonance case. A few suggestions on
the system’s various parameters are given. Numerical examples are provided to show how
active controllers affect the behavior of the system. A comparison is shown between PID
control and additional controllers.

2. Mathematical Modeling
2.1. System Dynamics without Control

This section is presented to illustrate the investigation of the torsional vibration dy-
namical system. The dynamical model in this work consists of two coupled parts, as shown
in Figure 1. θ1 and θ2 represent the angular positions (generalized coordinates) within the
system. In this nonlinear dynamical system, the following hold:

• I1 and I2 represent the polar mass moments of inertia.
• k1 is the linear spring stiffness of the first part.
• k2 represents the spring stiffness of the second part, which comprises the following:

◦ k21: a linear component.
◦ k22: nonlinear quadratic and cubic components.

• F•
1 and F•

2 denote the generalized excitation forces.
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Therefore, the equations of the motions of the free body system found in Figure 1 can
be constructed in the same manner as those in [25,37]:

I1
..
θ1 + k1θ1 + c1

.
θ1 + k21(θ1 − θ2) + k22(θ1 − θ2)

2 + k23(θ1 − θ2)
3 = F•

1 , (1)

I2
..
θ2 + k21(θ2 − θ1)− k22(θ1 − θ2)

2 − k23(θ1 − θ2)
3 = F•

2 , (2)
..
θ1 +

k1

I1
θ1 +

c1

I1

.
θ1 +

k21

I1
(θ1 − θ2) +

k22

I1
(θ1 − θ2)

2 +
k23

I1
(θ1 − θ2)

3 =
F•

1
I1

, (3)

..
θ1 +

(
k1 + k21

I1

)
θ1 +

c1

I1

.
θ1 −

k21

I1
θ2 +

k22

I1
(θ1 − θ2)

2 +
k23

I1
(θ1 − θ2)

3 =
F•

1
I1

, (4)

..
θ2 +

k21

I2
(θ2 − θ1)−

k22

I2
(θ1 − θ2)

2 − k23

I2
(θ1 − θ2)

3 =
F•

2
I2

, (5)

..
θ1

θ0
+

(
k1 + k21

I1

)
θ1

θ0
+

c1

I1

.
θ1

θ0
− k21

I1

θ2

θ0
+

k22θ0

I1

(θ1 − θ2)
2

θ2
0

+
k23θ2

0
I1

(θ1 − θ2)
3

θ3
0

=
F•

1
I1

, (6)

..
θ2

θ0
+

k21

I2

(θ2 − θ1)

θ0
− k22θ0

I2

(θ1 − θ2)
2

θ2
0

−
k23θ2

0
I2

(θ1 − θ2)
3

θ3
0

=
F•

2
I2

. (7)

We will now introduce the dimensionless forms of the parameters used in this analysis.

φj =
θj

θ0
(j = 1, 2), ω2

1 =
k1 + k21

I1
, ζ =

c1

I1
, β =

k21

I1
, α1 =

k22θ0

I1
, α2 =

k23θ2
0

I1
ω2

2 =
k21

I2
, α3 =

k22θ0

I2
,

α4 =
k23θ2

0
I2

, f j sin(Ωjt) =
F•

j

Ij
.

Based on the above parameters, we can obtain the following equations of motion in
their dimensionless forms:

..
φ1 + ω2

1 φ1 + ζ
.
φ1 − βφ2 + α1(φ1 − φ2)

2 + α2(φ1 − φ2)
3 = f1 sin(Ω1t), (8)

..
φ2 + ω2

2(φ2 − φ1)− α3(φ1 − φ2)
2 − α4(φ1 − φ2)

3 = f2 sin(Ω2t). (9)

2.2. System Dynamics with PID Control

The goal of the present section is to propose PID controllers to reduce harmful torsional
vibration on the dynamical system in this work at one of the worst resonance cases, as
depicted in Figure 2. Furthermore, the control in our work is represented as two net control
forces FC1 and FC2 that are generated to suppress the torsional oscillations in two directions.
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Here, Kp, Ki, and Kd denote the proportional feedback control gain, integral feedback
control gain, and derivative feedback control gain, respectively. Also, e1(t) and e2(t) denote
the error value with zero steady-state step error.

The equations of motion utilizing the PID controllers coupled to the nonlinear dynam-
ical system as depicted in Figure 2 can be expressed as follows:

..
φ1 + ω2

1 φ1 + εζ
.
φ1 − εβφ2 + εα1(φ1 − φ2)

2 + εα2(φ1 − φ2)
3 = ε f1 sin(Ω1t) + εFC1, (10)

..
φ2 + ω2

2(φ2 − φ1)− εα3(φ1 − φ2)
2 − εα4(φ1 − φ2)

3 = ε f2 sin(Ω2t) + εFC2, (11)

FC1 = −Kp φ1 − Ki

t∫
o

φ1(τ)dτ − Kd
.
φ1, (12a)

FC2 = −Kp φ2 − Ki

t∫
o

φ2(τ)dτ − Kd
.
φ2, (12b)

..
φ1 + ω2

1 φ1 + εζ
.
φ1 − εβφ2 + εα1(φ1 − φ2)

2 + εα2(φ1 − φ2)
3 = ε f1 sin(Ω1t)

−εKp φ1 − εKi

t∫
o

φ1(τ)dτ − εKd
.
φ1

, (13)

..
φ2 + ω2

2(φ2 − φ1)− εα3(φ1 − φ2)
2 − εα4(φ1 − φ2)

3 = ε f2 sin(Ω2t)

−εKp φ2 − εKi

t∫
o

φ2(τ)dτ − εKd
.
φ2

. (14)

3. Analytical Investigations
3.1. Perturbation Analysis

The multiple-scales perturbation technique (MSPT) is applied within this section to
obtain an approximation solution of the nonlinear dynamical system with the proposal
control (i.e., PID control) given by Equations (13) and (14). Correspondingly, we were
able to find a first-order approximate solution to Equations (13) and (14), proposed as
follows [28,29]:

φn = φn0 + εφn1 + O
(

ε2
)

, (n = 1, 2) (15)

where the minor perturbation parameter ε is located in the range of 0 < ε ≪ 1. Let us
define two time scales, T0 and T1, where T0 = t represents a fast scale while T1 = εt is the
slow one. The derivatives of time are converted into the following:

d
dt

=
dT0

dt
∂

∂T0
+

dT1

dt
∂

∂T1
+ . . . = D0 + εD1 + . . . , (16)

d2

dt2 =
d
dt

(
dT0

dt
∂

∂T0
+

dT1

dt
∂

∂T1
+ . . .

)
= D2

0 + 2εD0D1 + . . . . (17)

where Dj =
∂

∂Tj
(j = 0, 1).

The following set of ordinary differential equations was constructed by substituting
Equations (15) and (16) into Equations (13) and (14) and equating the coefficients of the
same power of ε in both sides:
O
(
ε0): (

D2
0 + ω2

1

)
φ10 = 0, (18a)(

D2
0 + ω2

2

)
φ20 = ω2

2 φ10. (18b)

O
(
ε1):
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(
D2

0 + ω2
1
)

φ11 = −2D0D1 φ10 − ζD0 φ10 + βφ20 − α1(φ10 − φ20)
2 − α2(φ10 − φ20)

3

+ f1 sin(Ω1t)− Kp φ10 − Ki

t∫
o

φ10(τ)dτ − KdD0 φ10
, (19a)

(
D2

0 + ω2
2
)

φ21 = ω2
2 φ11 − 2D0D1 φ20 + α3(φ10 − φ20)

2 + α4(φ10 − φ20)
3 + f2 sin(Ω2t)

−Kp φ20 − Ki

t∫
o

φ20(τ)dτ − KdD0 φ20
. (19b)

The zeroth order approximation is represented by the general solution of Equations
(18a) and (18b), which can be expressed as follows:

φ10 = A1(T1) exp(iω1T0) + cc., (20a)

φ20 = A2(T1) exp(iω2T0) + ΓA1(T1) exp(iω1T0) + cc. (20b)

where cc denotes the complex conjugate of the preceding components, Am is the complex

function in T1, and Γ =

(
ω2

2
ω2

2−ω2
1

)
.

Substituting Equation (20) into Equation (19a), we have

(
D2

0 + ω2
1
)

φ11 =

 −2iω1D1 A1 − iω1ζ A1 + ΓβA1 − α2

(
6(1 − Γ)A1 A2 A2

+3(1 − Γ)3 A2
1 A1

)
−
(

Kp − i Ki
ω1

+ Kdiω1

)
A1

 exp(iω1T0)

+
[
−α1(1 − Γ)2 A2

1

]
exp(2iω1T0) +

[
−α2(1 − Γ)3 A3

1

]
exp(3iω1T0) + [βA2

+α2

(
3A2

2 A2 + 6(1 − Γ)2 A1 A1 A2

)]
exp(iω2T0) +

[
−α1 A2

1
]

exp(2iω2T0)

+
[
α2 A3

2
]

exp(3iω2T0) + [2α1(1 − Γ)A1 A2] exp(i(ω1 + ω2)T0)

+
[
2α1(1 − Γ)A1 A2

]
exp(i(ω1 − ω2)T0) +

[
3α2(1 − Γ)2 A2

1 A2

]
exp(i(2ω1 + ω2)T0)

+
[
3α2(1 − Γ)2 A2

1 A2

]
exp(i(2ω1 − ω2)T0) +

[
−3α2(1 − Γ)A1 A2

2
]

exp(i(ω1 + 2ω2)T0)

+
[
−3α2(1 − Γ)A1 A2

2

]
exp(i(ω1 − 2ω2)T0) +

[
−α1

(
(1 − Γ)2 A1 A1 + A2 A2

)
− iKi

A1
ω1

]
+
[
−i f1

2

]
exp(iΩ1T0) + cc.,

(21)

To obtain the solvability condition of Equation (21), the closeness term of the excitation
frequencies (Ω1) and natural frequency (ω1) is described via employing the dimensionless
detuning parameterσ1, as in the following:

Ω1 = ω1 + εσ1. (22)

By substituting Equation (22) into Equation (21) and canceling the term that leads
to secular ones, we obtain the particular solution of the first approximation (φ11) as the
following:

φ11 = M1 exp(2iω1T0) + M2 exp(3iω1T0) + M3 exp(iω2T0) + M4 exp(2iω2T0)
+M5 exp(3iω2T0) + M6 exp(i(ω1 + ω2)T0) + M7 exp(i(ω1 − ω2)T0)
+M8 exp(i(2ω1 + ω2)T0) + M9 exp(i(2ω1 − ω2)T0) + M10 exp(i(ω1 + 2ω2)T0)
+M11 exp(i(ω1 − 2ω2)T0) + M12 + cc.

, (23)

Here, Mi (i = 1, 2, . . . , 12) is presented in Appendix A.
Substituting Equations (20) and (23) into Equation (19b), we have
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(
D2

0 + ω2
2
)

φ21 =
[
−2iω1D1ΓA1 + α4

(
3(1 − Γ)3 A2

1 A1 + 6(1 − Γ)A1 A2 A2

)
−
(

Kp − i Ki
ω1

+ iω1Kd

)
ΓA1

]
exp(iω1T0) +

[
ω2

2 M1 + α3(1 − Γ)2 A2
1

]
exp(2iω1T0)

+
[
ω2

2 M2 + α4(1 − Γ)3 A3
1

]
exp(3iω1T0) +

[
ω2

2 M3 − 2iω2D1 A2

−
(

Kp − i Ki
ω2

+ iω2Kd

)
A2 −α4

(
3A2

2 A2 + 6(1 − Γ)2 A1 A1 A2

)]
exp(iω2T0)

+
[
ω2

2 M4 + α3 A2
2
]

exp(2iω2T0) +
[
ω2

2 M5 − α4 A3
2
]

exp(3iω2T0)
+
[
ω2

2 M6 − 2α3(1 − Γ)A1 A2
]

exp(i(ω1 + ω2)T0) +
[
ω2

2 M7 − 2α3(1 − Γ)A1 A2
]

× exp(i(ω1 − ω2)T0) +
[
ω2

2 M8 − 3α4(1 − Γ)2 A2
1 A2

]
exp(i(2ω1 + ω2)T0)

+
[
ω2

2 M9 − 3α4(1 − Γ)2 A2
1 A2

]
exp(i(2ω1 − ω2)T0) +

[
ω2

2 M10 + 3α4(1 − Γ)A1 A2
2
]

× exp(i(ω1 + 2ω2)T0) +
[
ω2

2 M11 + 3α4(1 − Γ)A1 A2
2

]
exp(i(ω1 − 2ω2)T0)

+
[
ω2

2 M12 + α3

(
(1 − Γ)2 A1 A1 + A2 A2

)
− Ki

(
i A2

ω2
+ i ΓA1

ω1

)]
+
[
−i f2

2

]
exp(iΩ2T0) + cc.

(24)

To obtain the second solvability condition of Equation (24), the closeness term of
excitation frequencies (Ω2) and natural frequency (ω2) is described via employing the
dimensionless detuning parameter σ2 as the following:

Ω2 = ω2 + εσ2. (25)

By substituting Equation (25) into Equation (24) and canceling the term which leads to
the secular ones, we obtain the particular solution of the first approximation (φ21) as the
following:

φ21 = N1 exp(iω1T0) + N2 exp(2iω1T0) + N3 exp(3iω1T0) + N4 exp(2iω2T0)
+N5 exp(3iω2T0) + N6 exp(i(ω1 + ω2)T0) + N7 exp(i(ω1 − ω2)T0)
+N8 exp(i(2ω1 + ω2)T0) + N9 exp(i(2ω1 − ω2)T0) + N10 exp(i(ω1 + 2ω2)T0)
+N11 exp(i(ω1 − 2ω2)T0) + N12 + cc.

. (26)

Here, Ni (i = 1, 2, . . . , 12) is presented in Appendix A.
After inserting Equations (22) and (25) into Equations (21) and (24) and deleting the

secular term, the conditions of solvability can be gained as follows:

2iω1D1 A1 =

 (
−iω1ζ + Γβ − Kp + i Ki

ω1
− Kdiω1

)
A1 + (−6α2(1 − Γ))A1 A2 A2

+
(
−3α2(1 − Γ)3

)
A2

1 A1


+
[
−i f1

2

]
exp(iσ1T1)

, (27a)

2iω2D1 A2 =

[ (
−Γβ − Kp + i Ki

ω2
− iω2Kd

)
A2 + (−3Γα2 − 3α4)A2

2 A2

+(−6Γα2 − 6α4)(1 − Γ)2 A1 A1 A2

]
+
[
−i f2

2

]
exp(iσ2T1)

. (27b)

To obtain the amplitude-phase equations of the controlled system, we analyze the
solution of Equation (27), exchanging An(T1) by the polar form as

An =
1
2

an(T1)eiγn(T1), (n = 1, 2). (28)

We obtain the governing equations of the amplitudes an and the phases γn by substi-
tuting from Equation (28) into Equation (27) and then separating the real and imaginary
components.

.
a1 =

(
− ζ

2
+

Ki

2ω2
1
− Kd

2

)
a1 +

[
− f1

2ω1

]
cos(ψ1), (29a)



Computation 2024, 12, 157 8 of 20

a1
.
γ1 =

[(
− Γβ

2ω1
+

Kp

2ω1

)
a1 +

(
3α2(1 − Γ)

4ω1

)
a1a2

2 +

(
3α2(1 − Γ)3

8ω1

)
a3

1

]
+

[
− f1

2ω1

]
sin(ψ1), (29b)

.
a2 =

(
Ki

2ω2
2
− Kd

2

)
a2 +

[
− f2

2ω2

]
cos(ψ2), (30a)

a2
.
γ2 =

[(
Γβ

2ω2
+

Kp
2ω2

)
a2 +

(
3Γα2+3α4

8ω2

)
a3

2 +
(

3Γα2+3α4
4ω2

)
(1 − Γ)2a2

1a2

]
+
[
− f2
2ω2

]
sin(ψ2)

(30b)

where
ψ1 = σ1T1 − γ1, ψ2 = σ2T1 − γ2. (31)

The fixed points in Equations (29)–(30) correspond to the steady-state solutions of the
system, which in turn correspond to

.
an = 0 and

.
ψn = 0.

From Equation (31), we indicate that
.
γ1 = σ1 and

.
γ2 = σ2.

As a result,
.
an = 0 and

.
ψn = 0; the practical case’s frequency response equations (FRE)

(a1 ̸= 0, a2 ̸= 0) are provided as

0 =

(
− ζ

2
+

Ki

2ω2
1
− Kd

2

)
a1 +

[
− f1

2ω1

]
cos(ψ1), (32a)

a1σ1 =

[(
− Γβ

2ω1
+

Kp

2ω1

)
a1 +

(
3α2(1 − Γ)

4ω1

)
a1a2

2 +

(
3α2(1 − Γ)3

8ω1

)
a3

1

]
+

[
− f1

2ω1

]
sin(ψ1), (32b)

0 =

(
Ki

2ω2
2
− Kd

2

)
a2 +

[
− f2

2ω2

]
cos(ψ2), (33a)

a2σ2 =
[(

Γβ
2ω2

+
Kp

2ω2

)
a2 +

(
3Γα2+3α4

8ω2

)
a3

2 +
(

3Γα2+3α4
4ω2

)
(1 − Γ)2a2

1a2

]
+
[
− f2
2ω2

]
sin(ψ2)

. (33b)

3.2. Stability Analysis via Linearizing the above System

In order to examine the stability of the given fixed points nonlinear solution, let

am = am0 + am1,
ψm = ψm0 + ψm1

}
(34)

where am1 and ψm1 are perturbations that are thought to be tiny in comparison to am0
and ψm0. Here, am0 and ψm0 are the solutions of Equations (29) and (30). Equation (34) is
substituted into Equations (29) and (30) with Equation (31), retaining only the linear terms
in am1 and ψm1. Therefore, the linearized system of Equations (29) and (30) has the forms

.
a11 =

[
− ζ

2
+

Ki

2ω2
1
− Kd

2

]
a11 +

[
f1

2ω1
sin(ψ10)

]
ψ11, (35a)

.
ψ11 =

[(
σ1
a10

+ Γβ
2a10ω1

− Kp
2a10ω1

)
+
(
− 3α2(1−Γ)

4a10ω1

)
a2

20 +

(
− 9α2(1−Γ)3

8ω1

)
a10

]
a11

+
[

f1
2a10ω1

cos(ψ10)
]
ψ11 +

[(
− 3α2(1−Γ)

2ω1

)
a20

]
a21

, (35b)

.
a21 =

[(
Ki

2ω2
2
− Kd

2

)]
a21 +

[
f2

2ω2
sin(ψ20)

]
ψ21, (36a)
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.
ψ21 =

[
−
(

3Γα2+3α4
2ω2

)
(1 − Γ)2a10

]
a11 +

[(
σ2
a20

− Γβ
2a20ω2

− Kp
2a20ω2

)
−
(

9Γα2+9α4
8ω2

)
a20 −

(
3Γα2+3α4

4a20ω2

)
(1 − Γ)2a2

10

]
a21 +

[
f2

2ω2a20
cos(ψ20)

]
ψ21

. (36b)

The above Equations (35) and (36) can be described as the following matrix:[
.
a11

.
ψ11

.
a21

.
ψ21

]T
= [J]

[
a11 ψ11 a21 ψ21

]T . (37)

Here [J]is represented by the appropriate portions of Equations (35) and (36).
The eigenvalues of [J] ascertained using the subsequent equation are as follows:

λ4 + Γ1 λ3 + Γ2 λ2 + Γ3λ + Γ4 = 0. (38)

The coefficients of Equation (38) are denoted as Γm (m = 1, 2, . . . , 4). The solutions of
the system with PID control are stable if the roots’ real parts of λ have negative values; if not,
they are unstable. It is a necessary and sufficient requirement for a steady-state solution
to use the Routh–Hurwitz criterion, which states that all of the roots of Equation (38)
must have negative real parts if and only if all of the principal minors and the following
determinant D are positive.

D =

∣∣∣∣∣∣∣∣
Γ1 1 0 0
Γ3 Γ2 Γ1 1
0 Γ4 Γ3 Γ2
0 0 0 Γ4

∣∣∣∣∣∣∣∣. (39)

4. Results and Discussion
4.1. Time History Performance without Control

To analyze the behavior of the dynamical system the fourth-order Runge–Kutta al-
gorithm (ode45 in MATLAB) [30] is applied to find the numerical solution of the given
uncontrolled system of Equations (8) and (9).

The time history performance of the system without any controller at the primary
resonance (Ω1

∼= ω1, Ω2 ∼= ω2) is shown in Figure 3 at the chosen values (ω1 = 3; ζ =
0.2; ω2 = 2; β = 0.5ω2

2; α1 = 0.2; α2 = 0.3; f1 = 10; α3 = 2α1; α4 = 2α2; f2 = 5; Ω1 =
ω1; Ω2 = ω2).

Computation 2024, 12, x FOR PEER REVIEW 11 of 23 
 

 

The coefficients of Equation (38) are denoted as ( )1,2,...,4m m =Γ . The solutions of 
the system with PID control are stable if the roots’ real parts of λ  have negative values; 
if not, they are unstable. It is a necessary and sufficient requirement for a steady-state 
solution to use the Routh–Hurwitz criterion, which states that all of the roots of Equation 
(38) must have negative real parts if and only if all of the principal minors and the follow-
ing determinant D  are positive. 

1

3 2 1

4 3 2

4

1 0 0
1

0
0 0 0

D

Γ
Γ Γ Γ

=
Γ Γ Γ

Γ

. (39)

4. Results and Discussion 
4.1. Time History Performance without Control 

To analyze the behavior of the dynamical system the fourth-order Runge–Kutta al-
gorithm (ode45 in MATLAB) [30] is applied to find the numerical solution of the given 
uncontrolled system of Equations (8) and (9). 

The time history performance of the system without any controller at the primary 
resonance ( 1 1 2 2,ω ωΩ Ω≅ ≅  ) is shown in Figure 3 at the chosen values

2
1 2 2 1 2 1 3 1 4 2( 3; 0.2; 2; 0.5 ; 0.2; 0.3; 10; 2 ; 2 ;fω ζ ω β ω α α α α α α= = = = = = = = =

2 1 1 2 25; ; )f ω ω= Ω = Ω = . 

Figure 3a,b show the steady-state time response against the amplitude 1ϕ  for the 

uncontrolled first system and the velocity 1ϕ , respectively. Similarly, Figure 4a,b show 

the uncontrolled second main system and its amplitude 2ϕ   and velocity 2ϕ   with the 
time response. 

 
Figure 3. The time diagram without any controller (a) the first part of the system, 1ϕ (b) the re-
sponse of its velocity, 1ϕ . 

 

Figure 3. The time diagram without any controller (a) the first part of the system, φ1 (b) the response
of its velocity,

.
φ1.

Figure 3a,b show the steady-state time response against the amplitude φ1 for the
uncontrolled first system and the velocity

.
φ1, respectively. Similarly, Figure 4a,b show

the uncontrolled second main system and its amplitude φ2 and velocity
.
φ2 with the time

response.
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4.2. Time History Performance with Different Control

The closed-loop performances of the P, PI, and PID controllers for the two systems φ1
and φ2, along with their corresponding velocities

.
φ1 and

.
φ2, are displayed in Figure 5. The

closed-loop responses of the traditional P and PI controllers are unstable and exhibit peak
overshoot. Better closed-loop performance, such as in responses with less peak overshoot
and settling time, was supplied by the redesigned PID controller structure, which conveys
closed-loop responses with less peak and overshoot and a more stable curve than the others.
The study was for the first main system and its velocity, as in Figure 5a,b, and the second
main system shown in Figure 5c,d. Figure 5 shows evidence of both steady behavior and
the absence of chaos in the produced wavelengths and amplitudes in every section. We
utilized the gain values that are depicted in Table 1 to obtain these closed loops using the
three control approaches.
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Table 1. Parameters of a PID controller.

Gain
Controller Kp Ki Kd

P (Red) 150 - -
PI (Blue) 150 20 -

PID (Green) 150 20 20

In Figure 6a,b, there is a depiction of the first main system’s amplitude decreasing
from 7.788 to 0.0569 after the utilization of a time PID controller. This indicates that the
controller’s effectiveness (Ea = amplitude without control/amplitude with) was equivalent
to 136.87 for the first main system φ1, with a proportional reduction of 99.27%. Likewise,
the amplitude φ2 of the second system, which is equal to 13.59, as shown in Figure 7,
decreased to 0.02886, where Ea = 470.89, reflecting a proportional reduction of 99.79%.
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part of the system φ2 (b) the response of its velocity
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φ2.

Figure 8 illustrates the phase plane of both main systems before and after adding the
PID controller. Figure 8a shows that the first main system φ1, with a multi-limit cycle in the
case of not adding control, and as improved with a limited cycle after adding PID. With the
second main system φ2, as shown in Figure 8b before adding the control, the phase plane is
the multi-limit cycle, which decreased after adding PID.
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4.3. Frequency Response Curves (FRC)

The frequency response curves of Equations (32) and (33) of the first main system a1,
against the detuning parameter σ1, are illustrated in Figure 9a without the influence of
any controller, where the solid black line represents the stable solution while the red line
indicates the unstable solution of the same equation. The amplitude of the first main system
is fully reduced after the P controller is added; however, as Figure 9b shows, this declining
portion of the curve is unstable. The response curve in Figure 9c shows what happens
when a PI controller is added. It is discovered that this fully reduces the amplitude of the
primary system a1, yet the curve is absolutely unstable. After adding a PID controller, the
first main system’s behavior is shown in Figure 9d, where it is discovered that the curve
has a monotonically decreasing amplitude and is completely stable. The response curves of
the second main system a2, against the detuning parameter σ2, are illustrated in Figure 10a
without the influence of any controller. The amplitude of the second main system is fully
reduced after the P controller is added; however, as Figure 10b shows, this declining portion
of the curve is unstable. The response curve in Figure 10c shows what happens when a
PI controller is added. It is discovered that this controller reduces the amplitude of the
second system a2, yet the curve behaves in an unstable way. After adding a PID controller,
the second main system’s behavior is shown in Figure 10d, where it is discovered that
the curve has a monotonically decreasing amplitude and is completely stable. Figure 11
clearly illustrates the difference in the curves’ responses before and after the PID controller
was included for the two primary systems, a1 and a2. Figure 11a,b demonstrated how the
system is only stable and does not contain any unstable parts, as well as how the addition of
a PID controller causes the amplitude to drop with a1 and disappear with a2. The amplitude
rose for increasing values of the external force f1 for the first main system a1, as Figure 12a
illustrates, with the first component of the system, a1. The amplitude of the first main
system is shifted to the right and displays a monotonically declining curve as the values of
natural frequency ω1 increase, as seen in Figure 12b.The amplitude decreases monotonically
when the damping coefficient ζ values increase, as shown in Figure 12c. As the values of the
nonlinear parameter β increased, the amplitude of the first half of the system bent to the left,
as illustrated in Figure 12d. Lastly, Figure 12e illustrates how the nonlinear parameter α2
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behaves for both positive and negative parameter values. For very tiny negative values of
α2, the curve bends left, but for high positive values of α2, the curve bends right. The second
main system’s amplitude increased for large values of the external force f2, as shown in
Figure 13a, with the second portion of the system, a2. As seen in Figure 13b, the second
main system’s amplitude is moved to the right and exhibits a monotonic declining curve for
increased values of the natural frequency ω2. As seen in Figure 13c, the amplitude remains
constant and shifts to the right for extraordinarily high positive values of the nonlinear
parameter α4 and to the left for extraordinarily low negative values of α4. The response of
the gains with the amplitude is examined in Figure 14. Figure 14a establishes the values of
Ki and Kd. Upon further examination of the influence of Kp, we discovered that when Kp
values increase, the amplitude of both primary systems decreases while remaining steady.
With different values of Ki, we observed that the amplitude of both main systems increased
indistinguishably for the fixed values of Kp and Kd. However, when Ki = 80, both main
systems behaved in an unstable manner, as shown in Figure 14b. Lastly, although the other
two gains are fixed, Figure 14c shows the improvement of Kd. Painting made it evident that
the amplitude is unstable at the initial Kd values and that, in both systems, the amplitude
decreases as Kd increases.
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5. Comparison
5.1. Comparison of the Perturbation’s Temporal Response Solutions with Numerical Techniques

Analytical solutions to Equations (29) and (30) are graphically represented by (---) lines,
which correspond with the numerical solutions of Equations (13) and (14), as displayed in
Figure 15a for the first main system, and in Figure 15b for the second main system.
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Figure 15. Comparison of numerical simulation and perturbation analysis for both framework modes
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5.2. Comparison between RK-4 and FRC

Figure 16 shows an acceptable agreement with the numerical solutions of Equations (4)
and (5), using (RK-4) highlighted by yellow circles and the frequency response curves (FRC)
for the two main systems a1 in Figure 16a and a2 in Figure 16b, which are presented with
the solid line.
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5.3. Comparison with Published Work

For previous work, the following can be stated:

(1) Torsional vibration was examined in a review of the literature [25] for active and
passive control, which is a useful tool for managing the torsional vibration of a
nonlinear dynamical system that is exposed to several parametric excitations.

(2) They used the frequency response equations; the stability of the system is examined
in the vicinity of the simultaneous sub-harmonic and internal resonances.

(3) The behavior of the system with and without two controllers is numerically integrated
and examined.

For this work, after adding control, we compared the time histories of our work and a
prior study and discovered that the amplitudes and wavelengths showed that the solutions
generated exhibited stable behavior and were devoid of chaos.

6. Conclusions

The torsional vibration control of a nonlinear dynamical system has been tackled
within this article. Proportional-integral-derivative (PID) controllers have been proposed
to control the harmful torsional vibration of the system, as shown in Figure 2 for one of the
worst resonance cases. The multiple-scale perturbation approach is applied to obtain the
approximation solution for the coupled controlled system. The time history is drawn to
study the steady-state vibration amplitudes and the effectiveness of the applied control
algorithms in suppressing vibration. In addition, the stability and effects of different
system and control parameters are illustrated in frequency response curves according to
the Routh–Hurwitz criterion. Based on the above discussion, the following conclusions can
be drawn:

(1) It is noted that the PID controller is operated to reduce the dangerous vibrations in a
short time.

(2) This work provided a comparison between P, PI, and PID controllers in the context of
FRCs.

(3) Numerous coefficients’ effects are examined and shown numerically.
(4) Despite the excitation frequency, the PID controller is the most effective control

method for minimizing the vibrations in the framework.
(5) The closed-loop response of relative displacement is obtained with the PID controller,

which comprises the peak-overshoot.
(6) The modified structure of the PID controller, such as with the P and PI controllers, is

used for the control of the relative displacement of the suspension system. From the
results, the PID controller provided better closed-loop performance in terms of peak
overshoot and settling time, which are minimized.
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Nomenclature

I1, I2 Polar mass moment of the nonlinear dynamical system
k1, k2 Linear spring stiffness of the nonlinear dynamical system
k21, k22, k23 Quadratic and cubic stiffness parts
F•

1 , F•
2 Excitation forces

c1 Linear damping coefficients of the nonlinear dynamical system
ω1, ω2 Natural frequencies
ζ Damping coefficient
β Linear parameter
αi(i = 1, 2, 3, 4) Nonlinear parameter
FC1, FC2 Forced control
Kp Proportional gain
Kd Derivative gain
Ki Integral gain
θ0 Reference angle

Appendix A
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[
α1(1−Γ)2 A2
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3ω2

1

]
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N4 =
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