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Abstract: This study proposes and theoretically substantiates a unique mathematical model for
predicting the spread of infectious diseases using the example of COVID-19. The model is described
by a special system of autonomous differential equations, which has scientific novelty for cases of
complex dynamics of disease transmission. The adequacy of the model is confirmed by testing on
the example of the spread of COVID-19 in one of the largest regions of Ukraine, both in terms of
population and area. The practical novelty emerges through its versatile application in real-world
contexts, guiding organizational decisions and public health responses. The model’s capacity to
facilitate system functioning evaluation and identify significant parameters underlines its potential
for proactive management and effective response in the evolving landscape of infectious diseases.
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1. Introduction

At the end of 2019, the spread of the SARS-CoV-2 virus led to the outbreak of the
COVID-19 epidemic in China. The spread of infection among the population of many
countries was so massive that, in January 2020, the World Health Organization identified
the outbreak as a public health emergency of international importance [1]. In March 2020,
the situation was called a pandemic.

The period of development of the epidemic from a few infected to tens, and in some
cases up to hundreds, was measured in weeks and—in some countries—in a few days.
Each of the countries that recognized the COVID-19 epidemic was in different conditions
(the number of infected people, the state of the healthcare system, the number of equipped
infectious disease hospitals, the availability of the necessary medical equipment, the avail-
ability of qualified medical personnel, legislation regulating the possibility of introducing
restrictive measures, etc.), which undoubtedly influenced the course of epidemics in each
country. The rapid development of the pandemic has shown that not always do a well-
established economy and a regulated legislative framework make it possible to respond
quickly to the challenges of such an emergency as the COVID-19 pandemic turned out
to be.

Today, it is evident that organizational methods of combating the spread of COVID-19
are not inferior to medical ones in terms of effectiveness [2]. After the rapid growth in
the number of infected people in densely populated cities and their regions, the lack in
some countries of the necessary amount of equipment for the care of infected patients, and
the refusal of some patients with severe and moderate morbidity of hospitalization, it is
essential to predict the number of infected people by some sufficient number to accept
the necessary needs, measures, period, and assessment of the qualitative stages of the
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development of epidemics in certain territories [3]. The purpose of the mathematical
modeling of the spread of COVID-19 is to assess the speed, timing, and stages of its
spread, and the effectiveness of specific measures to combat this infection [4]. Each set of
measures (closing shops, catering facilities, government agencies, entertainment centers,
educational institutions, restricting public transport, etc.) has significant social, production,
and economic consequences. Their balanced application makes it possible to combat the
spread of the infection, effectively reducing the negative impact of these consequences.

The aim of the paper is to develop new approaches to describing dynamic processes in
complex processes and systems, mathematical models for predicting the spread of infectious
diseases, and approaches to identifying the parameters of such models, determining the
most significant factors influencing the system and methods for managing such systems to
achieve their desired state or quality changes in their dynamics.

The promising contribution of this study is two stage. Firstly, a new mathematical
model of the dynamics of infectious diseases and approaches to the qualitative study of
such a model, analysis of the analytical conditions for qualitative changes in the system
(bifurcations), and approaches to the applied interpretation of the results obtained was
developed. This allows not only to evaluate the qualitative modes of functioning, but
also the methods and results system management. Secondly, the proposed approaches
and a mathematical model to predict the dynamics of the spread of an infectious disease,
using the example of COVID-19, can be applied to simulate epidemic process dynamics
in selected territories. A retrospective analysis showed the high accuracy of the model
of the adequacy of recommendations for managing it and allows not only an up-to-date
forecast of the state of the system to be obtained, but also recommendations for managing
it to change the qualitative modes of operation to be developed.

The further structure of the paper is the following: Section 2, Background, provides an
overview of epidemic modeling and the state of current research in COVID-19 simulation
with a compartmental approach. Section 3, Materials and Methods, describes the proposed
compartmental model of the COVID-19 epidemic process. Section 4, Results, provides
a qualitative analysis of the bifurcation properties of a mathematical model. Section 5,
Case Study, describes the results and analysis of a numerical experiment of COVID-19
simulation in the Dnipropetrovsk and Kharkiv regions (Ukraine). The Conclusion describes
the outcomes of the research.

2. Background

To date, there are a sufficient number of mathematical models for assessing the rate of
spread of COVID-19, and each of these models, as a rule, is focused on a particular region
(country, region, city, etc.) [5]. Each of these regions differs significantly from the others in
the age composition of the population, chronic diseases characteristic of a particular region,
social activity of different ages, etc.

Each of these factors does not significantly affect the curve of growth in the number
of infected. However, since such a curve is usually exponential, the numerical indicators
vary significantly over a sufficient period. An example is Italy, where older people are
characterized by high social activity [6]. This situation significantly affected the number
of infections among the elderly population and, as a result, the loading of hospitals with
“severe” patients and the collapse of the healthcare system in Italy.

Since the total number of infected people in the world today is measured in millions,
there is relatively reliable information about the course of the epidemic in certain territo-
ries [7]. At the same time, even experienced specialists (epidemiologists) can only describe
the course of the disease, but the “physics” of the infection and its effect on the body cannot
be described in most cases.

Most specialists use SIR models and extended versions to model the process of infec-
tion spread [8]. In most countries, there are no reliable data on the number of infected and
dead; the error for the SIR model leads to a rapid accumulation of errors and, consequently,
false simulation results. In addition, the SIR model considers only three fundamental
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indicators, i.e., it cannot foresee the impact on the system of restrictive measures, and many
of them have been invented to date. The actual statement of the course of the spread of the
infection is not very informative, and a set of measures is desirable for at least a numerical
slowdown in the development of the epidemic or qualitative changes in its course.

To build the mathematical model proposed in work, we took as a basis models that
not only adequately, from our point of view, describe the dynamics of infectious diseases
but also proved their adequacy and reliability in practice.

One of the founders of the mathematical modeling of epidemics can be considered
the American researcher Ross, who first developed models for the migration of infection
carriers in 1905 [9], and in 1908–1910 [10,11] proposed a model for the spread of the infection
itself. The results obtained by Ross were partly the basis of McDonald’s studies [12], which
made it already possible to build a model of the spread of infection in the middle of the
20th century, taking into account the entomological and demographic characteristics of
the population.

These models were further developed several decades later in the works of Hoppen-
sted in 1974, in which a new epidemic model was published that takes into account the age
structure of the population [13], and a class of differential systems [14] was proposed that
can be used to describe the dynamics of the spread of infection.

Also, the models proposed by Ross were developed in the works of Bailey in the
1990s. Bailey succeeded in extending the Ross model and presenting a model for spreading
infection through the SEIR and SEI models. After Bailey’s publication, the development of
the SEIR and SEI models was put to work by Newton and Reuter, whose research focused
on the spread of dengue fever. Other qualitative results of the study of the SEIR and SEI
models were obtained in [15,16]. In [17], the authors divided the human population into a
finite number of ages. The author determined the base reproductive disease number for
the SEIR task of the age-dependent system.

The global COVID-19 pandemic has intensified research on developing mathematical
models for modeling infectious diseases.

Paper [18] presents a comprehensive exploration of the time-varying transmission
dynamics of the COVID-19 epidemic in Korea using a Susceptible–Exposed–Infectious–
Recovered–Dead (SEIR(D)) model. It argues that understanding the epidemic’s multi-stage
development leads to a more nuanced appreciation of the infection’s changing patterns,
heavily influenced by non-pharmaceutical interventions (NPIs) implemented by the public
health authority. By applying the SEIR(D) model to three distinct stages of the pandemic,
using a dataset spanning from 18 February 2020 to 8 February 2021, the research uncovers
the unique transmission patterns of SARS-CoV-2 in each phase. The study underscores
the limitations of using a generic SIR compartment model across the entire epidemic
period, advocating instead for a context-sensitive application of the SEIR(D) model that
acknowledges the multi-wave nature of the pandemic and the varying effectiveness of
NPIs over time.

The research in [19] offered predictive analyses regarding the spread of COVID-19 and
its significant impact on hospital care in Lombardy and Emilia-Romagna, the two regions
of Italy most heavily affected by the epidemic. Utilizing a Susceptible–Exposed–Infectious–
Recovered deterministic model—augmented by an additional compartment L to account
for the isolated infected population who do not require hospital care—the researchers
analyzed the implications of varying conditions of social distancing. The findings indicated
that Lombardy would benefit from extending restrictive containment measures until early
July to prevent a rebound in hospitalizations. Conversely, in Emilia-Romagna, it was
proposed that a higher contact rate could maintain the number of hospitalized cases at a
manageable level. Ultimately, this research underscores the importance of region-specific
forecasts under differing scenarios, which can inform and optimize containment strategies
during the epidemic.

The study by A. Bhalraj and A. Azmi [20] offers predictive insights into the outbreak
of COVID-19 using the SEIR model, preferred over the SIR model due to the significant
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contribution of asymptomatic or mildly symptomatic individuals to the transmission of
the disease. The paper provides a model encapsulating the transmission dynamics of
COVID-19 amidst implementing three key intervention measures: preventive measures,
active case finding, and hospitalization interventions. It offers an evolving depiction of
the disease spread within a population under these control strategies aimed at eradicating
it. Simulating the COVID-19 model with various levels of intervention effectiveness, the
study observes and analyzes divergent outcomes for infectious individuals. The simulation
results suggest that more rigorous and stringent public health interventions could curtail
the spread of COVID-19. The study underscores the crucial practical significance of early
prevention, detection, and treatment in the battle against COVID-19.

Paper [21] presents a novel SQEIHDR mathematical model designed to predict the
transmission dynamics of COVID-19 in India, an extension of the foundational SEIR model
with the incorporation of additional compartments representing self-quarantine (Q), isola-
tion (H), and deceased (D) individuals. By encompassing these additional elements, the
model aims to provide a more accurate depiction of the COVID-19 outbreak in India and
potential strategies to inhibit transmission increase. Spanning ten phases with varying
COVID-19 preparedness and response plans, the model’s simulation demonstrates signifi-
cant fluctuations in the infection curve, contingent on the changes in the self-quarantine
compartment (Q). The results emphasize the effectiveness of the implemented and pro-
posed preparedness and response strategies, highlighting the critical role of the rate of
self-quarantine (Q)—a factor influenced by general awareness, social distancing, and food
availability—in precipitating a downturn in the outbreak.

The authors of [22] introduce the SEPIR model—an enhancement of the classic SEIR
continuous simulation compartment model—introducing an additional presymptomatic
infectious compartment to capture a critical aspect of COVID-19’s transmission dynamics.
While both models can be fitted to actual data via estimable parameters, the SEPIR model’s
inclusion of the presymptomatic stage allows for a more comprehensive representation of
COVID-19. The study primarily explores fitting the SEPIR model to a first wave of COVID-
19, acknowledging that both the SEIR and SEPIR models operate under the assumption of a
homogeneous mixing population with fixed parameters and do not account for dynamically
varying control strategies. To extend these models beyond a single wave of the epidemic,
the study proposes the implementation of time-dependent parameters. Furthermore, the
paper illustrates how reproduction numbers can be calculated to evaluate the long-term
overall outcome of an epidemic.

Paper [23] focuses on applying the SIR model to understanding the trajectory of
the COVID-19 pandemic and devising potential intervention measures. The SIR model,
renowned for its efficacy in epidemic analysis, is utilized in this paper to elucidate the
patterns of COVID-19 spread and the future trends of the disease. The researchers examine
the critical parameters within the SIR model, particularly the contact and reproduction
ratios, identified as critical factors with the potential to mitigate COVID-19’s consequences.
In light of their analysis, the research advocates for specific anti-COVID-19 measures, such
as mask-wearing, hand hygiene, social distancing, and staying home where possible. The
study underscores the pivotal role of the SIR model in informing public health emergencies
and strategizing appropriate interventions.

H.M. Youssef et al. [24] presents a modified SEIR model tailored explicitly for pre-
dicting the spread of COVID-19, demonstrating its effectiveness using actual data from
Saudi Arabia. The modified SEIR model offers a novel perspective for evaluating and
managing the COVID-19 epidemic, with the dynamic analysis including calculations of
the reproduction number and extensive stability analyses. Using Jacobian’s method of
linearization, the paper discusses the solution domain and equilibrium states for the pro-
posed model. The conditions and uniqueness of the equilibrium are established, followed
by a stability analysis of disease-free equilibrium states. Further, a sensitivity analysis
of the reproduction number concerning its internal parameters is conducted, and global
stability is demonstrated using Lyapunov’s Stability theorem. Comparative numerical
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validation of the proposed model, juxtaposed against actual data, shows the model’s ef-
fectiveness in predicting the spread of COVID-19 in Saudi Arabia. The study ultimately
introduces an optimal protocol designed to curtail the spread of COVID-19 within the
Saudi population rapidly.

Paper [25] introduces the SEIAQRDT model, a refined mathematical model devised to
address the inadequacies of previous epidemiological models (such as SIR, SEIR, SIRD, and
SEIRD) in accurately forecasting the spread of COVID-19. This novel model incorporates
infected individuals based on symptom presence, enhancing the accuracy of predicting
case numbers and developing more effective control strategies. The model comprises eight
compartments: Susceptible (S), Exposed (E), Infected (I), Asymptomatic (A), Quarantined
(Q), Recovered (R), Deaths (D), and Insusceptible (T). The paper applies this model to
predict pandemic outcomes in India and its most severely affected states. It compares the
SEIAQRDT estimations with those of the SIRD, SEIR, and LSTM models. Verification of the
proposed model’s accuracy is performed using the relative error square analysis on real
datasets, with the simulation results affirming the model’s efficacy. The findings could assist
the government and individuals in devising more informed pandemic response strategies.

Study [26] presents a novel nonlinear SIR epidemic model designed to examine
the spread of COVID-19, emphasizing the influence of public policy measures, such as
government-induced social distancing, in curbing the pandemic. By tailoring parameters to
specific countries like Germany, Spain, Italy, France, Algeria, and Morocco, the model is fit-
ted to real-world data, enabling an assessment of the effectiveness of government measures
in each country vis-à-vis the evolution of the pandemic. The utility of this model lies in its
potential to serve as an efficient instrument in forecasting disease spread, thereby assisting
in the formulation and implementation of future public health policies and strategies to
control the pandemic.

Paper [27] employs the SIR and SIR-D models, prominent epidemiological tools that
categorize individuals into specific groups or compartments, to simulate the spread of the
COVID-19 pandemic in Indonesia. Three scenarios were simulated: a condition without
vaccination, a condition with vaccination, and a scenario incorporating vaccination but
lacking stringent health protocols. The models’ simulations indicated that, while the
vaccination process can mitigate the spread of COVID-19, its impact is less profound due
to suboptimal and non-comprehensive vaccination practices. However, if vaccinations
are conducted without stringent health protocols, the rapid spread of the virus and a
subsequent second wave is likely. Thus, maintaining adherence to health protocols is
underscored even amidst the vaccination process. With Mean Absolute Percentage Error
accuracy levels of 0.41198 and 0.01712 for the SIR and SIR-D models, respectively, these
epidemiological models provide a valuable tool for visualizing and understanding the
dynamics of COVID-19 transmission.

Paper [28] utilizes the SEIR model, a type of compartmental model, to simulate and
forecast the trajectory of the COVID-19 pandemic within the six countries that reported
the most cases by the end of 2020—the United States, Russia, the United Kingdom, France,
Brazil, and India. Applying the fourth-order Runge–Kutta method to solve the SEIR model
equations, the study draws on confirmed case data up until 29 December 2020, to derive
parameters for the model. The analysis allows for extracting coefficients for the Exposed,
Infected, Recovered, and mortality rate parameters in the SEIR model, thus providing a
nuanced understanding of disease progression in these countries. The study predicts the
infection peaks for these countries to occur in the first half of 2021, with the average basic
reproduction number of SARS-CoV-2 calculated at 2.1460. The findings underscore the
utility of the SEIR model in facilitating an accurate forecast of infectious disease spread,
which can inform effective public health responses.

Table 1 presents the current research analysis of the COVID-19 compartmental models.
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Table 1. Current research analysis of COVID-19 compartmental models.

Paper Task Compartments Findings

H.Y. Shin [18]

To analyze the time-varying
transmission dynamics of the
COVID-19 epidemic in Korea

throughout its multiple stages of
development

Susceptible, Exposed,
Infected, Recovered, Dead

The transmission dynamics of the
COVID-19 vary over time, primarily

depending on the
relative effectiveness of the

government’s
non-pharmaceutical interventions.

C. Reno, et al. [19]

To forecast the spread of the
infection and its burden on

hospitalizations under different
conditions of social distancing in
Lombardy and Emilia-Romagna

(Italy)

Susceptible, Quarantined
Susceptible, Exposed,
Quarantined Exposed,

Infectious with
Symptoms, Isolated

Infectious, Infectious without
Symptoms,

Hospitalized, Recovered

Analyzing the burden of
hospitalizations under different

conditions of social distancing allows
foreseeing the impact of the

coronavirus
pandemic on health services.

A. Bhalraj and
A. Azmi [20]

To implement SEIR mathematical
model to forecast the future of

COVID-19 in terms of the number
of days it will take to reach the

peak and also to contain
the outbreak

Susceptible, Exposed,
Infected, Recovered

In order to curb COVID-19 outbreak,
combined interventions are crucial

and, hence, these combined
interventions include all kind of
preventive measures, active case

finding, and hospitalization such as
enforcement of wearing masks, using
hand sanitizer regularly, maintaining
social distancing, in-home quarantine,

minimizing outdoor activities,
obeying lockdown and movement

control order, conducting active case
detection, and providing essential

medical equipment for infected
individuals as well as personal

protective equipment for
medical frontliners.

S. Khan, et al. [21] To predict the novel coronavirus
transmission dynamics

Susceptible, Exposed,
Infected, Recovered,

Self-Quarantine, Isolation,
Deceased

The different conditions of
preparedness and response plan

highlight the keys for
outbreak downfall.

R. Cheng et al. [22]
To calculate the proportion of

presymptomatic
COVID-19 infections

Susceptible, Exposed,
Presymptomatically

Infectious, Symptomatically
Infectious, Recovered

Proposed parametrization allows
estimation of an initial susceptible
proportion that is less than unity

rather than assuming that the
susceptible people comprise the

country’s whole population, as is
usually assumed.

L. Yang and
T.L. Williams [23]

To analyze the patterns of
COVID-19, to discuss potential

anti-COVID-19 measures, and to
explain why we need to conduct

appropriate measures against
COVID-19

Susceptible, Infected,
Recovered

Anti-COVID-19 measures should
include

wearing a mask, washing one’s
hands, keeping social distance, and

staying at home if possible.

H.M. Youssef,
et al. [24]

To predict the new COVID-19
model to be more suitable for
more cases in any country by

mathematical
analysis of the considered model

Susceptible, Exposed,
Infectious, Recovered

The ideal protocol consists of several
steps and

advice is introduced in detail to help
the Saudi Arabia population to speed

the breakdown spreading of
COVID-19. One of the main subjects
in that protocol is prevention is better

than treatment.
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Table 1. Cont.

Paper Task Compartments Findings

P. Kumari,
H.P. Singh,

S. Singh [25]

To propose a model that includes
the effect of quarantined cases,

asymptomatic cases, and
protected

population to estimate the
number of infected cases

accurately

Susceptible, Exposed,
Infected, Asymptomatic,
Quarantined, Recovered,

Dead, Insusceptible

In all the cases, simulation results
show that the SEIAQRDT model fits
the data better than the other models.
The reason for this superiority is that

the SEIAQRDT model describes
suspected, infected with and without
symptoms, recovered, quarantined,

death, and exposed cases.

S. Gounana, et al.
[26]

To model the spread of COVID-19
and investigate the impact of

social distancing on the
propagation of this pandemic

Susceptible, Infected,
Recovered, Dead

Physical distancing or social
distancing measures have an

important effect on reducing the
spread of COVID-19 by limiting
face-to-face contact with others.

D. Mahayana, D.P.
Natanael,

M.F. Abbas [27]

To analyze and simulate several
scenarios of the spread of a

pandemic

Susceptible, Infected,
Recovered, Dead

The SIR-D model has a higher
performance value than the SIR
model because the SIR-D model

considers the separation between
people who died and people who

recovered.

M. Al-Raeei, M.S.
El-Daher,
O. Solieva

To study the spreading and
forecasting of the new

coronavirus disease

Susceptible, Infected,
Exposed, Recovered

The values of the SARS-CoV-2 basic
reproduction number are reported to

vary between 1.0158, returned for
India, and 3.6642, returned for the

United Kingdom, based on the
simulation method used.

3. Materials and Methods

The proposed mathematical model for the spread of COVID-19 is presented as follows:

.
Vi = −αiVi + (1 − βi)(Ii + Ci) +

n
∑

j=1,j ̸=i

(
1 − αj − Gij

)
φij

.
Ii = αiVi − βi Ii + γici +

n
∑

j=1,j ̸=i

(
αj + Gij

)
φij

.
Pi = βi(Ii + Ci)

(1)

where
i = 1. . .n;
Vi is the number of healthy residents of the i-th territorial sector;
Ii is the number of infected cases in the i-th territorial sector;
Pi is the number of fatal cases from COVID-19 in the i-th territorial sector;
Ni is the total number of infected people for the entire study period in the i-th territo-

rial sector;
ni is the total number of residents in the i-th territorial sector;
D is the total number of weeks of the study;
di is the total number of deaths from COVID-19 in the i-th territorial sector;
ci is the total number of personnel (medical and support) involved in servicing infected

patients in the i-th territorial sector;
Ci is the number of infected personnel (medical and support) who were involved in

servicing infected patients in the i-th territorial sector;
φij is passenger flow arriving in the sector i during the defined time interval (week)

from the sector j;
mij is the average number of flights from sector j to sector i during the defined time

interval (week);
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sij is the average area of vehicles used for transportation from sector j to sector i;
n is the number of sectors into which the study area is divided.
Auxiliary parameters αi, βi, γi, Gij, and Sij are proposed to be calculated as follows:

αi =
Ni

niD
(2)

βi =
di

niD
(3)

γi =
Ci

ciD
(4)

Gij =
1

Sij +
1

1−aj

(5)

Sij =
mijsij

φij
(6)

The generalized time interval for modeling is proposed to equal one week. Iterative
calculations will be carried out according to each day to reduce the error inherent in weekly
simulations. The peculiarities of the organization of the work of laboratory centers in the
investigated territory, namely a day off on Sunday, leads to an uneven distribution of the
number of PCR tests and confirmed cases by day. Based on the preceding, to assess the
error of the proposed model, we chose the correspondence between the predicted and
actual number of confirmed cases in one (calendar) week.

Based on the obtained initial data, described in detail in Section 5, the parameters of
the mathematical model (1) acquired the following values:

V1 = 3,176,404; I1 = 244; P1 = 7; N1 = 445; n1 = 3,176,648; D = 10; d1 = 7 (7)

Due to the complete absence at the time of the study of reliable information regarding
the parameters c1, C1, φij, mij, and sij, their values were taken to be equal to 0. Using (2)–(6),
the initial values of other model parameters were calculated as following:

α1 = 0.000015; β1 = 0.00000022; γ1 = 0; Gij = 0; Sij = 0 (8)

4. Results

In a sufficiently small neighborhood of the origin, the model has the classical topo-
logical structure of the phase portrait such as node, focus, saddle, etc. In the study of
the bifurcations of systems, it is necessary to have a certain nomenclature of topological
structures in R3.

When solving applied problems, it is precisely the degenerate states of the system
that can qualitatively designate general dynamic tendencies in bifurcation states during
catastrophes, collapses, and other restructurings.

The system of three linear differential equations of the third order can be represented
as follows: 

.
x = A11x + A12y + A13z
.
y = A21x + A22y + A23z
.
z = A31x + A32y + A33z

(9)

In the non-degenerate case, linear system (9) has one equilibrium point M(0; 0; 0)
(the origin).
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If the characteristic equation of system (9) has three real, unequal roots, then there is
such a non-degenerate transformation

ξ = c11x + c12y + c13z
η = c21x + c22y + c23z
ρ = c31x + c32y + c33z

(10)

which brings system (9) to the form 
.
ξ = λ1ξ
.
η = λ2η
.
ρ = λ3ρ

(11)

whose characteristic matrix will look like

G1 =

λ1 0 0
0 λ2 0
0 0 λ3

 (12)

Integrating (11), we obtain 
ξ = C1eλ1t

η = C2eλ2t

ρ = C3eλ3t
(13)

For a qualitative analysis of the behavior of the phase trajectories of system (9) in the
vicinity of the origin, we pass to the boundary:

λ1 > 0, then lim
t→∞

ξ(t) = ∞; λ1 < 0, then lim
t→∞

ξ(t) = 0 (14)

λ2 > 0, then lim
t→∞

η(t) = ∞; λ2 < 0, then lim
t→∞

η(t) = 0 (15)

λ3 > 0, then lim
t→∞

ρ(t) = ∞; λ3 < 0, then lim
t→∞

ρ(t) = 0 (16)

When the discriminant of the characteristic equation of system (9) is equal to zero, one
of the roots of the characteristic equation has a multiplicity of two and, in degenerate cases,
three. In this case, the characteristic matrix of system (9) can have one of the following
possible configurations:

G2 =

λ1 0 0
0 λ1 0
0 0 λ3

 (17)

G3 =

λ1 0 0
0 λ1 0
0 0 λ1

 (18)

G4 =

λ1 1 0
0 λ1 0
0 0 λ2

 (19)

G5 =

λ1 1 0
0 λ1 1
0 0 λ1

 (20)

In the case when the pair of eigenvalues λ2 and λ3 are complex, the matrix G1 will
take on a complex form. λ1 0 0

0 α + iβ 0
0 0 α − iβ

 (21)
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In order to bring the system to the simplest, real form, by means of a non-degenerate
transformation, we perform the transition from η, ρ to U, V as follows:

ξ = ξ
η = U + iV
ρ = U − iV

(22)

From here we obtain the following:{
U = (η + ρ)/2
V = (η − ρ)/2i

(23)

From (23), using (11), we obtain

.
U =

.
η +

.
ρ

2
=

λ2η + λ3ρ

2
=

(α + iβ)(u + iV) + (α − iβ)(u − iV)

2
= αU + βV (24)

Similarly,
.

V = αV − βU (25)

Therefore, under the condition that in system (11) λ2 and λ3 are complex conjugate,
there is such a non-degenerate transformation that reduces system (22) to the form

.
ξ = λ1ξ

.
U = αU + βV
.

V = −βU + αV

(26)

The characteristic matrix of such a system will look like

G6 =

λ1 0 0
0 α β
0 −β α

 (27)

Let us make the transition to a cylindrical coordinate system:
ξ = ξ

U = rcos θ
V = rsin θ

(28)

By transformations, using the equality U2 + V2 = r2, we obtain
.
r = αr, and according

to system (28) we obtain tgθ = V/U. Differentiating the resulting trigonometric equation
and using (26) and (28), we obtain the following:

ξ = C1eλ1t

r = r0eαt

θ = βt + θ0

(29)

Let us move on to the border:

α > 0, then lim
t→∞

r(t) = ∞; α < 0, then lim
t→∞

r(t) = 0 (30)

β > 0, then lim
t→∞

θ(t) = ∞; β < 0, then lim
t→∞

θ(t) = −∞ (31)

α = 0, then lim
t→∞

r(t) = const (32)
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In the case when two of the three roots of the characteristic equation are completely
imaginary, but Det(J) ̸= 0, the characteristic matrix of system (9) takes the form

G1 =

λ1 0 0
0 0 β
0 −β 0

 (33)

Figure 1 schematically shows the phase portraits of system (9) with characteristic
matrices (G1–G7).
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Figure 1. Schematic representation of the topology of the phase space of system (9) in the vicin-
ity of a singular point: (a)—triaxial unstable node; (b)—triaxial stable assembly; (c)—stable sad-
dle; (d)—unstable saddle; (e)—unstable two-phase-star node; (f)—stable two-phase-star node;
(g)—unstable three-phase-star node; (h)—stable three-phase-star node; (i)—unstable two-phase
degenerate node; (j)—stable two-phase degenerate node; (k)—unstable three-phase degenerate
node; (l)—stable three-phase degenerate node; (m)—divergent unstable focus; (n)—mismatched
stable focus; (o)—convergent unstable focus; (p)—coinciding stable focus; (q)—divergent center;
(r)—coinciding center.
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If all eigenvalues of the characteristic matrix of system (9) are real, have the same sign,
and are not equal to each other, the projections of phase trajectories onto all three planes
form a classical stable or unstable node. The singular point of the origin of system (9) has
real eigenvalues of the characteristic matrix and saddle provided that at least one pair of
eigenvalues of the characteristic matrix of system (9) has opposite signs. The projection of
phase trajectories onto one of the planes forms a stable (Figure 1c) and unstable (Figure 1d)
node. And when projected onto the other two planes, a saddle appears. The cases of
hyperbolic points shown in Figure 1e–l are characterized by the multiplicity of the roots of
the characteristic equation and are a special case of the “triaxial knot”. In the cases shown
in Figure 1e,f,i,j, one of the roots of the characteristic equation has a multiplicity of two. For
the cases presented in Figure 1e,f,i,j, the characteristic equation has a root of multiplicity
three. When a pair of eigenvalues of the characteristic matrix is complex conjugate, then,
when projected onto a plane x0y, the phase trajectories form a stable focus (Figure 1n,p), an
unstable focus (Figure 1m,o), and a center (Figure 1q,r).

Table 2 shows the classification system of non-degenerate types of equilibrium points
with their corresponding analytical conditions of occurrence and names.

Table 2. Types of simple system equilibrium points.

Figure Characteristic
Matrix The Name of the Singular Point Additional Terms

1a G1 Triaxial unstable node λ1 > λ2 > λ3 > 0
1b G1 Triaxial stable node λ1 < λ2 < λ3 < 0
1c G1 Stable saddle λ1 < λ2 <0, λ3 > 0
1d G1 Unstable saddle λ1 > λ2 >0, λ3 < 0
1e G2 Unstable two-phase-star node λ1 > λ2 > 0
1f G2 Stable two-phase-star-node λ1 < λ2 < 0
1g G3 Unstable three-phase-star node λ1 > 0
1h G3 Stable three-phase-star node λ1 < 0
1i G4 Unstable two-phase degenerate node λ1 > λ2 > 0
1j G4 Stable two-phase degenerate node λ1 < λ2 < 0
1k G5 Unstable three-phase degenerate node λ1 > 0
1l G5 Stable three-phase degenerate node λ1 < 0

1m G6 Divergent unstable focus λ3 > 0, α > 0
1n G6 Divergent steady focus λ3 > 0, α < 0
1o G6 Compatible unstable focus λ3 < 0, α > 0
1p G6 Compatible stable focus λ3 < 0, α < 0
1q G7 Divergent center λ1 > 0
1r G7 Compatible center λ1 < 0

In Table 2 and below, the following notation will be used: λ1, λ2, and λ3 are real
eigenvalues of the characteristic matrix of the system at the equilibrium point M; α is a real
part of a pair of complex conjugate eigenvalues of the characteristic matrix of system (9).

Together with simple types of equilibrium points, a number of folded equilibrium
points of covariance n are possible, that is, those whose occurrence is due to the fact that the
real part n of the roots of the characteristic equation is equal to zero. It is well known that the
simplest form of the characteristic matrix of system (9), which has a complex equilibrium
point of codimensionality 1 in the vicinity of the origin, can only be represented in the
following way:

G8 =

λ1 0 0
0 0 0
0 0 λ2

 (34)

G9 =

λ1 0 0
0 0 0
0 0 λ1

 (35)
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G10 =

λ1 0 1
0 0 0
0 0 λ1

 (36)

G11 =

 α β 0
−β α 0
0 0 0

 (37)

G12 =

 0 β 0
−β 0 0
0 0 0

 (38)

Figure 2 shows a schematic representation of the topology of the phase space of system
(9) in the vicinity of the composed singular point.
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Figure 2. Schematic representation of the topology of the phase space of system (9) in the vicinity of
the composed singular point: (a)—single-phase degenerate stable node; (b)—single-phase degenerate
unstable node; (c)—degenerate saddle; (d)—an unstable degenerate stellar node; (e)—stable degen-
erate star node; (f)—unstable congenital cylinder; (g)—stable congenital cylinder; (h)—congenital
unstable focus; (i)—congenital stable focus; (j)—congenital center.

The phase portraits presented in Figure 2 are characterized by the presence of one
zero root of the characteristic equation. When projecting phase portraits onto planes
corresponding to non-zero real roots or pairs of complex roots of the characteristic equation,
a stable node (Figure 2a), an unstable node (Figure 2b), a saddle (Figure 2c), an unstable
star node (Figure 2d), stable stellar node (Figure 2e), unstable degenerate node (Figure 2f),
stable degenerate node (Figure 2g), unstable focus (Figure 2h), stable focus (Figure 2i), and
center (Figure 2j), respectively, are formed.

The classification of folded equilibrium points of codimension 1 is given in Table 3.
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Table 3. Types of stacked equilibrium points of codimension 1 of system (9).

Figure Characteristic
Matrix The Name of the Singular Point Additional Terms

2a G8 Single-phase degenerate stable node λ1 < λ2 < 0
2b G8 Single-phase degenerate unstable node λ1 > λ2 > 0
2c G8 Degenerate saddle λ1 λ2 <0
2d G9 Unstable degenerate star node λ1 > 0
2e G9 Stable degenerate star node λ1 < 0
2f G10 Unstable degenerate cylinder λ1 > 0
2g G10 Stable degenerate cylinder λ1 < 0
2h G11 Degenerate unstable focus α > 0
2i G11 Degenerate persistent focus α < 0
2j G12 Degenerate center α = 0

The characteristic matrix of system (9), which has a complex equilibrium point of
codimension 2 in the vicinity of the origin, can only be reduced to the form:

G13 =

0 0 0
0 0 0
0 0 λ1

 (39)

Figure 3 shows a schematic representation of the topology of the phase space of
system (9) in the vicinity of the composed singular point of codimension 2.
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Figure 3. Schematic representation of the topology of the phase space of system (9) in the vicinity
of the composed singular point of codimension 2: (a)—“unstable stationary plane”, (b)—“stable
stationary plane”.

The phase space of system (9) (Figure 3a,b) contains an infinite number of equilib-
rium points placed infinitely close to each other, forming a stationary surface (in the case
of a linear system, a plane); phase trajectories either approach (attractor) or move away
from it (repeller). Based on the considerations outlined above, we consider it appropri-
ate to use the names “unstable stationary plane” and “stable stationary plane” for such
points, respectively.

The types of folded equilibrium points of codimension 2 of the system are presented
in Table 4.

Table 4. Types of folded equilibrium points of codimension 2 of system (9).

Figure Characteristic
Matrix The Name of the Singular Point Additional Terms

2a G13 Unstable stationary plane λ1 > 0
2b G13 Stable stationary plane λ1 < 0
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In addition to the equilibrium points of system (9) presented above, a case may arise
when the system is stationary in all states: “stationary space”. The characteristic matrix of
system (9) corresponding to such a state will be zero, and the phase portrait will contain
only stationary points (Figure 4).
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The names of topological structures in the proposed classification are formed similarly
to the two-dimensional case.

5. Case Studies
5.1. Dnipropetrovsk Region (Ukraine)

The object of the study is the human population of the Dnipropetrovsk region (Ukraine)
and the process of the spread of the COVID-19 infection in it.

The Dnipropetrovsk region is a region in Ukraine located in the country’s central,
eastern, and southern parts. The area of the region is 31.9 thousand km2. The population is
3,300,309 people (as of 1 June 2013, 7.3% of the state’s population lives here). The center of
the region and the largest city is Dnipro.

It should be emphasized that there are no reliable data on the source of infection, “zero
patient,” concomitant diseases, etc. Statistical data collected on the infected are usually
not representative. Actuality, completeness, reliability, and other statistical information
characteristics are unreliable. The data used for the case study were collected before the full-
scale Russian invasion of Ukraine, which led to the mass migration of Ukrainian citizens.

However, the large area and population of the investigated territory make the obtained
results reliable for application to other world territories.

The study was based on the understanding of the population as a set of individuals,
which can be conditionally divided into the following groups:

• Healthy (uninfected) population;
• Infected patients;
• Patients who dropped out of the study (dead or recovered);
• Patients living in specific territorial sectors;
• Men and women;
• Age group (up to 15 years old, from 15 to 55 years old, over 55 years old);
• Medical and support staff involved in the care of the infected.

At the time of the study, it is generally accepted that re-infection of a person is unlikely.
The fact that an infected patient receives immunity after recovery has not been confirmed.
However, at the same time, world incidence statistics show that examples of re-infection
are either absent or relatively rare, which, in turn, may be due to incomplete treatment and
false negative test results at the time of discharge from the hospital.

Table 5 shows the factors taken into account in the mathematical model and the sources
from which the information was obtained.
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Table 5. Data characteristics.

Factors Information Source

Territorial division of the Dnipropetrovsk
region

Main Department of Statistics in
Dnipropetrovsk region

Gender and age structure of the population Main Department of Statistics in
Dnipropetrovsk region

Gender and age structure of those infected Dnipropetrovsk Regional Laboratory Center
The factor of the absence of quarantine
restrictions Dnipropetrovsk Regional State Administration

Number of suspected, infected, dead, and
recovered by day Dnipropetrovsk Regional Laboratory Center

Statistical data on the course of the COVID-19
epidemic in other countries Open sources

Features of the course of the disease Expert opinion

The results of the numerical experiment conducted from 22 July 2021 till 15 September
2021, for a period of 56 days (8 weeks), are presented in Table 6.

Table 6. Mathematical forecast of the number of confirmed cases of infection in the population of the
Dnipropetrovsk region (for the period from 22 July 2021 to 15 September 2021).

Date Realistic
Forecast

Optimistic
Forecast

Pessimistic
Forecast Date Realistic

Forecast
Optimistic

Forecast
Pessimistic

Forecast

22 July 2021 13 10 22 19 August 2021 23 18 32
23 July 2021 14 11 23 20 August 2021 24 19 34
24 July 2021 15 12 25 21 August 2021 24 19 34
25 July 2021 15 12 25 22 August 2021 27 22 38
26 July 2021 15 12 25 23 August 2021 31 25 43
27 July 2021 15 12 26 24 August 2021 33 26 46
28 July 2021 17 14 29 25 August 2021 34 27 48
29 July 2021 16 13 28 26 August 2021 36 29 50
30 July 2021 19 15 33 27 August 2021 38 30 53
31 July 2021 21 16 35 28 August 2021 39 31 55

1 August 2021 17 14 30 29 August 2021 41 33 57
2 August 2021 18 14 30 30 August 2021 43 34 60
3 August 2021 18 14 30 31 August 2021 45 36 63
4 August 2021 18 14 31 1 September 2021 48 38 67
5 August 2021 18 15 31 2 September 2021 52 42 73
6 August 2021 19 15 32 3 September 2021 55 44 77
7 August 2021 19 15 33 4 September 2021 56 45 78
8 August 2021 20 16 34 5 September 2021 57 46 80
9 August 2021 20 16 35 6 September 2021 64 51 90
10 August 2021 20 16 35 7 September 2021 66 53 92
11 August 2021 20 16 35 8 September 2021 67 54 94
12 August 2021 20 16 36 9 September 2021 71 57 99
13 August 2021 21 17 37 10 September 2021 77 62 108
14 August 2021 21 17 37 11 September 2021 80 64 112
15 August 2021 21 17 38 12 September 2021 82 66 115
16 August 2021 22 17 30 13 September 2021 86 69 120
17 August 2021 22 18 30 14 September 2021 101 81 141
18 August 2021 22 18 31 15 September 2021 106 85 148

According to the results of the numerical calculation, fourteen forecasts were made
(dated 22 July, 29 July, 5 August, 12 August, 19 August, 26 August, 2 September, 9 September,
16 September, 24 September, 21 October, 20 November, and 29 December). Each of the
forecasts was built for a period of 90 days. Table 7 provides information on the modeling
error for each of the fourteen predictions.
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Table 7. Analysis of the error of developed forecasts of the dynamics of COVID-19 in the Dnipropetro-
vsk region.

Date of Forecast Duration of Forecast Error

22 July 2021 1 week 0.0%
29 July 2021 1 week 5.45%

5 August 2021 1 week 8.6%
12 August 2021 1 week 7.0%
19 August 2021 1 month 3.8%
26 August 2021 1 week 3.1%

2 September 2021 1 week 1.6%
9 September 2021 1 week 4.12%

16 September 2021 1 month 8.4%
24 September 2021 1 month 17.0%

21 October 2021 1 month 9.8%
20 November 2021 1 month 11.5%
29 December 2021 3 month 13.1%
29 December 2021 6 month 19.6%

5.2. Kharkiv Region (Ukraine)

The object of the study is the human population of the Kharkiv region (Ukraine) and
the process of the spread of the COVID-19 infection in it.

The Kharkiv region is a region in Ukraine located in the country’s central, eastern, and
southern parts. The area of the region is 31.415 thousand km2. The population is 2,633,834
people (as of 1 June 2013, 7.3% of the state’s population lives here). The center of the region
and the largest city is Kharkiv.

We used the same assumptions and population groups as in previous case study.
Table 8 shows the factors taken into account in the mathematical model and the sources

from which the information was obtained.

Table 8. Data characteristics.

Factors Information Source

Territorial division of the Kharkiv region Main Department of Statistics in Kharkiv
region

Gender and age structure of the population Main Department of Statistics in Kharkiv
region

Gender and age structure of those infected Kharkiv Regional Laboratory Center
The factor of the absence of quarantine
restrictions Kharkiv Regional State Administration

Number of suspected, infected, dead, and
recovered by day Kharkiv Regional Laboratory Center

Statistical data on the course of the COVID-19
epidemic in other countries Open sources

Features of the course of the disease Expert opinion

The results of the numerical experiment conducted from 27 March 2023 till 21 May
2023, for a period of 56 days (8 weeks), are presented in the Table 9.

Table 9. Mathematical forecast of the number of confirmed cases of infection in the population of the
Kharkiv region (for the period from 27 March 2023 to 21 May 2023).

Date Realistic
Forecast

Optimistic
Forecast

Pessimistic
Forecast Date Realistic

Forecast
Optimistic

Forecast
Pessimistic

Forecast

27 March 2023 7 5 9 24 April 2023 12 15 21
28 March 2023 2 5 9 25 April 2023 14 18 25
29 March 2023 6 5 9 26 April 2023 17 21 29
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Table 9. Cont.

Date Realistic
Forecast

Optimistic
Forecast

Pessimistic
Forecast Date Realistic

Forecast
Optimistic

Forecast
Pessimistic

Forecast

30 March 2023 5 6 10 27 April 2023 18 23 32
31 March 2023 3 6 10 28 April 2023 19 24 34
1 April 2023 5 6 10 29 April 2023 22 28 39
2 April 2023 7 6 10 30 April 2023 25 31 43
3 April 2023 11 7 11 1 May 2023 29 36 50
4 April 2023 6 7 11 2 May 2023 26 32 45
5 April 2023 4 7 11 3 May 2023 25 31 43
6 April 2023 5 7 11 4 May 2023 24 30 42
7 April 2023 4 8 12 5 May 2023 29 36 50
8 April 2023 9 8 12 6 May 2023 27 34 48
9 April 2023 7 8 12 7 May 2023 26 33 46

10 April 2023 9 8 12 8 May 2023 27 34 48
11 April 2023 13 8 12 9 May 2023 30 38 53
12 April 2023 15 9 13 10 May 2023 32 40 56
13 April 2023 3 10 14 11 May 2023 34 42 59
14 April 2023 5 10 14 12 May 2023 37 46 64
15 April 2023 6 10 14 13 May 2023 35 44 62
16 April 2023 3 10 14 14 May 2023 32 40 56
17 April 2023 9 10 14 15 May 2023 31 39 55
18 April 2023 4 11 15 16 May 2023 30 37 52
19 April 2023 11 11 15 17 May 2023 28 35 49
20 April 2023 12 12 16 18 May 2023 30 38 53
21 April 2023 4 12 16 19 May 2023 33 41 57
22 April 2023 8 12 16 20 May 2023 34 43 60
23 April 2023 3 13 17 21 May 2023 36 45 63

According to the results of the numerical calculation, fourteen forecasts were made
(dated 27 March, 3 April, 10 April, 17 April, 24 April, 1 May, 8 May, 15 May, 2 June, 4 July,
1 August, and 2 September). Each of the forecasts was built for a period of 92 days. The
Table 10 provides information on the modeling error for each of the fourteen predictions.

Table 10. Analysis of the error of developed forecasts of the dynamics of COVID-19 in Kharkiv region.

Date of Forecast Duration of Forecast Error

27 March 2023 1 week 12.30%
4 April 2023 1 week 14.45%
10 April 2023 1 week 11.31%
17 April 2023 1 week 16.03%
24 April 2023 1 week 10.12%
1 May 2023 1 week 12.63%
8 May 2023 1 week 17.30%

15 May 2023 1 week 9.43%
1 May 2021 1 month 21.60%
2 June 2021 1 month 26.08%
4 July 2021 1 month 22.44%

1 August 2021 1 month 14.21%
2 August 2021 3 month 26.82%

2 September 2021 6 month 28.00%

6. Conclusions

In this paper, a novel mathematical model has been successfully developed to forecast
the spread of both COVID-19 and similar infectious diseases using a system of autonomous
differential equations. The model parameters are easily configured based on data provided
from the official repositories. The adequacy of the model was confirmed by testing on
the example of the spread of COVID-19 in one of the largest regions of Ukraine, both in
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terms of population and area. As a result of the development of the model, six 90-day
forecasts of the infected population were generated, each of which demonstrated a high
level of accuracy with an error of no more than 3.8%. The results of these forecasts and
the numerical experiment contributed to the development of sound recommendations for
the health authorities of the region on the implementation of the quarantine period. This
work contributes to understanding the dynamics of the spread of COVID-19 and similar
infections, which provides support for decision making by public health authorities.

The main added values of our model lie in its unique approach to forecasting the
spread of infectious diseases and its adaptability to various real-world contexts. The model
not only provides high accuracy in predictions but also offers a flexible framework that can
be customized for different regions and population demographics. This adaptability makes
it a valuable tool for public health authorities to effectively develop targeted strategies to
manage infectious disease outbreaks. The model’s integration of multiple parameters and
its capacity for bifurcation analysis enhance its utility in identifying critical factors that
influence the spread of infections, thus enabling proactive and informed decision making.

A critical aspect of our model is the assumptions regarding population homogeneity
and data quality. While necessary for the initial development and testing of the model, these
assumptions present limitations when applied to regions with significant demographic or
behavioral variations. Data quality is paramount to the model’s accuracy; hence, ensuring
reliable data collection methods is crucial. When high-quality data is unavailable, the
model’s performance may be affected. However, we have used official data on COVID-19
morbidity for our study.

Another area that requires further exploration is the model’s adaptability to different
regions and public health scenarios. The necessity for highly reliable and precise data poses
a significant challenge, particularly in less developed regions or during the early stages of an
outbreak when data may be scarce or inconsistent. Investigating the model’s performance
under varying data quality conditions and developing strategies to mitigate these issues
will be essential. Potential solutions include using data augmentation techniques, cross-
validation with alternative data sources, and continuously incorporating real-time data
feeds to refine model predictions.

Further research should explore the model’s applicability in public health emergencies
beyond COVID-19. We can better understand its versatility and limitations by testing
the model with different infectious diseases and varying public health interventions. In-
tegrating additional data sources, such as mobility patterns, social media trends, and
environmental factors, could enhance the model’s predictive power and responsiveness.
This would enable public health authorities to deploy the model in various scenarios,
providing a robust tool for managing current and future public health emergencies.

The study of the bifurcation properties of the presented mathematical model made
it possible to establish 18 non-degenerate states of the system, 10 degenerate states of
codimension 1, and two degenerate states of codimension 2. Analytical conditions for the
occurrence of bifurcations determine the system parameters under which such transitions
can occur. An interesting fact is that almost all topologies, except for diacritical degenerate
nodes, have a fairly clear applied interpretation. This substantiates the adequacy of such
models in relation to systems and processes of various natures. The proposed models can
be used for systems with a large number of parameters and influence factors.

From the applied point of view, it is not the bifurcations themselves that are interesting,
but non-degenerate states that can be changed by passing through the bifurcation value of
the defining parameter. It should be noted that not all non-degenerate states are compatible
with each other. The applied interpretation of non-degenerate system states also proves
that not all of them can be transformed by trivial changes. The situation when several
invariants change sign in the system is characterized by a bifurcation of higher orders.
When a bifurcation of codimension equal to the dimension of the system arises, any changes
in the topology are possible. At the same time, it is obvious that such a bifurcation point
is actually a point of complete rest, at which all the defining parameters of the model
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change. However, from an applied point of view, such a bifurcation is of little interest.
It was established in the work that the state of the system with a hyperbolic equilibrium
point is not typical for the presented applied problem. Hyperbolic systems are typical for
problems of mathematical economics, biology, psychology, etc. For problems of the spread
of infectious diseases, systems with elliptical equilibrium points are usually applicable. The
reason for this may be the stability of the system and its isolation, as well as the existence
of pronounced intrasystem dynamics (homomorphism).

The scientific novelty of the work lies in the development of a new mathematical
model of the dynamics of infectious diseases, approaches to the qualitative study of such a
model, analysis of the analytical conditions of qualitative changes in the system (bifurca-
tions), and approaches to the applied interpretation of the results obtained, which allows
evaluating not only the qualitative modes of operation but also the methods and results of
the management system.

The practical novelty of the work lies in the possibility of applying the proposed
approaches and mathematical models to predict the dynamics of the spread of infectious
disease, using the example of COVID-19. Retrospective analysis showed the high accuracy
of the model and the adequacy of its management recommendations. It allows not only an
up-to-date forecast of the system’s state to be obtained but also recommendations for its
management to change the quality modes of operation to be developed.
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