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Abstract: The Basener and Ross mathematical model is widely recognized for its ability
to characterize the interaction between the population dynamics and resource utilization
of Easter Island. In this study, we develop and investigate a discrete-time version of
the Basener and Ross model. First, the existence and the stability of fixed points for the
present model are investigated. Next, we investigated various bifurcation scenarios by
establishing criteria for the occurrence of different types of codimension-one bifurcations,
including flip and Neimark–Sacker bifurcations. These criteria are derived using the center
manifold theorem and bifurcation theory. Furthermore, we demonstrated the existence
of codimension-two bifurcations characterized by 1:2, 1:3, and 1:4 resonances, emphasiz-
ing the model’s complex dynamical structure. Numerical simulations are employed to
validate and illustrate the theoretical predictions. Finally, through bifurcation diagrams,
maximal Lyapunov exponents, and phase portraits, we uncover a diversity of dynamical
characteristics, including limit cycles, periodic solutions, and chaotic attractors.

Keywords: population model dynamics; stability analysis; codimension-one bifurcation;
codimension-two bifurcation

1. Introduction
Recently, discrete-time models have played an effective and important role in the study

of population dynamics, particularly in species that have one generation per year, such as
annual plants, and species with pulsed reproductions, such as many wildlife species in
seasonal environments [1–3]. Moreover, they exhibit more intricate dynamic patterns than
those of continuous-time models, such as bifurcations and chaos [4–7].

The discussion surrounding societal (civilization) collapse as a potential future tra-
jectory for the world has recently gained significant relevance [8]. Tonnelier employed
bifurcation analysis to investigate the effects of the nature depletion rate and societal in-
equality on the dynamics of the HANDY model [9]. To emphasize the importance of social
cohesion, Sargentis et al. employed a mathematical model based on Hurst–Kolmogorov
dynamics. They suggested that social structural changes are more likely to be responsi-
ble for society’s ultimate decline [10]. Akhavan and York studied population collapse in
Elite-Dominated societies [11]. They used a new Lyapunov function theorem to analyze a
class of ordinary differential equation models characterized by the perpetual collapse of the
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worker population. Subsequently, they employed qualitative criteria, indicating that these
conditions necessitate population collapse. In their study, Manzoor et al. investigated the
consequences of aggregation through densely connected communities on a networked sys-
tem of natural-resource consumption [12]. To investigate the association between drought
scenarios and population dynamics, Kuil et al. employed a hydrology–demography model
that had been calibrated to mimic realistic feedbacks for the Ancient Maya population
drop in Central America [13]. Robert et al. employed a Bayesian model-driven approach
to deduce the timing of events in relation to arguments about Rapa Nui collapse [14].
Michel introduced a class of models designed to explore the dynamics of population and
resources, where birth decisions are guided by a rational, forward-looking evaluation of the
anticipated future state of resources [15]. Roman et al. presented a dynamical model that
incorporates land state, population dynamics, and workforce engaged in both swidden and
intensive agriculture as well as monument construction to examine whether the interplay
between societal dynamics and natural resource depletion sheds light on the decline of the
Classic Maya civilization [16]. Several scholars have argued for various types of models
that represented the relationship between consumers and their resources; regarding this,
see [17] and the many references cited therein.

The mathematical modeling of the relationship between a population and natural
resources consumption is based on the Lotka–Volterra predator–prey model, in which the
population is the predator and resources are the prey. An isolated island, with its regulated
environment and lack of external disruptions like migration, serves as a natural laboratory
for examining ecosystem evolution. This isolation enables researchers to examine ecological
dynamics and evolutionary processes devoid of external influences, providing significant
insights into the development and adaptation of ecosystems across time. In 1998, Brander
and Taylor developed an economic model to explore the environmental and societal collapse
of the Polynesian civilization on Easter Island [18]. Theirs is a predator–prey-driven model,
which is governed by the following equations:

dP
dt

= G(H, R)P,

dR
dt

= ρ(R)− H(R, P),
(1)

where P(t) and R(t) are the human population and the stock of renewable resources,
respectively; G(H, R) represents the population growth rate; ρ(R) denotes the renewal
rate of resource; and H = H(R, P) is the rate of resource harvesting. They have described
resource dynamics through a logistic regeneration and a linear correlation between fertility
and resource consumption as follows:

dP
dt

= (b − d + ϕR)P,

dR
dt

= cR
(

1 − R
K

)
− hPR.

(2)

Here, b and d are birth and death rates, respectively; ϕ is the conservation rate per
capita resource consumption; c is the intrinsic regeneration rate of the resource; K is carrying
capacity; and h is the rate of resource harvesting. Basener and Ross [19] employed the
logistic growth to describe population dynamics as follows:

dP
dt

= aP
(

1 − P
R

)
,

dR
dt

= cR
(

1 − R
K

)
− hP,

(3)
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where a is the population natural growth rate.
In this work, using the forward Euler approach, we obtain the discrete-time type of

Model (3) as follows:

Pn+1 = Pn + aPn

(
1 − Pn

Rn

)
,

Rn+1 = Rn + cRn

(
1 − Rn

K

)
− hPn.

(4)

Here, we consider the integral step size to be equal to 1. Our research conducts a
comprehensive study of bifurcation analysis for the discrete-time Basener–Ross model
(Equation (4)). According to Schaffer and Kot [20], it is critical to understand the periodic or
chaotic dynamics that arise in ecological models. Their findings suggest that, far from being
chaotic and disorderly, the chaotic trajectory structure could actually include crucial infor-
mation about an ecosystem’s dynamics. The bifurcation of equilibria is a well-known cause
of an ecosystem’s complicated dynamics. In [21], the authors numerically explored the
bifurcation behaviors of codimension one for Model (4). Here, we examine analytically the
codimension-one bifurcations, including flip and Neimark–Sacker bifurcations, and extend
our study to codimension-two bifurcations characterized by 1:2, 1:3, and 1:4 resonances,
emphasizing the model’s complex dynamical structure. For analyzing codimension-one
bifurcations, we use the center manifold theorem and bifurcation theory. This method
is most effective for low-dimensional models. However, as the dimension of the model
increases, the complexity of constructing and analyzing the center manifold grows signif-
icantly. Additionally, its utility is limited for higher-codimension bifurcations. Next, we
examine the bifurcation behaviors of codimension two for the current model using the
normal form approach and bifurcation theory. This approach does not need a transition into
Jordan form and the computation of the model center manifold approximation. It is suffi-
cient to compute the critical non-degeneracy coefficients to verify the existence of various
bifurcation forms. Numerous studies have focused on bifurcation and chaotic behaviors
in both discrete-time and continuous-time models. While numerous codimension-one
bifurcation literature srouces have been considered, as shown in [4–7], only a small number
of codimension-two bifurcation literature options are theoretically feasible [22–25]. To
the best of our knowledge, there is very little literature on the topic of the bifurcation
behaviors of the discrete-time Basener–Ross model as a function of two parameters that use
both theoretical and numerical approaches, including continuation, invariant manifolds,
maximal Lyapunov exponents, and normal forms. Not only that, numerical simulations are
used to verify our theoretical results and describe other model behaviors like bifurcations
of higher iterations (such as the third and fourth iterations).

The structure of this paper is outlined as follows. Section 2 focuses on examining the
existence and stability of fixed points in Model (4). Section 3 presents the derivation of
sufficient conditions for the occurrence of flip bifurcation and Neimark–Sacker bifurcation,
utilizing the center manifold theorem and bifurcation theory. In Section 4, we discuss the
codimension-two bifurcation. In Section 5, numerical simulations are conducted to validate
the theoretical findings. Finally, concluding remarks are provided in Section 6.

2. Exploring the Existence and Stability of Fixed Points
This section explores the existence and stability of Model (4)’s fixed points. Model (4)

exhibits two non-negative fixed points, which can be stated as follows:

1. The semi-trivial fixed point E1 = (0, K);
2. The unique coexistence fixed point E2 = (P∗, R∗) = (K − hK

c , K − hK
c ), which exists

when c > h.
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In order to investigate the local stability of Model (4)’s fixed points, we examine the
Jacobian matrix of Model (4) and compute the eigenvalues associated with each fixed point.
At an arbitrary fixed point (P, R), the Jacobian matrix is given by

J(P, R) =

(
1 + a − 2aP

R
aP2

R2

−h 1 + c − 2cR
K

)
. (5)

Now, we state the following lemmas that help us to understand the qualitative proper-
ties of the obtained fixed points.

Lemma 1 ([26]). Let F(λ) = λ2 + Trλ + Det. Suppose that F(1) > 0 and that λ1 and λ2 are
two roots of F(λ) = 0. Then,

1. |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0, Det < 1;
2. |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F(−1) < 0;
3. |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and Det > 1;
4. λ1 = −1 and |λ2| ̸= 1 if and only if F(−1) = 0 and Tr ̸= 0, 2;
5. λ1 and λ2 are complex and |λ1| = 1 and |λ2| = 1 if and only if (Tr)2 − 4Det < 0 and

Det = 1.

Lemma 2 ([26]). Assume that λ1 and λ2 are eigenvalues a fixed point (P∗, R∗); then, (P∗, R∗)

1. is referred to as a sink if |λ1| < 1 and |λ2| < 1, so the sink is deemed to be locally asymptoti-
cally stable;

2. is referred to as a source if |λ1| > 1 and |λ2| > 1, so the source is deemed locally unstable;
3. is referred to as a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1);
4. is referred to as non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Based on the previous lemmas, we now present the following theorems.

Theorem 1. The semi-trivial fixed point E1(0, K) possesses the following properties:

(i) If 0 < c < 2, then E1 is a saddle point where |λ1| > 1 and |λ2| < 1;
(ii) If c > 2, then |λ1,2| > 1 and E1 is a source;
(iii) If c = 2, then E1 is a non-hyperbolic point where |λ1| = 1 + a and λ2 = −1.

Proof. If Condition (iii) is met, then one of E1’s eigenvalues is −1, while the other eigen-
value is different from 1. This condition suggests the occurrence of a flip bifurcation at the
fixed point E1(0, K).

Next, we analyze the local stability of the positive fixed point E2(K − hK
c , K − hK

c ). The
characteristic equation of the positive fixed point E2 is expressed as follows:

F(λ) := λ2 + (a − 2 − A)λ + 1 + A + a(B − 1) = 0,

where A = 2h − c and B = c − h. Note that F(1) = aB > 0 and F(−1) = 4+ 2A + a(B − 2).
Applying Lemmas (1) and (2), we draw the following conclusions.

Theorem 2. Assume that B > 2. The dynamic behaviors of Model (4) at the positive fixed point E2

can be described as follows:

(i) When a is greater than 4+2A
2−B and less than A

1−B , the fixed point E2 becomes a sink and is
locally asymptotically stable;

(ii) When a is greater than both 4+2A
2−B and A

1−B , the fixed point E2 becomes a source and is locally
unstable;
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(iii) When a is less than 4+2A
2−B , the fixed point E2 becomes a saddle;

(iv) When a equals 4+2A
2−B but is not equal to A + 2 or A + 4, the fixed point E2 becomes non-

hyperbolic, and Model (4) may undergo a flip bifurcation (period-doubling bifurcation);
(v) When (a − A)2 < 4aB and a equals A

1−B , the fixed point E2 becomes non-hyperbolic, and
System (4) may undergo a Neimark–Sacker bifurcation.

3. Codimension-One Bifurcation Analysis
Based on the analysis presented in Section 2, we establish the occurrence of flip

bifurcation and Neimark–Sacker bifurcation in Model (4) at the positive fixed point E2. This
conclusion is supported by the application of the center manifold theorem and bifurcation
theory, as discussed in [27,28].

3.1. Flip Bifurcation

This subsection clarifies the necessity for a flip bifurcation to occur at the positive fixed
point E2.

Theorem 3. When the parameter a assumes the value a = 4+2A
2−B , Model (4) exhibits a flip

bifurcation at the positive fixed point E2.

Proof. The eigenvalues of Model (4) at the positive fixed point E2 = (P∗, R∗) are λ1 = −1
and |λ2| ̸= 1 when a = 4+2A

2−B . We need to apply a coordinate transformation to shift the
fixed point E2 into the origin. Assume that u = P − P∗, v = R − R∗, and substitute a with
a + a∗ in Model (4). As a consequence, Model (4) can be expressed in the following form:(

u

v

)
→


a1u + a2v + a13ua∗ + a23va∗ + a11u2 + a12uv + a22v2 + a113u2a∗ + a123uva∗

+ a223v2a∗ + O((|u|+ |v|+ |a∗|)3),

b1u + b2v + b11u2 + b12uv + b22v2,

(6)

where
a1 = 1 − a, a2 = a, a13 = −1, a23 = 1, a11 = − a

R∗ , a22 = − a
R∗ , a12 =

2a
R∗ , a113 = − 1

R∗ ,

a223 = − 1
R∗ , a123 =

2
R∗ , b1 = −h, b2 = 1 − c + 2h, b11 = 0, b12 = 0, b22 = − c

K
.

(7)

Construct the following invertible matrix:

T =

(
a2 a2

−1 − a1 λ2 − a1

)
.

Applying the transformation(
u
v

)
= T

(
ξ

η

)
,

Model (6) undergoes the following form:(
ξ

η

)
→
(

−1 0
0 λ2

)(
ξ

η

)
+

(
f1(ξ, η, a∗)
f2(ξ, η, a∗)

)
, (8)

where
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f1(ξ, η, a∗) =
(λ2 − a1)a13

a2(1 + λ2)
ua∗ +

(λ2 − a1)a23

a2(1 + λ2)
va∗ +

(λ2 − a1)a11 − a2b11

a2(1 + λ2)
u2 +

(λ2 − a1)a12 − a2b12

a2(1 + λ2)
uv

+
(λ2 − a1)a22 − a2b22

a2(1 + λ2)
v2 +

(λ2 − a1)a113

a2(1 + λ2)
u2a∗ +

(λ2 − a1)a123

a2(1 + λ2)
uva∗ +

(λ2 − a1)a223

a2(1 + λ2)
v2a∗

+ O((|u|+ |v|+ |a∗|)3),

f2(ξ, η, a∗) =
(1 + a1)a13

a2(1 + λ2)
ua∗ +

(1 + a1)a23

a2(1 + λ2)
va∗ +

(1 + a1)a11 + a2b11

a2(1 + λ2)
u2 +

(1 + a1)a12 + a2b12

a2(1 + λ2)
uv

+
(1 + a1)a22 + a2b22

a2(1 + λ2)
v2 +

(1 + a1)a113

a2(1 + λ2)
u2a∗ +

(1 + a1)a123

a2(1 + λ2)
uva∗ +

(1 + a1)a223

a2(1 + λ2)
v2a∗

+ O((|u|+ |v|+ |a∗|)3),

and 
u = a2(ξ + η), v = −(1 + a1)ξ + (λ2 − a1)η, u2 = a2

2(ξ2 + ξη + η2),

uv = a2[−(1 + a1)ξ
2 + (λ2 − 2a1 − 1)ξη + (λ2 − a1)η

2],

v2 = (1 + a1)
2ξ2 − 2(1 + a1)(λ2 − a1)ξη + (λ2 − a1)

2η2.

Using the center manifold theory [27,28], we can determine a center manifold
Wc(0, 0, 0) of Equation (8) at the fixed point (0, 0) within a small neighborhood of a∗.
This center manifold can be expressed as follows:

Wc(0, 0, 0) = {(ξ, η, a∗) ∈ R3, η = f (ξ, a∗), f (0, 0) = 0, D f (0, 0) = 0}.

Assume that the center manifold can be represented by the following expression:

f (ξ, a∗) = c1ξ2 + c2ξa∗ + c3a∗2 + O((|ξ|+ |a∗|)3). (9)

The center manifold is required to meet

f (−ξ + f1(ξ, f (ξ, a∗), a∗)) = λ2 f (ξ, a∗) + f2(ξ, f (ξ, a∗), a∗). (10)

By substituting from Equation (9) into Equation (10) and comparing the coefficients of
same powers, we obtain

c1 =
1

a2(1 − λ2
2)
[(1 + a1)a2

2a11 + a3
2b11 − (1 + a1)

2a2a12 − (1 + a1)a2
2b12 + (1 + a1)

3a22 + (1 + a1)
2a2b22],

c2 =
1

a2(1 + λ2)2 [(1 + a1)
2a23 − (1 + a1)a2a13], c3 = 0.

So, Model (8) is restricted to the following center manifold:

G : ξ → −ξ + δ11ξ2 + δ12ξa∗ + δ111ξ3 + δ112ξ2a∗ + δ122ξa∗2 + O((|ξ|+ |a∗|)4), (11)

where
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δ11 =
1

a2(1 + λ2)
[(λ2 − a1)a2

2a11 − a3
2b11 + (λ2 − a1)(1 + a1)

2a22 − (1 + a1)
2a2b22

− (1 + a1)(λ2 − a1)a2a12 + (1 + a1)a2
2b12],

δ12 =
1

a2(λ2 + 1)
[(λ2 − 1)a2a13 − (λ2 − a1)(1 + a1)a23],

δ111 =
c1

a2(1 + λ2)
[2(λ2 − a1)a2

2a11 − 2a3
2b11 − 2(λ2 − a1)

2(1 + a1)a22 + 2(λ2 − a1)(1 + a1)a2b22

+ (λ2 − a1)(λ2 − 2a1 − 1)a2a12 − (λ2 − 2a1 − 1)a2
2b12],

δ112 =
1

a2(λ2 − a1)
[2(λ2 − a1)c2a2

2a11 − 2c2a3
2b11 + (λ2 − a1)a2

2a113 + (λ2 − a1)(1 + a1)
2a223

− 2(λ2 − a1)
2(1 + a1)c2a11 + 2(λ2 − a1)(1 + a1)c2a2b11 + (λ2 − a1)

2c1a223 − (λ2 − a1)(1 + a1)a2a123

+ (λ2 − a1)a2c1a13 + (λ2 − a1)(λ2 − 2a1 − 1)a2c2a12 + (λ2 − 2a1 − 1)a2
2c2b12],

δ122 =
1

a2(1 + λ2)
[(λ2 − a1)a2c2a13 + (λ2 − a1)

2c2a23].

For a flip bifurcation to occur, it is necessary that the following discriminant quantities:

α1 =
(

2
∂2G

∂ξ∂a∗
+

∂G
∂a∗

∂G
∂ξ

)
(0,0)

= 2δ12,

α2 =
((1

2
∂2G
∂ξ2

)2
+

1
6

(∂3G
∂ξ3

))
(0,0)

= δ111 + δ11
2,

are not zero. Thus, as a result of the above analysis, Model (4) undergoes a flip bifurcation
at E2 when a = 4+A

2−B and α1 ̸= 0, α2 ̸= 0.

Remark 1. Flip bifurcation as a biological phenomenon that happens when the population size
fluctuates with periods 2, 4, 8, . . ., until it becomes completely chaotic.

3.2. Neimark–Sacker Bifurcation

In this subsection, we investigate the Neimark–Sacker bifurcation for Model (4) at the
positive fixed point E2, in particular when the parameter a is set to a = A

1−B . Applying the
transformations u = P − P∗, v = R − R∗ and a = a + ā, we may shift E2 in System (4) to
the origin. Consequently, we obtain the following expression:(

u

v

)
→
{

a1u + a2v + a11u2 + a12uv + a22v2 + O((|u|+ |v|)3),

b1u + b2v + b11u2 + b22v2,
(12)

The values of a1, a2, a11, a12, a22, b1, b2, and b22 are defined in (7) with a = a + ā. The
linearized system in (12) at the point (u, v) = (0, 0) yields the following characteristic
equation:

λ2 + m(ā)λ + n(ā) = 0,

where
m(ā) = a + ā − A − 2, n(ā) = 1 + A + (a + ā)(B − 1).

Based on Theorem (2), the eigenvalues of Model (12) are a complex conjugate pair,
denoted as λ1 and λ2, having modulus 1, where

λ1,2 = −m(ā)
2

± i
2

√
4n(ā)− (m(ā))2.
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Moreover,

|λ1,2|ā=0 =
√

n(0) = 1,
d|λ1,2|

dā
|ā=0 =

1
2
(B − 1) ̸= 0.

To satisfy the conditions λ
j
1,2 ̸= 1 for j = 1, 2, 3, 4, which implies that m(0) ̸= −2, 0, 1, 2,

we only need to require that
m(0) ̸= 0, 1. (13)

Assume that a − A − 2 ̸= 0, 1. In this case, the eigenvalues λ1,2 of the fixed point (0, 0)
in System (12) do not fall within the intersection of the unit circle, and the conditions in (13)
are satisfied. In order to obtain the normal form of Model (12), we set

µ = −m(0)
2

, ω =
1
2

√
4n(0)− (m(0))2,

at ā = 0. Assume an invertible matrix as follows:

T =

(
a2 0

µ − a1 −ω

)
,

Using the following transformation:(
u
v

)
= T

(
ξ

η

)
,

Model (12) is transformed into the following form:(
ξ

η

)
→
(

µ −ω

ω µ

)(
ξ

η

)
+

(
f̄1(ξ, η)

f̄2(ξ, η)

)
, (14)

where

f̄1(ξ, η) =
1
a2
[a11u2 + a12uv + a22v2] + O((|ξ|+ |η|)3),

f̄2(ξ, η) =

[
a11(µ − a1)− a2b11

a2ω

]
u2 +

[
a12(µ − a1)

a2ω

]
uv +

[
a22(µ − a1)− a2b22

a2ω

]
v2,

and

u = a2ξ, v = (µ − a1)ξ − ωη, u2 = a2
2ξ2, uv = a2ξ[(µ − a1)ξ − ωη]

v2 = (µ − a1)
2ξ2 − 2(µ − a1)ωξη + ω2η2.

For System (14) to undergo a Neimark–Sacker bifurcation, it is necessary that the
following discriminatory quantity is nonzero:

θ = −Re
( (1 − 2λ)λ̄2

1 − λ
L11L12

)
− 1

2
|L11|2 − |L21|2 + Re(λ̄L22),
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where

L11 =
1
4
(( f̄1ξξ + f̄1ηη) + i( f̄2ξξ + f̄2ηη)),

L12 =
1
8
(( f̄1ξξ − f̄1ηη + 2 f̄2ξη) + i( f̄2ξξ − f̄2ηη − 2 f̄1ξη)),

L21 =
1
8
(( f̄1ξξ − f̄1ηη − 2 f̄2ξη) + i( f̄2ξη − f̄2ηη + 2 f̄1ξη)),

L22 =
1

16
(( f̄1ξξξ + f̄1ξηη + f̄2ξξη + f̄2ηηη) + i( f̄2ξξξ + f̄2ξηη − f̄1ξξη − f̄1ηηη)),

Based on the analysis presented above, we can conclude the following result.

Theorem 4. If Condition (13) is satisfied and θ is nonzero, System (4) undergoes a Neimark–Sacker
bifurcation at the fixed point E2(P∗, R∗). Additionally, if θ is negative (resp., positive), a closed
invariant curve emerges at a = A

1−B , which is subcritical (resp., supercritical) and asymptotically
stable (resp., unstable).

Remark 2. From a sustainability perspective, a stable invariant curve arises from the coexistence
fixed point E2 once a surpasses the critical value A

1−B . This indicates a stable and reproducing
cohabitation between the human population and resources. On the other hand, ecological imbalance
will result from human population and their resource instability will occur if the invariant curve
bifurcated from E2 is unstable as a approaches the critical value A

1−B .

4. Codimension-Two Bifurcation Analysis
In this section, at the positive fixed point E2(P∗, R∗), we investigate the strong res-

onance phenomena for Model (4), as mentioned in [22–25]. Consider the characteristic
equation of Model (4):

λ2 + p(P∗, R∗)λ + q(P∗, R∗) = 0, (15)

where p = a − A − 2, q = 1 + A + a(B − 1), and A, B are previously defined. Referring to
Equation (15), we obtain the following expression:

λ1,2 =
−p(P∗, R∗)±

√
p2(P∗, R∗)− 4q(P∗, R∗)

2
.

When the values of p(P∗, R∗) and q(P∗, R∗) are such that p(P∗, R∗) = 2 and
q(P∗, R∗) = 1, the eigenvalues λ1 and λ2 become equal, and both are equal to −1.
This signifies that Model (4) exhibits 1:2 resonance. If p(P∗, R∗) = q(P∗, R∗) = 1, then

λ1,2 = (−1)±i
√

3
2 . This signifies that Model (4) exhibits 1:3 resonance. If p(P∗, R∗) = 0 and

q(P∗, R∗) = 1, then λ1,2 = ±i. This signifies that Model (4) exhibits 1:4 resonance. Thus,
strong resonance phenomena are characterized by the conditions specified by the following
sets, F1j, defined as follows:

F1j =
{
(a, c, h, K) ∈ R4

+ | p(P∗, R∗) = 4 − j, q(P∗, R∗) = 1
}

, j = 2, 3, 4.

4.1. The 1:2 Resonance of Model (4) at the Positive Fixed Point E2(P∗, R∗)

In this subsection, we explore the conditions for the occurrence of 1:2 resonance at E2

by applying bifurcation theory and normal form theory, as discussed in references [27–29].
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We randomly select parameters (ã, c, h̃, K) from the set F12. Consequently, Model (4) can be
expressed as follows:

Pn+1 = Pn + ãPn(1 −
Pn

Rn
),

Rn+1 = Rn + cRn(1 −
Rn

K
)− h̃Pn.

(16)

Model (16) has two eigenvalues λ1 = λ2 = −1 at the fixed point E2(P∗, R∗). To
investigate the effects of bifurcation parameters ã and h̃, we introduce a small perturbation
into Model (16). This perturbed model can be described as follows:

Pn+1 = Pn + (ã + a∗)Pn(1 −
Pn

Rn
),

Rn+1 = Rn + cRn(1 −
Rn

K
)− (h̃ + h∗)Pn,

(17)

where |a∗|, |h∗| ≪ 1 are small perturbation parameters. Assume that ũ(n) = P(n)− P∗,
ṽ(n) = R(n)− R∗, a = ã + a∗, and h = h̃ + h∗. We perform a coordinate transformation to
shift the fixed point E2 into the origin. This transformation allows us to simplify Model (17),
resulting in the following expression:

ũ(n + 1) =
(

1 + a − 2aP∗

R∗

)
ũ(n) +

aP∗2

R∗2 ṽ(n)− a
R∗ ũ2(n) +

2aP∗

R∗2 ũ(n)ṽ(n)

− aP∗2

R∗3 ṽ2(n) + O((|ũ(n)|+ |ṽ(n)|)3),

ṽ(n + 1) = −hũ(n) +
(

1 + c − −2cR∗

K

)
ṽ(n)− c

K
ṽ2(n).

(18)

Let T be an invertible matrix is given by

T =

(
− a2

1+a1
− a2

(1+a1)2

1 0

)
,

and use the translation (
ũ
ṽ

)
= T

(
P̃
R̃

)
.

Then, Map (18) is transformed into(
P̃
R̃

)
7→
(

−1 + a10(a, h) 1 + a01(a, h)
b10(a, h) −1 + b01(a, h)

)(
P̃
R̃

)
+

(
f̃
(

P̃, R̃, a, h
)

g̃
(

P̃, R̃, a, h
) ), (19)

where
f̃
(

P̃, R̃, a, h
)
= ∑

2≤j+k≤3
f̃ j,k(a, h)P̃jR̃k,

g̃
(

P̃, R̃, a, h
)
= ∑

2≤j+k≤3
g̃j,k(a, h)P̃jR̃k,

and
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a10 = 2 + c +
a2h

1 + a1
− 2cR∗

K
, a01 = −1 +

a2h
(1 + a1)2 ,

b10 = − 1
a2KR∗2

{[
a2

2hk + c(1 + a1)(K − 2R∗)
]

R∗2 + aK(1 + a1)
2P∗2 + 2a2P∗R∗ − a2R∗2

}
,

b01 = 1 − 1
R∗(1 + a1)

{a(1 + a1)(2P∗ − R∗)− R∗(1 + a1 − a2h)}, f̃20 = − c
K

,

f̃11 = f̃02 = f̃30 = f̃12 = f̃21 = f̃03 = 0,

g̃20 =
1

a2KR∗3

{
a2c(1 + a1)R∗3 + aK(P∗ + a1P∗ + a2R∗)2

}
,

g̃11 =
1

(1 + a1)R∗2 {2a(P∗ + a1P∗ + a2R∗)}, g̃02 =
aa2

(1 + a1)2R∗ ,

g̃30 = g̃12 = g̃21 = g̃03 = 0.

Now, we utilize a nonsingular linear coordinate transformation, which is provided by(
P̃
R̃

)
=

(
1 + a01(a, h) 0
−a10(a, h) 1

)(
P̂
R̂

)
.

As a result, Equation (19) is transformed into(
P̂
R̂

)
7→
(

−1 1
θ1(a, h) −1 + θ2(a, h)

)(
P̂
R̂

)
+

(
f̂
(

P̂, R̂, a, h
)

ĝ
(

P̂, R̂, a, h
) ), (20)

where
f̂
(

P̂, R̂, a, h
)
= ∑

2≤j+k≤3
f̂ j,k(a, h)P̂jR̂k,

ĝ
(

P̂, R̃, a, h
)
= ∑

2≤j+k≤3
ĝj,k(a, h)P̂jR̂k,

and

θ1 =
−1

Ka2R∗2

[
a2R∗2(K(1 + 2c + a1c + a2h)− 2cR∗(2 + a1)) + a(2ca2R∗2(2P∗ − R∗)

+ K((1 + 2a1 + a1
2 + a2h)P∗2 + 2a2(a1 − c)P∗R∗ + a2(−a1 + c)R∗2))

]
,

θ2 = a + c − 2aP∗

R∗ − 2cR∗

K
, f̂20 = − c(1 + 2a1 + a1

2 + a2h)
K(1 + a1)2 ,

f̂11 = f̂20 = f̂30 = f̂12 = f̂21 = f̂03,

ĝ20 =
1

a2K2R∗3(1 + a1)2

{
a2cR∗3(1 + 2a1 + a1

2 + a2h)(a1K − cK + 2cR∗) + a(2ca2R∗2

+ K((1 + 2a1 + a1
2 + a2h)P∗ + a2(a1 − c)R∗))2},

ĝ11 =
1

KR∗2(1 + a1)2

{
2a(2ca2R∗2 + K((1 + 2a1 + a1

2 + a2h)P∗ + a2(a1 − c)R∗))
}

,

ĝ02 =
aa2

R∗(1 + a1)2 , ĝ30 = ĝ12 = ĝ21 = ĝ03 = 0.
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Finally, we apply the following transformation:

P̂ = ξ + ∑
2≤j+k≤3

ϕjk
(
ã, h̃
)
ξ jηk,

R̂ = η + ∑
2≤j+k≤3

ψjk
(
ã, h̃
)
ξ jηk,

(21)

The coefficients ϕjk and ψjk can be obtained through the following relations:


ϕ20 =

1
2

f̂20 +
1
4

ĝ20, ϕ11 =
1
2

f̂20 +
1
2

f̂11 +
1
2

ĝ20 +
1
4

ĝ11,

ϕ02 =
1
4

f̂11 +
1
2

f̂02 +
1
8

ĝ20 +
1
4

ĝ11 +
1
4

ĝ02,

ψ20 =
1
2

ĝ20, ψ11 =
1
2

ĝ20 +
1
2

ĝ11, ψ02 =
1
4

ĝ11 +
1
2

ĝ02

By applying Transformation (21) and its inverse transformation, we obtain the follow-
ing expression:(

ξ

η

)
7→
(

−1 1
θ1(a, h) 1 + θ2(a, h)

)(
ξ

η

)
+

(
Γ
(

P̂, R̂, a, h
)

Σ
(

P̂, R̂, a, h
) ), (22)

where

Γ
(

P̂, R̂, a, h
)
= ∑

2≤j+k≤3
γjkξ jηk + O

(
(|ξ|+ |η|)4

)
,

Σ
(

P̂, R̂, a, h
)
= ∑

2≤j+k≤3
σjkξ jηk + O

(
(|ξ|+ |η|)4

)
,

where γjk and σjk are given below:

γ20(a, h) = ˆf20 + ψ20 − 2ϕ20 − ϕ02θ1
2 + ϕ11θ1,

γ11(a, h) = ˆf11 + ψ11 − 2ϕ02θ1(1 + θ2) + ϕ11(θ2 − θ1) + 2ϕ20,

γ02(a, h) = ˆf02 + ψ02 − ϕ02(1 + (1 + θ2)
2) + ϕ11(θ2 + 1)− ϕ20,

σ20(a, h) = ˆg20 − ψ02θ1
2 + ψ11θ1 + ψ20θ2 + ψ20θ1,

σ11(a, h) = ˆg11 − 2ψ02θ1(θ2 + 1) + ψ11(2 − θ1 + 2θ2) + 2ψ20 + ϕ11θ1,

σ02(a, h) = ˆg02 − ψ02θ2(1 + θ2)− ψ11(1 + θ2)− ψ20 + ϕ02θ1.

By setting γjk = σjk = 0 with j + k = 2, we can eliminate all quadratic terms. Also,
all cubic terms are annihilated except those resonant terms by setting γjk = σjk = 0 with
j + k = 3. For j + k = 3, this results in a system for ϕjk and ψjk, from which we may obtain
ϕjk and ψjk. From the above transformations, Map (22) is transformed to the 1:2 resonance
normal form as follows:(

ξ

η

)
7→
(

−ξ + η

θ1(a, h)ξ + (−1 + θ2(a, h))η + C(a, h)ξ3 + D(a, h)ξ2η

)
+ O((|ξ|+ |η|))4, (23)

where C(a, h) = σ30 and D(a, h) = σ21. When (a, h) =
(
ã, h̃
)
, we obtain θ1(a, h) =

θ2(a, h) = 0,

C
(
ã, h̃
)
= ĝ30 + f̂20 ĝ20 +

1
2

ĝ2
20 +

1
2

ĝ20 ĝ11,
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D
(
ã, h̃
)

= ĝ21 + 3 f̂30 +
1
2

f̂20 ĝ11 +
5
4

ĝ20 ĝ11

+ ĝ20 ĝ02 + 3 f̂20 +
5
2

f̂20 ĝ20 +
5
2

f̂11 ĝ20 + ĝ2
20 +

1
2

ĝ2
11.

By utilizing Lemma 9.10 and Theorem 9.3 from reference [28], we can establish the
following theorem.

Theorem 5. Suppose that C
(
ã, h̃
)
̸= 0 and D

(
ã, h̃
)
+ 3C

(
ã, h̃
)
̸= 0; then, Map (4) contains the

subsequent dynamical behaviors:

1. A flip bifurcation curve is present at F = {(θ1, θ2) : θ1 = 0}, and there exists a non-trivial
fixed point for θ1 < 0;

2. A non-degenerate Neimark–Sacker bifurcation curve can be identified:

H = {(θ1, θ2) : θ1 = −θ2 + O
(
(|θ1|+ |θ2|)2

)
, θ1 < 0};

3. A heteroclinic bifurcation curve exists:

HL = {(θ1, θ2) : θ1 = −5
3

θ2 + O
(
(|θ1|+ |θ2|)2

)
, θ1 < 0}.

Remark 3. The existence of a 1:2 strong resonance signifies that Model (4) is acutely responsive
to variations in bifurcation parameters, influencing its intricate dynamics. The non-degenerate
Neimark–Sacker bifurcation has important biological consequences, causing periodic or quasi-
periodic fluctuations in the population–resource system as the bifurcation parameters (a,h) move
around the (ã,h̃) region. These fluctuations can lead to long-period variations, significant population
surges, and even chaotic behavior in the population–resource system. These arise from periodic
oscillations with periods of 2, 4, and 8, or due to the presence of a homoclinic structure.

4.2. The 1:3 Resonance of Model (4) at the Positive Fixed Point E2(P∗, R∗)

In this subsection, we explain the dynamical behavior that occurs near 1:3 resonance
for Model (4). Taking both

(
â, ĥ
)

as bifurcation parameters from F13, Model (4) with

parameters
(

â, c, ĥ, K
)

is formed as

Pn+1 = Pn + âPn(1 −
Pn

Rn
),

Rn+1 = Rn + cRn(1 −
Rn

K
)− ĥPn,

(24)

Model (24) at the positive fixed point E2 has two eigenvalues: λ1,2 = −1±
√

3i
2 . Let û(n) =

P(n)− P∗, v̂(n) = R(n)− R∗. Then, Model (24) is transformed to

û(n + 1) =
(

1 + â − 2âP∗

R∗

)
û(n) +

âP∗2

R∗2 v̂(n)− â
R∗ û2(n) +

2âP∗

R∗2 û(n)v̂(n)− âP∗2

R∗3 v̂2(n) + O((|û(n)|+ |v̂(n)|)3),

v̂(n + 1) = −ĥû(n) +
(

1 + c − 2cR∗

K

)
v̂(n)− c

K
v̂2(n).

(25)

The Jacobian matrix of Model (24) at E2 is

A(â, ĥ) =

(
1 + â − 2âP∗

R∗
âP∗2

R∗2

−ĥ 1 + c − 2cR∗
K

)
.
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Also, we compute a pair of adjoint eigenvectors q(â, ĥ), p(â, ĥ) ∈ C2 to achieve the
following relations:

A(â, ĥ)q(â, ĥ) =
−1 +

√
3i

2
q(â, ĥ), AT(â, ĥ)p(â, ĥ) = −1 +

√
3i

2
p(â, ĥ),

< p(â, ĥ), q(â, ĥ) >= 1, where < ., . > means the standard scalar product in
C2:< p, q >= p̄1q1 + p̄2q2.

After some calculations, we can choose

q(â, ĥ) =

(
− aP∗2

R∗2

a − 2aP∗
R∗ + 3−

√
3i

2

)
,

p(â, ĥ) =

(
− R∗2

6aP∗2 (
√

3i(2a + 3)− 3)
−
√

3i
3

)
,

that, for any vector x ∈ R2, can give the expression

x = zq(â, ĥ) + z̄q(â, ĥ), z ∈ C.

Map (25) can be transformed into the complex form

z →
√

3i − 1
2

z + ∑
2≤l+k≤3

1
k!l!

gklzkzl , (26)

where

g20(a, h) = 1
12R∗5

[√3icR∗ [(−3+
√

3i)R∗2+2a(P∗2−R∗2)]2

K + (3i − 3
√

3i + 2
√

3a)(3i + 3
√

3)R∗4

+2aR∗2(3i + 3
√

3)(−P∗2 + P∗R∗ + R∗2) + 2ia2(−P∗2 + P∗R∗ + R∗2)2],
g11(a, h) = 1

6R∗5

[√3icR∗ [(−3+
√

3i)R∗2+2a(P∗2−R∗2)]2

K + (3i − 3
√

3i + 2
√

3a)(3i + 3
√

3)R∗4

+2aR∗2(3i +
√

3)(−P∗2 + P∗R∗ + R∗2) + 2ia2(−P∗2 + P∗R∗ + R∗2)2],
g02(a, h) = 1

6R∗5

[√3icR∗ [(−3+
√

3i)R∗2+2a(P∗2−R∗2)]2

K + (3i − 3
√

3i + 2
√

3a)(3i + 3
√

3)R∗4

+2aR∗2(3i +
√

3)(−P∗2 + P∗R∗ + R∗2) + 2ia2(−P∗2 + P∗R∗ + R∗2)2]
g30(a, h) = g12(a, h) = g21(a, h) = g03(a, h) = 0.

Now, to remove all quadratic terms, introduce the following transformation:

z = ω +
1
2

h20ω2 + h11ωω +
1
2

h02ω2, (27)

by using Transformation (27) and its inverse transformation. Map (26) changed into

ω →
√

3i − 1
2

ω + ∑
2≤l+k≤3

1
k!l!

ϱklω
kωl + O(|ω|4), (28)

where

ϱ20 = g20 +
√

3ih20, ϱ11 = 2g11 + (
√

3i − 3)h11 and ϱ02 = g02.

By setting

h20 =

√
3i

3
g20, h11 =

3 +
√

3i
6

g11 and h02 = 0.
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according to the previous values of ϱ and h, we deduce that ϱ20 = ϱ11 = 0 and ϱ02 = g02

and ϱ30, ϱ21, ϱ12, ϱ03 can be simplified as follows:
ϱ30 = 3−

√
3i

2 g11g02 +
√

3ig2
20 + g30,

ϱ21 = 3+2
√

3i
2 g11g20 +

3−
√

3i
3 |g11|2 + g21,

ϱ12 = 3+
√

3i
6 g20g02 +

3−
√

3i
3 g11g02 +

3+
√

3i
3 g2

11 −
√

3i
3 g20g11,

ϱ03 =
√

3ig11g02 −
√

3ig02g20 + g03.

To simplify Equation (28), we introduce the following transformation:

ω = ξ +
1
6

h30ξ3 +
1
2

h21ξ2ξ +
1
2

h12ξξ
2
+

1
6

h03ξ
3
. (29)

After using Equation (29) and its inverse, Map (28) is formed as

ξ =

√
3i − 1

2
ξ +

1
2

g02ξ
2
+ ∑

l+k=3

1
k!l!

ϱ̃klξ
kξ

l
+ O(|ξ|4), (30)

where

ϱ̃30 = ϱ30 +

√
3i − 3

2
h30, ϱ̃21 = ϱ21,

ϱ̃12 = ϱ12 +
√

3ih12 and ϱ̃03 = ϱ03 +

√
3i − 3

2
h03.

By putting

h30 =
3 +

√
3i

6
ϱ30, h12 =

√
3i

3
ϱ12, h03 =

3 +
√

3i
6

ϱ03 and h21 = 0,

we then have ϱ̃30 = ϱ̃21 = ϱ̃03 = 0.
Finally, we introduce the normal form of the bifurcation with 1:3 resonance as follows:

ξ →
√

3i − 1
2

ξ + B(â, ĥ)ξ + C(â, ĥ)ξ|ξ|2 + O(|ξ|4), (31)

where

B(â, ĥ) =
1
2

g02(a, h), C(â, ĥ) =
(3 +

√
3i)g20g11

6
+

(3 −
√

3i)|g11|2

6
+

1
2

g21.

If

B1(â, ĥ) =
−3
2

(
√

3i + 1)B(â, ĥ),

C1(â, ĥ) = −3|B(â, ĥ)|2 − 3
2
(
√

3i + 1)C(â, ĥ).

By Lemma (9.11) and Lemma (9.13) in [28], we can obtain the following theorem.

Theorem 6. If B1(â, ĥ) ̸= 0 and Re(C1(â, ĥ)) ̸= 0, then Map (4) has the the following complex
dynamical behaviors at the fixed point E∗:

(a) There is a Neimark–Sacker bifurcation at the trivial fixed point E1 of map (31);
(b) There is a saddle cycle of period three, corresponding to the saddle fixed point Ek(k = 1, 2, 3)

of map (31);
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(c) There is a homoclinic structure formed by the stable and unstable invariant manifolds of the
period-three cycle, intersecting transversally in an exponentially narrow parameter region.

Remark 4. In the 1:3 resonance scenario, the meeting of stable and unstable manifolds creates an
infinite number of orbits with a period of three, leading to a homoclinic tangency. This reveals that a
period-three cycle can cause chaos. Biologically, this means that the population–resource system
may experience periodic or quasi-periodic fluctuations due to the non-degenerate Neimark–Sacker
bifurcation. The period-three fluctuations, resulting from a saddle cycle of period three, can generate
chaotic sets. These chaotic sets contribute to long-term fluctuations, population explosions, and
overall chaos, all due to the presence of the homoclinic structure.

4.3. The 1:4 Resonance of Model (4) at the Positive Fixed Point E2(P∗, R∗)

Here, we clear that the 1:4 resonance of Model (4) at the positive fixed point E3(P∗, R∗)

when parameters a and h vary within a small neighborhood of F14. Also, we choose
parameters

(
ã, c, h̃, K

)
arbitrarily from F14, taking ã and h̃ as bifurcation parameters.

Model (4) with
(

ã, c, h̃, K
)

is given by

Pn+1 = Pn + ãPn(1 −
Pn

Rn
),

Rn+1 = Rn + cRn(1 −
Rn

K
)− h̃Pn,

(32)

where |a − ã|, |h − h̃| ≪ 1, and the eigenvalues of Model (32) at the positive point are
λ1,2 = ±i.
Let ũ = P − P∗ and ṽ = R − R∗. Then, we turn the point E3(P∗, R∗) into the origin point.

Map (32) becomes

ũ(n + 1) =
(

1 + ã − 2ãP∗

R∗

)
ũ(n) +

ãP∗2

R∗2 ṽ(n)− ã
R∗ ũ2 +

2ãP∗

R∗2 ũ(n)ṽ(n)− ãP∗2

R∗3 ṽ2(n) + O((|ũ(n)|+ |ṽ(n)|)3),

ṽ(n + 1) = −h̃ũ(n) +
(

1 + c − 2cR∗

K

)
ṽ(n)− c

K
ṽ2(n).

(33)

At E2(ã, h̃), the Jacobian matrix of Model (32) is given by

A(ã, h̃) =

(
1 + ã − 2ãP∗

R∗
ãP∗2

R∗2

−h̃ 1 + c − 2cR∗
K

)
.

Furthermore, we can obtain a pair of adjoint eigenvectors q(ã, h̃), p(ã, h̃) ∈ C2,
such that A(ã, h̃)q(ã, h̃) = iq(ã, h̃), AT(ã, h̃)p(ã, h̃) = −ip(ã, h̃), < p(ã, h̃), q(ã, h̃) >= 1.
According to the previous relations, we have

q(ã, h̃) =

(
− aP∗2

R∗2

1 + a − 2aP∗
R∗ − i

)
,

p(ã, h̃) =

(
R∗2

2aP∗2 (i(1 + a)− 1)
− i

2

)
,

For any vector Yn = (P̃, R̃)T ∈ R2, this can be written as

Yn = zq(ã, h̃) + z̄q̄(ã, h̃), z ∈ C.
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Then, Model (33) transforms to the following complex relation:

z 7−→ iz + ∑
2≤k+l≤3

1
k!l!

gklzk z̄l , (34)

where
g20 = −i

2R∗3 [
−cR∗(2+a(P∗−R∗)−(1−i)R∗)2

K + ((1 + i) + a)(−2 + ((1 − i) + a)R∗)2],

g11 = −i
R∗3 [

−cR∗(2+a(P∗−R∗)−(1−i)R∗)2

K + ((1 + i) + a)(−2 + ((1 − i) + a)R∗)2],

g02 = −i
2R∗3 [

−cR∗(2+a(P∗−R∗)−(1−i)R∗)2

K + ((1 + i) + a)(−2 + ((1 − i) + a)R∗)2],
g30 = g12 = g21 = g03 = 0.

To remove the quadratic terms, we introduce the following equation:

z = ω +
1
2

h20ω2 + h11ωω̄ +
1
2

h02ω̄2, (35)

where coefficients hkl with k + l = 2 are presented in the following relation.
By using Transformation (35) and its inverse transformation, Map (34) can be turned

into the form

ω 7−→ iω + ∑
2≤+l≤3

1
k!l!

ϱklω
kω̄l + O((|ω|+ |ω̄|)4), (36)

where 
ϱ20 = 1

2 (g20 + (λ − λ2)h20), ϱ11 = (g11 + (λ − |λ|2)h11),
ϱ20 = 1

2 (g02 + (λ − λ̄2)h02), ϱ30 = 1
6 (g30 + (λ − λ2)h30),

ϱ21 = 1
2 (g21 + (λ − λ|λ|2)h21), ϱ12 = 1

2 (g12 + (λ − λ̄|λ|2)h12),
ϱ03 = 1

6 (g03 + (λ − λ̄3)h03).

By setting

h20 =
1
2

g20(i − 1), h11 =
1
2

g11(i + 1), h02 =
1
2

g02(i + 1),

then, we obtain ϱ20 = ϱ11 = ϱ02 = 0.
To eliminate some cubic terms, we introduce the following transformation:

ω = ξ +
1
6

h30ξ3 +
1
2

h21ξ2ξ̄ +
1
2

h12ξξ̄2 +
1
3

h03ξ̄3. (37)

By using Equation (37) and its inverse transformation, we obtain

ω = iξ + ∑
n+l=3

1
k!l!

ϱ̄klξ
k ξ̄ l + O(|ω|)4, (38)

where
ϱ̄30 = ϱ30 + 2ih30, ϱ̄21 = ϱ21,

ϱ̄12 = ϱ12 + 2ih12, ϱ̄03 = ϱ03.

Let
h30 =

i
2

ϱ30, h12 =
i
2

ϱ12, h03 = h21 = 0,

from the previous relation, we obtain ϱ̄30 = ϱ̄12 = 0.
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Finally, near 1:4 resonance, Model (38) can be changed into

ξ → iξ + C(ā, h̄)ξ|ξ|2 + C(ā, h̄)|ξ̄|3 + O(|ξ|)4, (39)

where

C(ā, h̄) = ig2
11 −

1
2

g11 ¯g20(1 + i) + ḡ11g02 + g02g11(i − 1)− 1
2

g11g20(1 − 2i),

D(ā, h̄) =
i − 1

4
g02g11 −

i + 1
4

g20g11 +
1
6

g03.

Let C1(ā, h̄) = −4iC(ā, h̄), D1(ā, h̄) = −4iD(ā, h̄). At D1 ̸= 0, we conclude that
A(ā, h̄) = C1(ā,h̄)

|D1(ā,h̄)| .

Theorem 7. Assume that (ā, h̄) ∈ F14. If ReA(ā, h̄) ̸= 0 and ImA(ā, h̄) ̸= 0, then Model (4) has
many dynamical behaviors (see [28]):

1. There is a Neimark–Sacker bifurcation curve at trivial fixed point E1 in (39). Also, if λ = −i,
there is an invariant circle; at λ = i, the invariant circle disappears,

2. If |A| > 1, System (39) has eight non-trivial equilibrium points Sk, Ek,= 1, 2, 3, 4. The
eight non-trivial fixed points appear or disappear as the fold bifurcation at the corresponding
parameter values;

3. There are Neimark–Sacker bifurcations at fixed points Ek,= 1, 2, 3, 4.

Remark 5. The presence of 1:4 resonance signifies the existence of a nondegenerate Neimark–Sacker
bifurcation, allowing for the formation of an invariant cycle with a period of four in a specific
parameter range. In biological systems, the nondegenerate Neimark–Sacker bifurcation can lead to
periodic or quasiperiodic fluctuations in the population–resource system. Moreover, the presence
of an invariant cycle with a period of four indicates that a stable state of the population–resource
system would transition into a state that repeats (almost) after every four time intervals.

5. Numerical Simulations
In this section, we conduct numerical simulations to validate the theoretical analysis

proposed earlier for System (4). We utilize various techniques, including bifurcation dia-
grams, phase portraits, and maximal Lyapunov exponents (MLEs) with specific parameter
values. Moreover, we investigate novel and complex dynamics within the system.

Fix K = 5, c = 1.3, and h = 0.5; then, vary the value of parameter a. We choose
the initial value of Model (4) to be (P0, R0) = (0.5, 0.5) in all our numerical simulations.
Based on the theoretical analysis presented in Section 3, a flip bifurcation occurs when
a = 2.833, as depicted in Figure 1a. To further investigate the dynamics, we calculate
the maximal Lyapunov exponents (MLEs) corresponding to Figure 1a and plot them in
Figure 1b. It can be observed that MLEs are negative for a < 3.33, suggesting stability
within the system. However, a small portion of MLEs are positive for a > 3.33, indicating a
cascade of period-doubling bifurcations in System (4). Let us consider the parameter values
a = 0.3, c = 3, and h = 1 in System (4). In this case, the bifurcation diagram in Figure 2a
reveals that the system starts with a unique point, which then undergoes a period-two
cycle bifurcation. This cycle loses stability and transforms into a period-four cycle. As
the bifurcation progresses, a period doubling occurs, leading to the emergence of chaotic
behavior. The corresponding maximal Lyapunov exponents in Figure 2b provide further
insight into the system’s dynamics.
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Figure 1. (a) Flip bifurcation diagram in (a, P) plane with c = 1.3 and h = 0.5, (b) Maximal Lyapunov
exponents corresponding to (a).
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Figure 2. (a) Bifurcation of System (4) in (a, P) plane for c = 3 and h = 1.5, (b) Maximal Lyapunov
exponents corresponding to (a).

We consider a new set of parameters: a = 1, h = 1, and different values of c. In
Figures 3a–6a, we observe the Neimark–Sacker bifurcation occurring in the (a, P) plane.
This indicates that System (4) loses its stability through Neimark–Sacker bifurcation. To
gain further insights into the dynamics, we examine the corresponding maximal Lyapunov
exponents in Figures 3b–6b. We select a new parameter set with a = 1, h = 1, and various
values of c. In Figures 3a–6a, the Neimark–Sacker bifurcation is observed in the (a, P) plane,
indicating the loss of stability in System (4). To analyze the system’s behavior further, we
examine the corresponding maximal Lyapunov exponents in Figures 3b–6b.
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Figure 3. (a) Bifurcation diagram of System (4) in (a, P) plane for a = 1 and c = 1.8, (b) Maximal
Lyapunov exponents corresponding to (a).
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Figure 4. (a) Bifurcation of System (4) in (a, P) plane when c = 3, (b) Maximal Lyapunov exponents
corresponding to (a).
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Figure 5. (a) Bifurcation diagram in (a, P) plane at c = 3.2, (b) Maximal Lyapunov exponents
corresponding to (a).
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Figure 6. (a) Bifurcation diagram in (a, P) plane with c = 3.5, (b) Maximal Lyapunov exponents
corresponding to (a).

From Figures 1–6, when the rate at which resources grow, represented as c, is lower
than the rate at which the population grows, represented as a, increasing the harvesting
rate will cause both the resource and population to vanish together, as the equilibrium
point moves towards the origin. Subcritical flip bifurcation occurs when the rate of resource
growth reduces to the rate of growth in the population. Also, Neimark–Sacker bifurcation
occurs when the rate of resource growth exceeds the rate of growth in population, and the
equilibrium point is shifted away from the bifurcation as the harvesting rate is increased.
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Figure 7 displays the phase portraits of the system (4) near the Neimark-Sacker with
a = 0.0045, c = 3 and different values of h, which corresponds to the scenario depicted in
Figure 1a. Figure 8 displays the chaotic attractors of the system (4) with a = 0.3, c = 3, and
varying values of h, which corresponds to the scenario depicted in Figure 2a. When we
set a = 1, c = 3:5, and different values of h, Figure 9a–e represent the attractors for system
(4). These figures are associated with the parameter configuration shown in Figure 6a.
Additionally, Figure 9f illustrates the strange attractor observed when h = 1:5. From
Figures 7–9, while increasing the parameter “h”, a thought-provoking inquiry emerges
concerning the closed invariant curve’s vanishing point. As “h” continues to increase,
gradual cusps appear along the closed curve. Additionally, a secondary Neimark-Sacker
bifurcation occurs within the confines of this curve, encompassing a periodic orbit. In
excess of a particular threshold value of the parameter, numerical investigations indicate the
emergence of chaotic behavior. As we further explore the dynamics, a secondary Neimark-
Sacker bifurcation occurs, followed by the emergence of chaotic behavior beyond a specific
threshold value of the parameter, as indicated by numerical studies. The intricate nature of
this process can be elucidated through an examination of codimension two bifurcations,
revealing additional details about the system’s behavior.
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Figure 7. Phase portraits of System (4) near the Neimark–Sacker behavior with a = 0.0045, c = 3, and
different values of h.
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Figure 8. Chaotic attractors for the system (4) with a = 0.3, c = 3, and different values of h.
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Figure 9. Chaotic attractors for the system (4) with a = 1, c = 3.5, and different values of h.

Numerical Continuation for Strong Resonances

In this subsection, numerical continuation simulations are provided to illustrate the an-
alytical findings mentioned above and for analyzing strong resonances using the MATLAB
package MATCONTM [29]. This analysis utilizes continuation methods to trace the solu-
tion manifolds of fixed points while varying specific parameters of the map. By employing
this approach, we observe that, in the two-parameter configuration, the boundaries of the
stabilizing domains for the cycles are typically represented by bifurcation curves obtained
through the MATCONTM software. These bifurcation curves need to be computed using
numerical continuation methods, as they cannot be obtained analytically.

By a continuation of the fixed point E2 = (6.60846, 6.60846) and putting the values of
parameters as a = 1.5, c = 2.2, K = 10, and h as free and changing from 0 to 1, we note that
the positive fixed point E2 is stable when 0 < h < 0.04. It loses stability via a subcritical
period doubling point (detected as PD) and the corresponding normal form coefficient is
−1.419573× 10−2 < 0. Furthermore, the fixed point E2 is denoted as a subcritical Neimark–
Sacker bifurcation; it is detected as NS when h = 0.8, and the corresponding normal-form
coefficient is −1.999130 × 10−2 < 0. Figure 10 visually depicts. The MATCONTM report is
given by

label=PD, x=(9.818182 9.818182 0.040000)
normal form coefficient of NS=-1.999130e-02
label=NS, x=(6.363636 6.363636 0.800000)
normal form coefficient of NS=-1.999130e-02

For h > 0.04, stable 4-cycle and 8-cycle versions are presented in Figure 11.
Furthermore, we calculate the Neimark–Sacker curve by varying the free parameters

a and h, starting from the Neimark–Sacker (NS) point. The MATCONTM report for this
computation is presented below:

label=R3, x=(7.890409 7.890409 1.728220 0.464110 -0.500000)
Normal form coefficient of R3: Re(c_1)=-6.470793e-01
label=R2, x=(9.929222 9.929222 1.831142 0.015571 -1.000000)
Normal form coefficient of R2:[c, d]=3.105740e-02,-3.219911e-01
label=R4, x=(6.227983 6.227983 1.459688 0.829844 0.000000)
Normal form coefficient of R4: A =-9.464392e-01-5.573169e-01i
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Figure 10. Continuation of E2 in (h, P)-plane. The period-doubling point (PD) and Neimark–Sacker
point (NS).
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Figure 11. (a) A stable 4-cycle when h = 0.04, (b) A stable 8-cycle of (4) at h = 0.8.

Based on the previous report generated by MATCONTM, we have identified several
codimension-2 bifurcations occurring along the Neimark–Sacker curve. These include
1:2 resonance (R2), 1:3 resonance (R3), and 1:4 resonance (R4). Figure 12 visually depicts
these findings.

Here, we present the codimension-two bifurcation analysis conducted from the pre-
viously identified PD point to determine the period-doubling curve. The analysis is
performed at specific parameter values, namely, c = 2.2 and K = 10, while considering
a and h as free parameters. Figure 13 visually depicts. The MATCONTM report for this
analysis is provided below:
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label=R2, x=(9.929222 9.929222 1.831142 0.015571 -1.000000)
Normal form coefficient of R2:[c, d]=3.105740e-02,-3.219911e-01
label=GPD, x=(9.761393 9.761393 1.288254 0.052494)
Normal form coefficient of GPD =1.969966e-03
label=LPPD, x=(9.545455 9.545455 -0.000000 0.100000)
Normal form coefficient for LPPD : [a/e, be]=1.00801e-7, 8.985363e-11,
First Lyapunov coefficient for second iterate =8.985363e-11,

Figure 12. Neimark–Sacker curve, including R2 point, R3 point, and R4 point, rooted at the NS point.

Figure 13. The Neimark-Sacker curve, including the R2 point.

Based on the MATCONTM report, our observations indicate that the period-doubling
curve exhibits various bifurcation phenomena, including 1:2 resonance (R2), generalized
period doubling (GPD), and a fold-flip (LPPD). These findings are illustrated in Figure 14.
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Figure 14. Period-doubling curve, including R2 point, GPD point, and LPPD point.

6. Conclusions
In this study, we have conducted a comprehensive analysis of the dynamical behavior

of a discrete population model for human population and its resource, represented by
Model (4). We have performed an elaborate analysis of the existence and stability of model
fixed points. For the positive fixed point, we have examined how it undergoes several
codimension-one bifurcations, including flip bifurcation, Neimark–Sacker bifurcation, and
the emergence of chaotic attractors. Moreover, we have provided a thorough examination
of codimension-two bifurcations related to 1:2, 1:3, and 1:4 resonance and their characteris-
tics. To achieve this objective, a successful technique was implemented. Specifically, we
have analyzed the dynamics of Model (4) using the normal-form approach. The process of
normalizing a model involves distilling it to its essential components. Utilizing the normal
form, we identified the criteria that govern the occurrence of subcritical or supercritical
bifurcations. To further support the complexity of Model (4) dynamics, we have numeri-
cally computed the maximal Lyapunov exponents. Finally, numerical simulations were
conducted to validate our analytical findings, ensuring their consistency with the actual
behavior of the system.

The authors in [19] contend that the renewable rate of resources could serve as either a
stabilizing or destabilizing factor in Model (3). However, our theoretical analysis indicates
that the impact of the renewable rate may vary, potentially stabilizing or destabilizing
Model (4), contingent upon the values of other model parameters. Even with substantial
increases in the renewable rate of resource, the human population may not gain advantages,
as this would result in a corresponding rise in population due to the availability of harvested
resources. As the human population surges, resource depletion may lead to extinction,
which would have dire consequences for the human population. Moreover, according
to the Poincaré–Bendixon theorem [30], two-dimensional BR continuous-time Model (3)
exhibits either stable coexistence or oscillations. The continuous-time BR system in (3)
exhibits no additional complicated dynamics or multistability. Our discrete-time Model (4)
exhibited complex dynamical behaviors, including periodicity, quasiperiodicity, and chaos.
The bifurcation diagram demonstrated the presence of periodic bubbling and periodic
windows, leading to chaotic behavior. The maximal Lyapunov exponents validated the
existence of non-periodic dynamics in the system. These behaviors highlight that, when
population growth and resource growth coexist, they give rise to highly intricate patterns.
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Fractional-order predator–prey models incorporate memory effects and hereditary
features, making them more suitable for simulating real-world phenomena where previous
states affect current dynamics. For a fractional-order version of Model (4), fractional
derivative memory effects can significantly affect dynamics, bifurcation thresholds, stability
features, and oscillatory behaviors. It would be interesting to tackle such kinds of modeling
in future work. Contemporary research continues to advance our understanding of these
dynamics by employing more sophisticated mathematical models and advanced data
analysis techniques. Factors such as ecological changes and climatic variations on the
ecosystem are also being considered in these investigations. The implications of these
findings extend to various fields, including economics, biology, and ecology, where they
can find practical applications.
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