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Abstract: This study presents a detailed analysis of various machine learning models for
predicting the interfacial bond strength of fiber-reinforced polymer (FRP) concrete, includ-
ing multiple linear regression, Multigene Genetic Programming (MGGP), an ensemble of
regression trees, Gaussian Process Regression (GPR), Support Vector Regression (SVR),
and neural networks. The evaluation was based on their predictive accuracy. The optimal
model identified was the GPR ARD Exponential model, which achieved a mean absolute
error (MAE) of 1.8953 MPa and a correlation coefficient (R) of 0.9658. An analysis of this
optimal model highlighted the most influential variables affecting the bond strength. Ad-
ditionally, the research identified several models with lower expression complexity and
reduced accuracy, which may still be applicable in practical scenarios.
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1. Introduction
Fiber-Reinforced Polymers (FRPs) are essential in modern construction due to their

high strength-to-weight ratio, corrosion resistance, and ease of application, making them
ideal for retrofitting concrete and masonry structures. Retrofitting unreinforced masonry
(URM) buildings in earthquake-prone regions with FRPs is an effective method to improve
seismic resistance, enhance load-bearing capacity, and increase ductility, thus addressing
vulnerabilities caused by outdated construction techniques [1,2].

Traditional empirical models for predicting FRP-concrete bond strength have shown
limitations in accurately capturing the complex interactions between these materials. This has
led to a growing interest in applying machine learning (ML) techniques, which are capable of
handling large datasets and uncovering intricate patterns that might be missed by conventional
approaches. Recent studies have demonstrated the effectiveness of ML algorithms.

Wu and Jiang’s research [3] focused on quantifying and modeling interfacial bond
parameters through both experimental and analytical studies. They developed a com-
prehensive database comprising 628 shear tests of externally bonded FRP joints. Their
analysis identified key factors affecting bond parameters, particularly focusing on bond
strength and fracture energy. Additionally, they derived new models for the width factor
as a function of width ratio and concrete strength, offering more accurate bond strength
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and fracture energy predictions. This work contributed to a better understanding of how
bond behavior is influenced by variables such as the width of the FRP and the strength of
the concrete [3].

Zhou et al. [4] developed an artificial neural network (ANN) model to predict the inter-
facial bond strength between FRP and concrete. Utilizing a substantial database of 969 test
results, they trained the ANN model using backpropagation neural networks (BPNN),
incorporating weighted values, biases, and transfer functions. Their model demonstrated
higher accuracy than 20 existing models, with significantly lower predictive errors. The
study also provided an explicit formula derived from the ANN model, which can be used
in practical design applications for predicting bond strength [4].

In their research, Li et al. [5] compiled a large dataset to assess the bond strength
and bond stress-slip behavior of FRP-reinforced concrete members. Their study also
incorporated an evaluation of environmental durability factors that could affect bond
performance. The study is crucial for its contribution to understanding how reduction
factors in bond strength are influenced by both the environment and material properties [5].

Su et al. [6] explored the potential of ML approaches, including multiple linear regres-
sion, support vector machine (SVM), and artificial neural networks (ANN), for predicting
the interfacial bond strength (IBS) between FRP and concrete. Two datasets were used:
Dataset 1 (122 IBS values), and Dataset 2 (136 IBS values). The variables in Dataset 1 include
FRP properties such as elastic modulus, tensile strength, and bond length, while Dataset 2
uses fewer input features but focuses on stiffness and groove dimensions. Among the ML
models, the SVM model demonstrated superior predictive ability with R2 values of 0.79 for
Dataset 1 and 0.85 for Dataset 2. This research highlights the capability of advanced ML
models in predicting FRP-concrete bond strength [6].

The study by Haddad and Haddad [7] employed an artificial neural network (ANN)
technique to predict the bond strength between FRP and concrete. The researchers compiled
an extensive dataset comprising over 440 data points, allowing the ANN model to assess
various parameters such as FRP properties, concrete compressive strength, and bond
length. The model demonstrated impressive predictive accuracy, achieving high correlation
coefficients (R2 nearing 0.98) and significantly outperformed traditional empirical methods.
This study underscores the effectiveness of ANN models in predicting complex interactions
between FRP and concrete in structural applications [7].

Chen et al. [8] developed a prediction model using the ensemble learning method
known as Gradient Boosted Regression Trees (GBRT) to estimate the interfacial bond
strength between FRP and concrete. Their model was trained using a comprehensive
database of 520 tested samples. The GBRT model demonstrated superior accuracy, with R2

values of 0.9627 during training and 0.9269 during testing. The model outperformed both
ANN and SVM models, making it a robust tool for predicting FRP-concrete bond strength
in practical engineering applications [8].

Barkhordari et al. [9] introduced hybrid models that combine population-based algo-
rithms (Bald Eagle Search, Manta Ray Foraging Optimization, and Runge-Kutta (RUN)
optimizer) with ANNs to estimate FRP-concrete interfacial bond strength. The study
utilized a large dataset of experimental samples and found that the RUN-ANN model
achieved the best performance, with an R2 value of 0.92. Moreover, the Shapley Additive
Explanations (SHAP) method was used to interpret the model, identifying FRP bond length
and width as key factors influencing bond strength predictions [9].

Alabdullh et al. [10] applied a hybrid ensemble ML approach to predict the bond
strength of FRP laminates bonded to concrete. Using a database of 136 samples, the team
trained and validated several standalone ML models, including ANN, Extreme Learning
Machine, and GPR. The hybrid ensemble model (HENS) achieved superior predictive
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accuracy, with an R2 value of 0.9783 for training and 0.9287 for testing, demonstrating its
effectiveness in overcoming overfitting issues common in traditional ML models [10].

In their study, Kim et al. [11] employed ensemble ML techniques to predict FRP-
concrete interfacial bond strength. Using a dataset of 855 single-lap shear tests, they
evaluated various ensemble methods, with the CatBoost algorithm achieving the best
performance. The algorithm showed a root mean square error (RMSE) of 2.310, a coefficient
of variation (COV) of 21.8%, and an R2 value of 96.1%, suggesting its high accuracy and
potential for practical applications [11].

Recent studies have explored various advanced methods to improve predictive accu-
racy and optimize engineering practices, with a common focus on hybrid models. Jamhiri
et al. [12] proposed a hybrid approach combining multivariate regression with growth
forecasting, demonstrating the effectiveness of robust regression [12]. Bui et al. [13] utilized
hybrid ML algorithms, such as Random Forest (RF), in combination with bagging, parame-
ter selection, and filtered classification techniques to enhance prediction capabilities [13].
Additionally, Parhi and Patro [14] focused on using hybrid ML models, emphasizing the
role of optimization techniques in improving the performance of conventional models [14].

This research aims to advance existing methodologies by developing a robust ML
model specifically designed to predict FRP-concrete bond strength, using a comprehensive
dataset of experimental results. The study evaluates several ML models to identify the most
significant input variables and further interprets their predictions using advanced methods
for feature importance analysis. Through this approach, the study aims to contribute to the
ongoing efforts in optimizing FRP applications in civil engineering, ensuring more reliable
and efficient reinforcement solutions.

2. Materials and Methods
2.1. Multiple Linear Regression

Linear regression analysis is a statistical method used to determine the causal effect of
one or more independent variables on a dependent variable. When the problem involves
one dependent variable (Y) and multiple independent variables (X1, X2, . . . , Xp), multiple
linear regression can be used. The model can be described by the Equation (1):

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ϵ (1)

In this equation β0 is the intercept, β1,β2, . . . ,βp are the coefficients of the independent
variables, ϵ represents the error term.

To estimate the parameters (β0, β1, β2, . . . , βp) of the linear model, the least squares
method is used. The goal is to minimize the sum of the squares of the differences between
the observed values and the values predicted by the model. This is done using the following
Equation (2):

β̂ = (XTX )−1XTY (2)

where β̂ is the vector of estimated parameters, X is the matrix of input variables, and Y is
the vector of observed output values.

2.2. Multi Gene Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm-based methodology used
for modeling and optimization. It generates models by simulating the process of natural
selection, where a population of potential solutions evolves over time, with the best solu-
tions “surviving” and “reproducing”. This methodology is particularly suited to problems
where the functional form of the model is not known in advance.



Computation 2025, 13, 17 4 of 39

In regression tasks, GP evolves models that predict continuous outputs based on input
variables. The objective is to find a symbolic representation (a mathematical formula) that
best approximates the relationship between input and output data. The flexibility of GP
allows it to discover complex, non-linear relationships that may be difficult to capture using
traditional regression techniques [15,16].

The process starts by generating an initial population of random solutions (Figure 1).
Each individual in this population represents a possible model for the problem, and it
is generated using one or more decision trees. In the initial iteration, the tree model is
generated by randomly selecting mathematical functions, constants, and model variables.
Within this framework, each tree can be thought of as representing a single “gene” in the
model. The trees culminate in terminal nodes, which are assigned either as input variables
from the model or as fixed constants. All other intermediate nodes in the tree serve as
functional nodes.

Computation 2025, 13, x FOR PEER REVIEW 4 of 40 
 

 

selection, where a population of potential solutions evolves over time, with the best solu-
tions “surviving” and “reproducing”. This methodology is particularly suited to problems 
where the functional form of the model is not known in advance. 

In regression tasks, GP evolves models that predict continuous outputs based on in-
put variables. The objective is to find a symbolic representation (a mathematical formula) 
that best approximates the relationship between input and output data. The flexibility of 
GP allows it to discover complex, non-linear relationships that may be difficult to capture 
using traditional regression techniques [15,16]. 

The process starts by generating an initial population of random solutions (Figure 1). 
Each individual in this population represents a possible model for the problem, and it is 
generated using one or more decision trees. In the initial iteration, the tree model is gen-
erated by randomly selecting mathematical functions, constants, and model variables. 
Within this framework, each tree can be thought of as representing a single “gene” in the 
model. The trees culminate in terminal nodes, which are assigned either as input variables 
from the model or as fixed constants. All other intermediate nodes in the tree serve as 
functional nodes. 

 

Figure 1. Example of an MGGP model with two genes [16]. 

Each model in the population is evaluated based on a fitness function, which quanti-
fies how well the model performs in predicting the desired output. Commonly used met-
rics include the RMSE, MAE, and other error-based criteria. 

Selection process of models is based on their fitness and models with better perfor-
mance have a higher probability of being selected, but some randomness is introduced to 
maintain diversity within the population. 

Selected models are paired to create new “offspring” models by exchanging parts of 
their structures (Figure 2). In constructing new models, the best-performing models from 
the previous generation are utilized to generate a new population through processes such 
as crossover, mutation, and direct copying. In practice, the selection of models for repro-
duction is probabilistic, based on their fitness score or the complexity of the model struc-
ture. Model complexity is often determined by the number of nodes and subtrees within 
a tree, reflecting the expressive capacity of the model. 

During the crossover process, genetic material from two parent models can be ex-
changed entirely or partially (Figure 2). For example, suppose the model 𝐽ଵ contains the 
genes ൣ𝐺(ଵ,ଵ), 𝐺(ଶ,ଵ), 𝐺(ଷ,ଵ), 𝐺(ସ,ଵ), 𝐺(ହ,ଵ)൧  and another model 𝐽ଶ  contains the genes ൣ𝐺(ଵ,ଶ), 𝐺(ଶ,ଶ), 𝐺(ଷ,ଶ), 𝐺(ସ,ଶ), 𝐺(ହ,ଶ)൧. If we select a random set of genes for crossover, the models 
may look like (3), (4): 𝐽1: ൣ𝐺(ଵ,ଵ), < 𝑮(𝟐,𝟏), 𝑮(𝟑,𝟏) >  𝐺(ସ,ଵ), 𝐺(ହ,ଵ)൧ (3) 

Figure 1. Example of an MGGP model with two genes [16].

Each model in the population is evaluated based on a fitness function, which quantifies
how well the model performs in predicting the desired output. Commonly used metrics
include the RMSE, MAE, and other error-based criteria.

Selection process of models is based on their fitness and models with better perfor-
mance have a higher probability of being selected, but some randomness is introduced to
maintain diversity within the population.

Selected models are paired to create new “offspring” models by exchanging parts
of their structures (Figure 2). In constructing new models, the best-performing models
from the previous generation are utilized to generate a new population through processes
such as crossover, mutation, and direct copying. In practice, the selection of models for
reproduction is probabilistic, based on their fitness score or the complexity of the model
structure. Model complexity is often determined by the number of nodes and subtrees
within a tree, reflecting the expressive capacity of the model.

During the crossover process, genetic material from two parent models can be ex-
changed entirely or partially (Figure 2). For example, suppose the model J1 contains
the genes

[
G(1,1), G(2,1), G(3,1), G(4,1), G(5,1)

]
and another model J2 contains the genes[

G(1,2), G(2,2), G(3,2), G(4,2), G(5,2)

]
. If we select a random set of genes for crossover, the

models may look like (3), (4):

J1 :
[

G(1,1),< G(2,1), G(3,1) > G(4,1), G(5,1)

]
(3)

J2 :
[

G(1,2), G(2,2),< G(3,2) > G(4,2), G(5,2)

]
(4)
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The bolded genes represent those selected for crossover, and their exchange results in
the following offspring (5), (6):

O1 :
[

G(1,1), G(3,2), G(4,1), G(5,1)

]
(5)

O2 :
[

G(1,2), G(2,2), G(2,1), G(3,1), G{4,2}, G{5,2}

]
(6)

This high-level crossover process enables the creation of new models that inherit
features from both parent models.

Additionally, crossover can occur at the gene level, known as low-level crossover,
where only a portion of a gene is exchanged.
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Figure 2. Gene combination and mutation in MGGP models: (a) Selection of gene segments for
crossover, (b) Crossover of gene segments, (c) Selection of gene segments for mutation, (d) Mutation
of a gene segment [16].

In such cases, only part of the tree is altered (Figure 2a,b). Mutation can also occur at
this level, where a node within a gene is randomly selected, and a newly created subtree is
inserted at that location (Figure 2c,d). These evolutionary procedures are repeated over
multiple generations to refine the model.

The resulting model is pseudo-linear, as it represents a linear combination of non-
linear components modeled as trees. Mathematically, this multigene regression model is
represented as (7) [15,16]:

ŷ = b0 + b1t1 + b2t2 + · · ·+ bGtG (7)

where b0 is the bias term, bi are the scaling parameters, and ti are the outputs from the i-th
tree (gene).
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The overall gene response matrix is denoted by (8):

G = [1, t1, t2, . . . tG] (8)

with dimensionality N × (G + 1), and the coefficient vector is (9):

b = [b0 b1 b2 . . . bG]
T (9)

The vector b is estimated using the least-squares method, and its solution is computed
as (10):

b = (GTG )−1GTy (10)

Thus, the final multigene regression model can be written as (11):

ŷ = Gb (11)

The process of selection, crossover, and mutation is repeated over many generations.
Over time, the population evolves, and the models typically improve in performance.
The algorithm terminates when a stopping criterion is met. This criterion could be a
predefined number of generations, reaching a certain fitness threshold, or convergence in
the population.

2.3. Regression Trees Ensembles: Boosted Trees, Bagging and Random Forest

Regression trees are a subset of decision trees tailored to predict continuous outcomes.
These models partition the input space into regions using binary recursive splitting, where
each leaf represents a specific numerical prediction (Figure 3).
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The objective at each node is to select the best split by minimizing the residual sum of
squares between the predicted and actual values in the resulting regions [17–19].

For a given dataset containing N observations with p input variables, denoted as
(xi, yi), where xi represents an input vector and yi the corresponding output, the tree
construction aims to minimize the following expression (12):

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (12)

where R1(j, s) and R2(j, s) are the two regions after splitting on the j-th variable at point s,
c1 and c2 are the mean predictions within these regions.
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Once the input space is divided into M regions, the prediction for any new observation
x is the mean of the outcomes yi for the region Rm to which x belongs, given by (13):

f (x) =
M

∑
m=1

cm I(x ∈ Rm) (13)

where cm represents the average output in region Rm and I(x ∈ Rm) is an indicator function
that is 1 if x ∈ Rm and 0 otherwise.

Regression trees, while interpretable and flexible, tend to suffer from high variance,
meaning that even small changes in the training data can result in significant differences in
the structure and predictions of the tree. This instability makes regression trees prone to
overfitting, especially when the model becomes too complex by learning specific noise in
the training data.

2.3.1. Boosting Methodology

Boosting is an ensemble learning technique in which models are trained sequentially.
Each successive model aims to improve the performance of the ensemble by correcting
errors from previous iterations (Figure 4). Specifically, Gradient Boosting focuses on mini-
mizing a predefined loss function by iteratively adding new models to an ensemble [20–24].
Each newly added regression tree optimizes its predictions based on the residuals, the
differences between the actual and predicted values of the preceding models.
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Mathematically, for a given set of training data D = {(xi, yi)}l
i=1 , where xi ∈ Rn

represents the input features and yi ∈ Ry are the target variable, the objective of Gradient
Boosting is to minimize a differentiable loss function L(y, ŷ) where ŷ is the predicted output.
The general form of the model can be expressed as (14):

F(x) =
B

∑
i=1

αmhi(x) (14)

where F(x) represents the final model prediction, αm is the weight of each weak learner,
and hm(x) is the prediction from the m-th weak learner, typically a regression tree.

At each iteration m, the new tree hm(x) is trained to minimize the residuals from the
previous iteration. The residuals ri(m) at the m-th step are calculated as (15):

r(m)
i = −

∂L
(

yi, ŷ(m)
i

)
∂ŷ(m)

i

 (15)
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In the case of quadratic error (i.e., squared loss), the residuals simplify to (16):

r(m)
i = yi − Fm−1(xi) (16)

Here, Fm−1(xi) is the predicted value from the ensemble up to iteration m – 1. The new
regression tree is then fitted to the residuals in order to minimize the overall loss.

2.3.2. Bagging and Random Forest (RF) Methodology

To address limitations of individual regression trees and improve the predictive
performance, ensemble methods such as bagging and RF are commonly used (Figure 5).
These methods combine multiple decision trees to reduce variance and create more robust
models. Bagging (Bootstrap Aggregating) works by generating multiple bootstrap samples
from the original dataset. Each sample is created by randomly selecting data points with
replacement, meaning some data points may be repeated while others are left out. For each
bootstrap sample, a separate regression tree is trained independently. Instead of relying on
a single tree, bagging reduces variance by averaging the predictions from all trees in the
ensemble, thus providing a more stable and accurate prediction [20–24].
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Mathematically, if f ∗b (x) represents the prediction from the b-th bootstrap sample, the
final prediction from bagging is given by the average of all individual predictions (17):

fbagged(x) =
1
B

B

∑
b=1

f ∗b (x) (17)

where B is the total number of bootstrap samples, and f ∗b (x) is the prediction from the b-th
regression tree. By averaging the predictions, bagging significantly reduces the model’s
variance, making it less sensitive to the idiosyncrasies of individual training datasets. This
leads to improved generalization on unseen data while still maintaining the flexibility and
interpretability of individual decision trees.

RF build upon bagging by introducing an additional layer of randomness. Instead of
considering all variables for each split, RF select a random subset of the variables at each
node, which decorrelates the trees and further reduces variance. This process ensures that
no single variable dominates the tree-building process.

2.4. Support Vector Regression (SVR)

Support Vector Regression (SVR) is an adaptation of the Support Vector Machines
(SVM) algorithm, designed for continuous output prediction tasks. SVR transforms the
input space into a higher-dimensional feature space using kernel functions, allowing for
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the linear separation of data points that may not be linearly separable in the original input
space [25–27].

Given a dataset (D = {(xi, yi)}l
i=1 ), where xi ∈ Rn and yi ∈ R are the corresponding

continuous output values, the goal of SVR is to find a function f (x) that has at most an
ϵ deviation from the actual output yi for all training data while maintaining a balance
between model complexity and prediction error. The regression function f (x, w) in SVR is
given by (18):

f (x, w) =
N

∑
i=1

wiϕ(xi) + b (18)

where ϕ(xi) is a non-linear transformation of the input xi into a higher-dimensional space,
w is the weight vector, and b is the bias term. This model aims to minimize the following
objective (19):

R(w) =
1
2
|w|2 + C

l

∑
i=1

Lϵ(yi − f (xi, w)) (19)

where 1
2 |w|2 is the regularization term that controls the model complexity, C is a regular-

ization parameter that determines the trade-off between the model’s complexity and its
tolerance to deviations, and (Lϵ) is the loss function with an ϵ-insensitive zone, defined
as (20):

Lϵ(yi − f (xi, w)) =


0 i f |yi − f (xi, w)| ≤ ε

|yi − f (xi, w)| − ε otherwise.
(20)

This loss function ensures that deviations within ϵ are ignored, focusing only on
larger errors.

Minimizing R is equivalent to minimizing (21):

Rw,ξ,ξ∗ =
1
2

[
∥w∥2 + C

(
l

∑
i=1

ξ +
l

∑
i=1

ξ∗

)]
, (21)

where ξ and ξ∗ are the slack variables, which are shown in Figure 6.
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The optimization problem in SVR is typically solved using Lagrange multipliers,
transforming the problem into its dual form. The dual form allows the incorporation of
kernel functions, which can compute inner products in the high-dimensional feature space
without explicitly mapping the input vectors to that space. This is crucial for handling
non-linear relationships within the data.

The dual optimization problem can be expressed as (22):

R(α, α∗) =
l

∑
i=1

yi
(
α∗i − αi

)
− 1

2

l

∑
i=1

l

∑
j=1

(
α∗i − αi

)(
α∗j − α

j

)
K
(
xi, xj

)
− ε

l

∑
i=1

(
α∗i + αi

)
(22)
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subject to the constraints (23):

l

∑
i=1

(αi − α∗i ) = 0, 0 ≤ αi, α∗i ≤ C (23)

where αi and α∗i are Lagrange multipliers, K
(
xi, xj

)
is the kernel function that computes

the dot product in the feature space without explicitly performing the transformation. The
kernel function K

(
xi, xj

)
can take various forms which facilitate the mapping of input data

into higher-dimensional spaces suitable for separation.
The prediction function for new data points x in SVR is then given by (24):

f (x) =
l

∑
i=1

(αi − α∗i )K(xi, x) + b (24)

Commonly used kernel functions in SVR include:

• Linear kernel K
(

xi, xj
)
= xT

i xj

• Sigmoid kernel: K
(
xi, xj

)
= tanh

(
γ
〈

xi, xj
〉
+ r
)
, γ > 0

• Radial Basis Function (RBF) kernel K
(
xi, xj

)
= exp

(
−γ
∣∣xi − xj|2

)
.

The performance of the SVR model depends heavily on selecting appropriate hyper
parameters, such as: regularization parameter C, ϵ, kernel-specific parameters, where for
instance, γ in the RBF kernel, which controls the width of the Gaussian function etc. Tuning
these hyper parameters is crucial for ensuring the model generalizes well to unseen data.
This is typically achieved using grid search techniques to identify the optimal values for C,
ϵ, and any kernel-specific parameters.

2.5. Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a Bayesian regression technique that offers a
probabilistic framework for modeling the relationship between input features and contin-
uous output variables. One of the significant advantages of GPR is its ability to quantify
uncertainty in predictions [28].

In GPR, it is assumed that the underlying function mapping inputs to outputs is sam-
pled from a Gaussian Process. A Gaussian Process is characterized as a collection of random
variables where any finite number of these variables have a joint Gaussian distribution.

Consider the nonlinear regression problem (25):

y = f (x) + ε, ε ∼ N (0, σ2 ). (25)

Here, f (·) is an unknown function mapping the input x to the output y, and ϵ repre-
sents normally distributed noise with mean zero and variance σ2. GPR assumes that the
unknown function f (·) follows a Gaussian Process, which is specified by a mean function
µ(·) and a covariance function (or kernel) k(·, ·).

Given a dataset with n observations, y = {y1, . . . , yn}, these observations are modeled
as a sample from a multivariate Gaussian distribution (26):

(y1, . . . , yn)
T ∼ N(µ, K), (26)

where:

• µ = (µ(x 1) , . . . , µ(x n))
T is the vector of mean values.

• K is the covariance matrix, where the element Kij = k
(
xi, xj

)
+ σ2δij, with δij being the

Kronecker delta function.
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For a new test input x∗, GPR predicts its corresponding output y∗. The joint distribu-
tion of both the training data outputs y and the new output y∗ is a multivariate Gaussian
distribution (27):

(y1, . . . , yn, y∗) ∼ N (µ*, ∑ ) (27)

where:

• µ* = (µ(x 1), . . . , µ(x n
)
, µ(x∗))T is the mean vector.

• ∑ is the covariance matrix, which can be divided into blocks (28):

∑ =

[
K K∗

K∗T K∗∗

]
(28)

In this matrix:

• K∗ = (K(x∗, x1), K(x∗, x2), . . . , K(x∗, xn))
T is the covariance between the test point

and training points.
• K∗∗ = K(x∗, x∗) is the variance at the test point.

The conditional distribution of y∗ given the training data y= (y1, . . . , yn)
T is also

Gaussian, with mean and variance values, respectively (29), (30):

ŷ* = µ(x∗) + K∗T K−1(y − µ), (29)

σ̂∗2 = K∗∗ + σ2 − K∗T K−1K∗. (30)

The covariance function (kernel) plays a key role in defining the properties of the
functions that the GP can model. A commonly used kernel is the Squared Exponential (SE)
kernel with Automatic Relevance Determination (ARD) (31):

k
(
xp, xq

)
= v2exp

−1
2

n

∑
i=1

(
xi

p − xi
q

ri

)2
. (31)

In this equation ri controls the length scale for each input dimension, indicating how
much influence each dimension has on the prediction. A large ri means the corresponding
input dimension is less important.

The parameters {v, r1, . . . , rn} and the noise variance σ2 are called hyper parameters.
These can be optimized by maximizing the log marginal likelihood of the observed data (32):

L (v, r1, . . . , rn, σ2 ) = −1
2

logdet K − 1
2

yT K−1y − n
2

log2π. (32)

2.6. Artificial Neural Networks

A Multi-Layer Perceptron (MLP) is a type of feedforward neural network designed
for supervised learning tasks (Figure 7).

Its architecture consists of an input layer, one or more hidden layers, and an output
layer. Each layer is composed of neurons that receive signals, process them through
weighted synaptic connections, and apply a non-linear activation function to generate an
output [16,29].

The input layer receives the data, which is then propagated through the network.
Each neuron in the hidden layers processes the inputs by computing a weighted sum of
its inputs, adding a bias term, and applying a non-linear activation function, such as the
hyperbolic tangent function. The output layer neurons typically use a linear activation
function when the model is applied to regression tasks.
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Mathematically, the activation of a neuron yk a hidden layer can be expressed as (33):

yk = ϕ

(
m

∑
j=1

wkjxj + bk

)
(33)

where x1, x2, . . . , xm are the input variables, wk1, wk2, . . . , wkm represent the weights for
neuron k, bk is the bias term, and ϕ is the activation function.

The maximum number of neurons in hidden layer NH was selected as the upper limit,
and various network architectures were explored, beginning with a single neuron in the
hidden layer. Subsequent architectures incrementally increased the number of neurons up
to the maximum value determined by the following Equation (34) [16]:

NH ≤ min
(

2NI + 1,
NS

NI + 1

)
(34)

where:

• NI—Number of inputs,
• NS—Number of samples.

The choice of activation function plays a pivotal role in the learning capacity of the
MLP. In this model, a hyperbolic tangent (tanh) activation function is employed in the
hidden layer neurons. For the output layer, a linear activation function is utilized, which is
suitable for regression problems.

The MLP model can be trained using the Levenberg-Marquardt (LM) algorithm, where
weights are updated iteratively through gradient descent. The loss function, the mean
squared error (MSE), is minimized during training to improve the accuracy of the model.

3. Mean-Based Shapley Value Analysis for Feature Importance in
Machine Learning Models

The Shapley method, originating from game theory, is employed to assign “credit” or
contribution to each “player” (in the context of machine learning, each feature or variable)
within a “cooperative” game (the predictive model). In game theory, the contribution of
each “player” to the final outcome of the game is analyzed. Similarly, in machine learning,
the “game” is defined as the model’s prediction, while the “players” are represented by the
input features [30–32].

Using the Shapley method, every conceivable combination (or subset, including the
empty subset) of features, excluding a specific feature f , is examined. Changes in the
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model’s outcome are then observed when the feature f is added to each subset. For each
combination S (a subset of features), the following difference is computed [30–32] (35):

Contribution = Model (S ∪ { f })− Model(S) (35)

The core principle of the Shapley method involves averaging these marginal contribu-
tions across all subsets. The total sum of contributions is divided by 2n−1, where n denotes
the total number of features. This averaging process yields the Shapley value for feature f ,
which quantifies, on average, the impact of that feature on the model’s outcome, accounting
for all possible subsets of other features.

4. Dataset
The database consists of 855 test results collected from 38 research studies [33–70],

focusing on the key parameters that influence bond strength [4]. The individual references
on which the database was based are detailed in the Table A1. The single-lap shear test
(Figure 8), recognized as one of the most effective methods for evaluating the bond strength
at the FRP–concrete interface, forms the foundation of this study.
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Figure 8. Single-lap shear bond test configuration.

The collected dataset includes critical material properties and geometric parameters.
Material properties encompass the compressive strength of a concrete cylinder (f′c), and the
elastic modulus of FRP sheets. Geometric parameters include the thickness (tf) and width
(bf) of the FRP sheet, the bond length (Lf) of the FRP sheet, and the width of the concrete
substrate (bc). The compressive strength of concrete cubes samples (fc) was converted to
cylinder strength (f′c).

The filtered dataset was divided into a training set (70% of the data) for model devel-
opment and a test set (30% of the data) for assessing model performance. Depending on the
model, MSE (Mean Squared Error) or RMSE was used as the primary metric during training.
Model accuracy on the test set was evaluated using four metrics: two absolute measures
(RMSE and MAE) and two relative measures (MAPE and the correlation coefficient R). The
division of the complete dataset for ML models should be conducted in a manner that
ensures similar statistical characteristics across subsets (Tables 1 and 2).

This approach aims to create training, validation, and test sets with comparable
distributions and statistical indicators, such as mean, standard deviation, and data range,
thereby preserving data integrity and enhancing the model’s ability to generalize effectively
(Tables 1 and 2).
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Table 1. Statistical summary and descriptive characteristics of variables in the training set.

bc
(mm)

fc’
(MPa)

Ef
(GPa)

tf
(mm)

bf
(mm)

Lf
(mm)

Pu
(kN)

min 80.00 8.00 22.50 0.08 10.00 20.00 2.40
max 500.00 74.67 425.10 4.00 150.00 400.00 56.50

average 144.31 39.38 203.66 0.50 57.62 175.42 17.80
mode 150.00 48.56 230.00 0.17 50.00 100.00 11.90

median 150.00 36.50 230.00 0.17 50.00 150.00 15.73
std 56.93 15.23 77.97 0.53 26.57 102.31 10.13

Table 2. Statistical summary and descriptive characteristics of variables in the testing set.

bc
(mm)

fc’
(MPa)

Ef
(GPa)

tf
(mm)

bf
(mm)

Lf
(mm)

Pu
(kN)

min 56.93 8.00 22.50 0.08 10.00 20.00 2.40
max 500.00 74.67 425.10 4.00 150.00 400.00 56.50

average 144.84 38.94 208.34 0.53 57.50 180.23 18.55
mode 150.00 65.73 230.00 0.17 50.00 100.00 12.75

median 150.00 36.27 230.00 0.17 50.00 162.50 16.47
std 68.25 15.03 75.95 0.58 25.21 105.20 9.85

To rigorously evaluate the representativeness of the training and testing datasets, three
statistical methods were applied: the Kolmogorov-Smirnov (KS) test, Kullback-Leibler (KL)
Divergence, and a permutation test.

The KS test, a non-parametric method comparing the empirical cumulative distribution
functions of two samples (Massey, 1951), yielded results (h = 0, p = 0.9153) that support
the null hypothesis, indicating no significant difference between the distributions. This
finding suggests that the random splitting process successfully preserved the original data’s
statistical properties [70].

The Figure 9 displays the empirical cumulative distribution functions (CDFs) for
both the training and testing sets. Visually, the two curves (blue for training and red for
testing) are nearly indistinguishable, following each other closely across the entire range of
observed data values. This close alignment indicates that there is no substantial difference
in how the data are distributed between the two subsets.

The KL Divergence, a measure of relative entropy between two probability distribu-
tions (Kullback & Leibler, 1951), produced a value of 0.0014, reflecting minimal divergence
and thus a near-identical distributional structure between the training and testing sets [71].
In the displayed Figure 10, the training and testing datasets probability density functions
(PDFs) nearly overlap across the range of data values. Such close alignment between the
two curves indicates that both datasets share remarkably similar distributional properties.
The minimal differences you might observe—such as subtle shifts in peak height or slight
variations in tail regions—appear minor and do not fundamentally alter the shape or
location of the distributions. This strong similarity is consistent with a low Kullback-Leibler
(KL) divergence value, which quantifies how one probability distribution deviates from
another. A near-zero KL divergence confirms that there is almost no “information loss”
when one distribution is used to approximate the other, reinforcing the conclusion that the
training and testing datasets originate from the same underlying population distribution.
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To further bolster these conclusions, a permutation test with 100,000 permutations
returned a p-value of 0.7202, providing additional evidence that any observed differences
are likely due to random variation rather than systematic bias (Good, 2000). Taken together,
the outcomes of these tests strongly validate the representativeness of the testing dataset,
ensuring that subsequent model training and evaluation processes can be conducted with
confidence in the statistical fidelity of the data [72].

In Figure 11, the observed difference line is positioned in a region where there is still
a substantial amount of probability mass, indicating that the observed difference is well
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within the main distribution of permuted differences. This suggests that the observed
difference is not situated in the extreme tail of the distribution; instead, it falls into a rela-
tively common or “central” area where many of the permuted mean differences lie. As a
result, Figure 11 supports the interpretation that the observed difference is not statistically
unusual. This visual assessment is consistent with the test’s high p-value, which quantita-
tively indicates that observed differences of this magnitude occur frequently under the null
hypothesis (i.e., when the two distributions are effectively the same).
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5. Results and Discussion
A linear regression framework, enhanced not only with main effects but also with

various interaction and polynomial terms, was employed to capture the complexities in
bond strength prediction.

Interaction terms, such as E f · t f , bc · b f , t f b f allow us to examine how pairs of variables
jointly influence bond strength, capturing multi-variable dependencies essential when one
variable’s effect is modified by another.

Polynomial terms (squares of the variables), like b2
c , f ′2c , E2

f etc. addressed nonlinear
relationships between predictors and bond strength, enabling the model to fit complex
trends while retaining the interpretability of linear regression.

By broadening the model to include these interaction and polynomial terms, we
achieved improved predictive accuracy, as validated by RMSE, MAE, MAPE, and R metrics.

Table 3 presents the estimated coefficients, standard errors, t-statistics, and p-values for
each parameter in the developed linear regression model. The most significant predictors
of bond strength are the interaction between FRP thickness and sheet width (t f b f ), the
interaction between FRP elastic modulus and thickness (E f t f ), FRP elastic modulus (E f ),
and concrete compressive strength ( f ′c), along with their interactions.

Polynomial terms indicate that the relationship between certain variables and bond
strength is not strictly linear, with diminishing effects observed at higher values.

Performance metrics including RMSE, MAE, MAPE, and the correlation coefficient (R)
were calculated to assess the model’s (defined by Equation (40)) accuracy.
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Table 3. Detailed regression results: estimates, standard errors, t-statistics, and p-values for model
parameters.

Parameter Estimate Standard Error tStat p Value

(Intercept) −15.9200 2.8688 −5.5492 4.3568 × 10−8

bc −0.0393 0.0138 −2.8525 0.0045
f ′c 0.3682 0.0702 5.2473 2.1625 × 10−7

E f 0.0695 0.0098 7.0878 3.9461 × 10−12

b f 0.0654 0.0476 1.3739 0.1700
L f 0.0574 0.0112 5.1353 3.8429 × 10−7

E f t f 0.0443 0.0054 8.2612 9.6963 × 10−16

bcb f 0.0014 0.0002 6.0212 3.0620 × 10−9

t f b f 0.1313 0.0145 9.0761 1.7139 × 10−18

f ′c L f −0.0005 0.0001 −3.9565 8.5421 × 10−5

b2
c −0.0001 0.0001 −2.4285 0.0155

f ′2c −0.0025 0.0007 −3.3629 8.2189 × 10−4

E2
f −0.0001 0.0000 −4.3966 1.3068 × 10−5

b2
f −0.0009 0.0002 −3.8854 1.1386 × 10−4

L2
f −0.00007 0.0000 −3.4915 5.1660 × 10−4

The obtained regression equation is defined by the following expression (36):

Pu = −15.92 – 0.0393 bc + 0.3682 f ′c + 0.0695 E f + 0.0654 b f + 0.0574 L f + 0.0443E f t f + 0.0014bcb f

+0.1313 t f b f − 0.0005 f ′c L f − 0.0001b2
c − 0.0025 f ′2c − 0.0001E2

f − 0.0009b2
f − 0.00007L2

f
(36)

In this study, a Multigene Genetic Programming (MGGP) approach was implemented
to analyze the impact of key parameters, including the number of genes (1–6) and tree
depths (1–6), on model complexity and performance. The method explored a wide range
of configurations to find the optimal balance between complexity and predictive accuracy.

The MGGP process was repeated ten times to account for randomness in model
initialization, with each iteration starting from a unique set of random parameters, resulting
in a distinct model at the end of each run. All runs were then merged at the end to
consolidate the results.

Table 4 summarizes the key parameters. These settings were chosen to enable extensive
exploration of model structures while controlling computational complexity.

Table 4. The parameters seting for MGGP models.

Parameter Setting

Function set times, minus, plus, rdivide, square, exp,
log, mult3, sqrt, cube, power

Population size From 100 to 1000 with step 100
Number of generations 1000
Max number of genes 6

Max tree depth 6
Tournament size 2

Elitism 0.05% of population
Crossover probability 0.84
Mutation probability 0.14

Probability of Pareto tournament 0.70

During training, two primary objectives were prioritized: minimizing RMSE and
reducing model complexity. These objectives formed a multi-objective function to balance
prediction accuracy (weight: 0.7) with interpretability (weight: 0.3). RMSE quantified how
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well predictions aligned with actual data, while complexity ensured models remained
interpretable and practical.

The evolutionary process spanned 100 generations, with an initial population size of
100 to explore diverse solutions. The initial population was tested ranging from 100 to 1000
individuals, with increments of 100. This process was repeated across ten independent
runs, generating multiple models. The best models from these runs were merged into a
final population representing the most promising solutions.

Model selection emphasized strong predictive performance (high correlation coef-
ficients) and low complexity. The selected models formed the Pareto front (Figure 12),
a set of optimal solutions where no single objective (accuracy or complexity) can be im-
proved without compromising the other. This ensured the final models were both effective
and interpretable.
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Figure 12. Graphic representation of the Pareto front for the initial population of 800 models
(individuals): The models of the Pareto front are marked with green circles, and the optimal model is
marked with a red circle.

Key parameters of the evolutionary process included a tournament size of 2, an elitism
rate of 0.05%, a crossover probability of 0.84, and a mutation probability of 0.14. These
settings balanced exploration and exploitation while maintaining population diversity and
preserving high-quality solutions.

The Pareto front was defined using RMSE and R2 values, with the optimal model
highlighted by GPTIPS 2.0 software [73]. Further analysis of models along the Pareto front
considered additional criteria, including MAE, MAPE, and R, to identify models with both
high performance and lower complexity.

The analytical expression of the optimal Pareto front model (Model ID 7961) is defined
by the following Equation (37):

σ = b + σ1 + σ2 + σ3 + σ4 = 0.53 + σ1 + σ2 + σ3 + σ4 + σ5 + σ6 (37)

Analytical expressions for individual genes are given in Table 5.
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Table 5. Analytical expressions for the genes of the optimal model of the Pareto front for the initial
population of 800 models.

σ1 = − (0.408 · bc )
fc

fc+2.0·t f σ2 =
−6.54×10−6·b2

f

t2
f

σ3 = 0.00141 · bc · b f σ4 = −1.26 × 10−4 · bc − 1.26 × 10−4 (bc + b f + t f )
2

σ5 = −
0.595·bc ·b2

f ·t f

fc+2.0·L f
σ6 = 0.246 · (E f · b f ·t f )

1
2

Each of the symbolic analytical expressions or genes listed in Table 5 is also structurally
represented in the form of a tree in Figure 13.
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solutions, with a complexity of 95, has very similar accuracy to the model labeled as Model 
ID 6959, which has a complexity of 42. 
  

Figure 13. Tree structure representation of genes from the optimal MGGP model: (a) Gene 1,
(b) Gene 2, (c) Gene 3, (d) Gene 4, (e) Gene 5 and (f) Gene 6.

From Table 6, it can be observed that the optimal model from the set of non-inferior
solutions, with a complexity of 95, has very similar accuracy to the model labeled as Model
ID 6959, which has a complexity of 42.
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Table 6. Accuracy criterion values for 10 models on the Pareto front.

Model ID Model
Complexity RMSE MAE MAPE/100 R

7961 95 4.4436 3.4294 0.2167 0.9147
7570 92 4.6349 3.6170 0.2417 0.9079
1766 82 4.8264 3.7418 0.2456 0.9004
3867 88 4.8137 3.7101 0.2404 0.9004
7161 72 4.5985 3.5375 0.2362 0.9095
7164 66 4.6936 3.6328 0.2407 0.9056
7167 59 4.6545 3.5922 0.2383 0.9056
6726 51 4.6894 3.5855 0.2383 0.9059
6959 42 4.6829 3.5373 0.2292 0.9061
7292 41 4.9642 3.7915 0.2514 0.8941

The relationship between the accuracy of the obtained model that consists of a popula-
tion of 800 individuals and two parameters, namely the Number of genes and the Depth of
tree, is illustrated in Figure 14.
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By employing the MGGP model through the GPTIPS software [15,73], models were
developed that retained only the variables significant to the problem, as determined by
evolutionary processes. During this process, irrelevant variables were typically eliminated
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to enhance model simplicity and focus. However, in this analysis, all six input variables
were found to significantly contribute to the model’s accuracy and were therefore retained
in the final formulation.

Determining each gene’s contribution in the model is essential for increasing trans-
parency and understanding how specific interactions among variables drive predictions.
By quantifying each gene’s impact, one can identify which relationships are most influen-
tial, focus on refining the portions of the model that matter most, and efficiently allocate
experimental or engineering resources.

The calculation of each term’s contribution in the given model is based on the decom-
position of a complex regression model into its individual components σ1, σ2, σ3, σ4, σ5, σ6

and a bias term. The theoretical framework for calculating and analyzing the contribution
of each term is as follows (38):

Contribution o f σi = |σi| (38)

The absolute value ensures that both positive and negative contributions are consid-
ered for their magnitude. The mean contribution of each σi across all test samples N is
given by (39):

Mean Contribution o f σi =
1
N

N

∑
j=1

∣∣∣σi[j]

∣∣∣ (39)

The percentage contribution of each term is calculated relative to the total magnitude
of all terms, including the bias (40):

Percentage Contribution o f σi =
Mean Contribution o f σi

∑6
j=1 Mean Contribution o f σj + |Bias|

× 100 (40)

When analyzing the contribution of genes to the model, the most significant genes
are σ6, σ3, and σ4, whose contributions dominate the overall prediction (Figure 15). These
contributions are directly linked to the variables present in the genes as well as their mutual
interactions. The combined contribution of the three aforementioned genes accounts for
nearly 90%.
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Gene 6, with a percentage contribution of 42.64%, involves the interaction between
E f , b f , and t f in square root form, suggesting that material properties (such as elasticity
modulus and dimensions) play a key role in determining the model’s outcome. Gene 3,
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with a percentage contribution of 30.40%, represents a simple interaction between two
geometric dimensions, bc and b f , highlighting how the substrate width and material width
jointly affect the predicted value. Gene 4, contributing 14.68%, includes a combination of
the linear effect of bc and the quadratic effect (nonlinear interactions between width and
thickness) of geometric dimensions bc, b f , t f .

In this study, the Shapley method was also implemented in the MGGP model by
calculating the average prediction for each combination of active features on the test
set, while inactive features were replaced with baseline values obtained as the mean of
the training set. The difference between the average predictions when including versus
excluding a specific feature represents the marginal contribution, and the Shapley value is
derived by aggregating these contributions across all subsets (Figure 16).
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Figure 16. Significance of input variables for the MGGP model using Shapley values.

Based on the calculated average Shapley values, the most influential variables in
the model are the thickness of the FRP strip (t f ), the bond length (L f ), and the elasticity
modulus (E f ). The width of the FRP strip (b f ) and the substrate width bc have a somewhat
smaller influence. The least impactful variable is the compressive strength of concrete ( f ′c).
The relationship between variables and genes can be explained as follows: The variables
t f , L f , and E f dominate the predictions due to strong nonlinear and mechanical interactions,
particularly evident in Gene 6. Meanwhile, b f and bc have a moderate influence through
linear and nonlinear terms found in Gene 3 and Gene 4. The variable f ′c demonstrates the
least importance in this model, suggesting that the geometric and mechanical characteristics
of the FRP are more critical for predictions than the concrete’s compressive strength.

In this research, a Gradient Boosted Trees (GBT) ensemble was employed, using a grid
search to systematically optimize key parameters (Figure 17).

The grid search explored combinations of learning rates and tree depths to identify
the best-performing configuration:

• Number of Trees (NumLearningCycles = 100): A fixed value of 100 trees was used
to balance model complexity and prevent overfitting, enabling precise evaluation of
learning rate and tree depth effects.

• Learning Rate (λ): Learning rates ranging from 0.001 to 1.0 were tested, with 0.1 pro-
viding the best trade-off between convergence speed and error minimization.

• Tree Depth (Max Number of Splits): Tree depths, represented by the maximum number
of splits, were varied from 1 to 512. The optimal depth was calculated using log2(n − 1)
where n is the number of data points. Taking the logarithm of n − 1 for base 2 helps
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determine the approximate number of splits required for full separation of the dataset.
This ensured the trees remained appropriately deep relative to dataset size while
preventing overfitting.
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The grid search identified 64 splits and a learning rate of 0.25 as the optimal combina-
tion, achieving the best RMSE of 3.3427 and the highest R-value of 0.9536. The best MAE
of 2.2542 was achieved with 128 splits and a learning rate of 0.1, while the best MAPE of
0.1503 was observed with 64 splits and a learning rate of 0.1 (Figure 17).

Beyond 64 splits, further increases in tree depth yielded diminishing returns, as shown
by the leveling off of RMSE and R-squared improvements. Therefore, the optimal number
of splits was determined to be 64, where the model achieved the best overall performance
across multiple metrics (Figure 17).

In this study, permutation importance was employed to determine the relative sig-
nificance of input variables in the GBT model for predicting the output variable Pu. This
method evaluates the impact of each variable by measuring the increase in prediction
error when the variable’s values are randomly shuffled, disrupting its relationship with the
target variable. Permutation importance is particularly effective in understanding variable
contributions within complex, nonlinear models like gradient boosting.

However, permutation importance assumes feature independence, which may not
always hold when predictors are correlated. To address this, a Variance Inflation Factor
(VIF) analysis was conducted to evaluate multicollinearity among the input variables.
VIF values quantify how much the variance of a regression coefficient increases due to
multicollinearity. In this analysis, all VIF values were found to be between 1.08 and
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1.78 (Figure 18), indicating very low multicollinearity. This confirms that the predictors
are sufficiently independent to ensure robust and reliable results from the permutation
importance method.
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Figure 18. Variance inflation factor (VIF) values for input variables.

The results, illustrated in Figure 19, reveal that variables b f (width of the FRP) and t f

(bond length) have the highest importance, significantly influencing the model’s accuracy.
In contrast, variables such as bc (concrete width) and f ′c (concrete compressive strength)
have a lesser impact on the predictive power.
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Figure 19. Significance of input variables for the boosted trees model using the permutation method.

Unlike permutation importance, Shapley analysis provides a robust framework that
systematically evaluates every possible subset of features.

The absolute Shapley values confirm the dominance of L f and t f in model predictions.
Geometric variables like bc and b f also play vital roles, while E f and f ′c exhibit relatively
lower contributions (Figure 20).

Bagging (Bootstrap Aggregation) was the primary method used to implement the
ensemble model in this research. Depending on whether a subset of input variables or the
entire set is used, a Random Forest (RF) or TreeBagger (TB) model was created, respectively.
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This approach involves generating multiple decision trees (500 trees in this case) on different
bootstrap samples of the data and averaging their predictions to enhance robustness and
reduce variance.
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Figure 20. Significance of input variables for the boosted trees model using Shapley values.

The research specified 500 learning cycles, where 500 base decision trees were trained,
and their predictions aggregated to form the final output. This large number of trees
ensured model stability and allowed the capture of complex data patterns.

Two key hyperparameters were tuned during the training process:
Min leaf size: The minimum number of observations required to form a leaf in a

decision tree. Smaller leaf sizes result in deeper trees, enabling the model to capture
detailed patterns but increasing the risk of overfitting. In this study, the Min leaf size was
varied from 1 to 10.

Number of variables: At each decision tree split, a subset of predictor variables was
randomly selected for consideration. The number of variables sampled at each split was
varied from 1 to 6.

Results across metrics (RMSE, MAE, MAPE, and R) showed that smaller Min Leaf
Size values (1 and 2) consistently led to better performance (Figure 21). This indicates that
deeper trees are necessary to capture the data’s complexity. The best-performing models
used 3 or 4 variables per split, striking a balance between simplicity and model complexity.

The best configurations identified are:

• Best RMSE: 3.7860, with Min leaf size = 1 and Number of variables = 3.
• Best MAE: 2.5821, with Min leaf size = 1 and Number of variables = 4.
• Best MAPE: 0.1778, with Min leaf size = 1 and Number of variables = 4.
• Best R-squared: 0.9415, with Min leaf size = 1 and Number of variables = 3.

The SVR model utilized radial basis function (RBF), linear, and sigmoid kernels, with
grid search cross-validation applied to optimize its hyperparameters. Prior to training,
all data were normalized to a range between 0 and 1, achieved by subtracting the mini-
mum value and dividing by the range (max-min). Normalization was critical as the SVR
optimization process is sensitive to input data scales.
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Grid search was used to determine the optimal values for three SVR hyperparameters:

• C (Cost/Regularization): Balances the trade-off between allowing slack variables
(errors) and tightening the decision boundary. Higher values focus on correctly
classifying training points but risk overfitting.

• Gamma (γ): Controls the influence of individual training points. Smaller gamma
values imply a broader influence, while larger values indicate a more localized impact.

• Epsilon (ε): Defines the tolerance margin where no penalty is applied to prediction
errors, controlling model sensitivity.

For the RBF kernel, coarse grid search varied log2(C), log2(γ), and log2(ε) from −5 to
5 in increments of 1. The mean squared error (MSE) was calculated for each combination
on the test set to identify the best parameters. A finer grid search was subsequently applied
around the best initial values with reduced step sizes, iteratively refining the model to
minimize MSE further.

The same procedure was applied to the linear and sigmoid kernels. The optimal
parameters for each kernel were:

• C = 1.4513; ε = 0.0043; γ = 20.7363 for the RBF kernel;
• C = 0.3208 and ε = 0.0432 for the linear kernel;
• C = 23.6326; ε = 0.0521; γ = 0.0118 for sigmoid kernel.

The accuracy criterion values for the analyzed models are given in Table 7 (Optimal
model values are bolded).
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Table 7. Comparative analysis of results using linear, RBF, and sigmoid kernel in the SVR method.

Model RMSE MAE MAPE/100 R

Lin. kernel 8.7154 6.6468 0.2105 0.7751

RBF kernel 4.9646 3.5352 0.1171 0.9332

Sig. kernel 8.7104 6.6094 0.2073 0.7718

In this research, various covariance functions were employed to design the Gaussian
Process Regression (GPR) model, each offering unique strengths in capturing relationships
between input variables and the target. The covariance functions explored included
exponential, squared exponential, Matérn (with 3/2 and 5/2 degrees of smoothness), and
rational quadratic kernels. These kernels shape how correlations in the data are modeled,
influencing how predictions are impacted by nearby points.

To enhance performance, Automatic Relevance Determination (ARD) versions of these
kernels were also tested. ARD assigns individual length scales to each input variable,
enabling the model to automatically assess the relative importance of predictors. This is
particularly beneficial for datasets with features of varying significance.

To ensure comparability among features and prevent any single feature from dispropor-
tionately affecting the model, the input data was standardized using Z-score normalization.
This process rescaled each feature to have a mean of zero and a standard deviation of one,
ensuring uniform influence across all variables.

This transformation is essential in GPR models to ensure that all variables contribute
appropriately to the prediction process, especially when using covariance functions sensi-
tive to the scale of the input data.

The GPR model employed a constant basis function, meaning the model assumes a
fixed baseline for the predictions, allowing the kernel functions to capture the complexity
in the relationships. The model was trained and evaluated using a holdout validation
approach. The values of the hyperparameters are given in Tables 8 and 9.

Table 8. Parameters of GPR model covariance functions.

GP Model Covariance Function Covariance Function Parameters

Exponential
k
((

xi, xj
∣∣Θ)) = σ2

f exp
[
− 1

2
r

σl
2

]
σl = 48.8828 σf = 35.9025

Squared Exponential
k
((

xi, xj
∣∣Θ)) = σ2

f exp
[
− 1

2
(xi−xj)

T
(xi−xj)

σl
2

]
σl = 1.1564 σf = 11.6670

Matern 3/2
k
((

xi, xj
∣∣Θ)) = σ2

f

(
1 +

√
3r

σl

)
exp
[
−

√
3r

σl

]
σl = 1.9430 σf = 12.5620

Matern 5/2
k
((

xi, xj
∣∣Θ)) = σ2

f

(
1 +

√
5r

σl
+ 5r2

3σl
2

)
exp
[
−

√
5r

σl

]
σl = 1.6073 σf = 12.0472

Rational Quadratic
k
((

xi, xj
∣∣Θ)) = σ2

f

(
1 + r2

2aσl
2

)−α
; r = 0

σl = 1.9747 a = 0.0057 σf = 39.8560

where r =
√(

xi − xj
)T(xi − xj

)
.
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Table 9. Parameters of GPR ARD model covariance functions.

Covariance Function Parameters

σ1 σ2 σ3 σ4 σ5 σ6

ARD Exponential:
k
((

xi, xj
∣∣Θ)) = σ2

f exp(−r); σF = 44.4870; σN = 0.8339
45.0052 813.3275 41.5953 15.0703 83.9007 199.8780

ARD Squared exponential:

k
((

xi, xj
∣∣Θ)) = σ2

f exp
[
− 1

2 ∑d
m=1

(xim−xjm)
2

σm2

]
; σf = 13.0762

0.1181 6.1165 0.1452 0.3453 2.0239 1.5321

ARD Matern 3/2:
k
((

xi, xj
∣∣Θ)) = σ2

f

(
1 +

√
3r
)

exp
[
−
√

3r
]
; σf = 11.8722

0.4342 10.3369 0.8032 0.2128 1.7551 3.0059

ARD Matern 5/2:
k
((

xi, xj
∣∣Θ)) = σ2

f

(
1 +

√
5r + 5r2

3

)
exp
[
−
√

5r
]
; σf = 11.2938

0.2738 8.1979 0.6294 0.1177 1.1174 2.2108

ARD Rational quadratic:

k
((

xi, xj
∣∣Θ)) = σ2

f

(
1 + 1

2α ∑d
m=1

(xim−xjm)
2

σm2

)−α

; α = 0.0082; σf = 40.2700

1.2252 23.3200 1.2758 0.3892 2.1230 5.8575

where r =

√
∑d

m=1
(xim−xjm)

2

σm2 .

The parameters of the covariance functions used in the analysis were optimized
through gradient-based methods, applied to the log marginal likelihood expression
(Tables 8 and 9). The length scale values for each input variable offer insights into the
importance of these variables concerning the model’s predictive performance (Table 9).
Variables with smaller length scales tend to have a greater influence on the model, as the
relationship between the input and output changes more rapidly with those features. In
contrast, larger length scales indicate less significant features.

All models with ARD perform better than their non-ARD counterparts (Tables 10 and 11,
where the optimal values are highlighted in bold font).

Table 10. Comparative analysis of results without using ARD.

Model RMSE MAE MAPE/100 R

Exp. 3.2790 2.1928 0.1498 0.9558
Sq.Exp. 3.8110 2.6042 0.1794 0.9395

Mattern 3/2 3.5651 2.3879 0.1632 0.9475
Mattern 5/2 3.6651 2.4752 0.1697 0.9443

Rat.Quadratic 3.3152 2.2421 0.1593 0.9551

Table 11. Comparative analysis of results using ARD.

Model RMSE MAE MAPE/100 R

ARD Exp. 2.9039 1.8953 0.1257 0.9650
ARD Sq.Exp. 3.4447 2.3562 0.1590 0.9511

ARD Mattern 3/2 2.8671 1.9319 0.1329 0.9658
ARD Mattern 5/2 3.0073 2.0360 0.1410 0.9623

ARD Rat.Quadratic 2.9167 1.9377 0.1323 0.9647
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The ARD mechanism allows the models to focus on the most important features,
leading to better predictive performance and lower error metrics.

The provided Figure 22 uses the inverse of these length scales to visually highlight
variable importance, the smaller the length scale, the larger the corresponding bar in
the graph, indicating greater influence on the output. To further validate the predictive
capabilities of the optimal GPR ARD Exponential model, a Shapley analysis was conducted.
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Figure 22. Variable importance in the optimal GPR ARD Exponential model using inverse lengthscale
parameter values.

The mean-based Shapley values indicate that FRP thickness ( t f ) exerts the strongest
influence on the model’s average prediction, followed by the FRP strip width (b f ) and the
elastic modulus (E f ). Additionaly, both the bond length (L f ) and the concrete compressive
strength ( f ′c) exhibit minor effects on the average outcome, while concrete substrate width
( bc ) has a small contribution (Figure 23).
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The neural network model architecture was established through a trial-and-error
method. In this study, the input layer comprises 6 neurons, and the output layer consists of
a single neuron.

The optimal number of neurons in the hidden layer was determined experimentally.
Beginning with a single neuron, the number of neurons was incrementally increased, with
each configuration assessed based on RMSE, MAE, R, and MAPE metrics. Models utilizing
the LM algorithm were tested, with data divided into the same training and test sets
for analysis.

All model variables underwent linear transformation to ensure all variables were
scaled to the range [−1, 1]. Here, the minimum value was mapped to −1 and the maximum
to 1, with intermediate values scaled linearly.

Scaling was applied to equalize the influence of each variable, as a variable’s absolute
size may not reflect its actual impact. The same standard settings in MATLAB 2020 a. were
applied across all model architectures during training (Table 12).

Table 12. Parameter settings for model calibration in MATLAB.

Parameter Value

Epoch limit 1000

MSE target (performance) 0

Gradient limit 1.00 × 10−7

Mu value Range from 0.005 to 1.00 × 1010

As guidelines for estimating the upper limit of the neuron count in the hidden layer,
the previously mentioned expressions were used, with a recommendation to adopt the
lower value as follows:

NH ≤ 2 × Ni + 1 = 2 × 6 + 1 = 13

NH ≤ Ns

Ni + 1
=

855
6 + 1

= 122.14.

The RMSE, MAE, MAPE, and R values for different network architectures, tested with
up to 23 neurons, are illustrated in Figure 24.
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These metrics indicate that the model with 13 neurons in the hidden layer achieved
optimal performance, close to the upper boundary of the initially tested range. Conse-
quently, the range was expanded to evaluate the impact of additional neurons. However,
adding more neurons did not enhance accuracy; rather, it highlighted a risk of overfitting.
Beyond this limit, the model began to fit too closely to the training data, reducing its ability
to generalize effectively to unseen data.

Table 13 presents a comparative analysis of several ML models used for predicting
bond strength, evaluated based on four key accuracy metrics: RMSE, MAE, MAPE, and the
correlation coefficient (R).

Table 13. Comparative analysis of all optimal analyzed models based on the selected accuracy criteria.

Model RMSE MAE MAPE/100 R

Linear with interactions 4.9278 3.8491 0.2748 0.8955

MGGP 4.4436 3.4294 0.2167 0.9147

Gradient Boosted Trees 3.3427 2.2603 0.1559 0.9536

Random Forest (64 splits) 3.7860 2.5821 0.1778 0.9415

TreeBagger 3.8302 2.5847 0.1790 0.9399

SVR RBF 4.9646 3.5352 0.1171 0.9332

GPR Exponential 3.2790 2.1928 0.1498 0.9558

GPR ARD Exponential 2.8671 1.9319 0.1329 0.9658

NN 6-13-1 4.0992 3.2075 0.2234 0.9293

Among the models evaluated, the GPR ARD Exponential model outperforms all
others, with the lowest RMSE (2.8671 MPa), MAE (1.9319 MPa), and MAPE (0.1329%) while
achieving the highest correlation coefficient (R = 0.9658). This indicates its superior accuracy
and predictive power. The optimal values of the model accuracy criteria in Table 13 are
displayed in bold font.

The GBT model also shows strong performance, with an RMSE of 3.3427 MPa and an
R of 0.9536, making it a competitive alternative for situations requiring complex, non-linear
modeling. Similarly, RF and TB models also perform well, with RMSE values of 3.7860
MPa and 3.8302 MPa, respectively, and R values above 0.939. These models are effective in
reducing variance and offer robustness through ensemble learning.
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The SVR RBF model, while slightly less accurate than the tree-based models, still
achieves reasonable results with an R of 0.9332 and a relatively low MAE (3.5352 MPa),
suggesting its applicability in scenarios where a simpler model is preferred.

On the other hand, the MGGP, despite their interpretability, show lower accuracy with
higher RMSE values (4.4436 MPa).

This indicates that while these models may be useful for applications requiring simple,
symbolic expressions, they may not be the best choice when high accuracy is critical.

Finally, the Neural Network (NN 6-13-1) model, with an RMSE of 4.0992 MPa and R
of 0.9293, offers a balanced trade-off between model complexity and accuracy. However, it
still falls short compared to the top-performing models like GPR and Gradient Boosted.

In summary, the GPR ARD Exponential model is the optimal choice based on all eval-
uated metrics, though simpler models such as GBT or RF may still be valuable depending
on the application, especially in terms of balancing complexity and performance.

The analysis of feature importance using Shapley values, (mean-based method), high-
lights that FRP thickness (t f ) and strip width (b f ) are the most influential variables in
predicting bond strength. Across models, t f exhibits the highest Shapley values, underscor-
ing its critical role in stress transfer and bond-slip behavior. Physically, a thicker FRP layer
enhances load-carrying capacity and delays debonding failure by distributing stresses more
effectively along the bond line. Similarly, b f ranks as the second most important variable
due to its role in uniform stress distribution, reducing stress concentrations, and stabilizing
the bond mechanism. These findings are consistent with prior research by Lu et al. [74]
and Teng et al. [75], as well as studies employing machine learning methods to predict the
load-carrying capacity of FRP strips, such as those by Zhou et al. [4] and Zhang et al. [76].

The elastic modulus of FRP (E f ) and bond length (L f ) have a moderate influence on
bond strength predictions. E f governs the stiffness of the FRP system, limiting relative
deformation and enhancing bond performance. Alongside t f , E f significantly impacts
bond behavior. The stiffness of the strip (K f = E f × t f ), identified in similar machine
learning-based studies [4], has also been highlighted as a critical factor for predicting load
capacity. On the other hand, L f ensures adequate anchorage for stress transfer, but its
contribution is context-dependent and diminishes beyond the effective bond length. This
finding aligns with the work of Chen et al. [77], which noted the stabilizing effects of E f

and the diminishing returns of L f beyond critical thresholds. Additionally, studies by Zhou
et al. and Zhang et al. classify L f as a less influential variable.

The concrete width bc and compressive strength ( f ′c ) are the least influential variables.
While bc contributes to the structural stability of the bond system, it is overshadowed
by the direct impact of FRP-specific properties. Similarly, f ′c ranks as the least important
feature. A possible explanation for the limited impact of f ′c is that variables such as t f , b f ,
and E f exhibit stronger nonlinear correlations with bond strength, reducing the model’s
dependence on f ′c . Moreover, the narrow range of f ′c variation (~25–50 MPa) may prevent
the model from capturing significant effects. Another potential reason is that the FRP
system may fail before the concrete becomes the “weak link”, minimizing f ′c influence.
These results are in agreement with studies by Zhang et al., who also found that FRP
properties outweigh f ′c in determining bond strength.

Figure 25 provides a direct comparison between the target and predicted values for
the optimal GPR ARD Exponential model. This visual further demonstrates how well the
model predicts the bond strength, with the predictions closely matching the target values
across the dataset. The closeness of the predicted values to the target values confirms the
high accuracy and reliability of the model in predicting bond strength.
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The regression plot (Figure 26) reflects a strong correlation between the actual and
predicted results, indicating the model’s ability to effectively capture the relationship
between the input features and bond strength.
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Figure 26. Regression plot of the target and predicted values for the GPR ARD Exponential model.

An analysis of the variability in bond strength was performed for different concrete
compressive strength intervals, specifically for concrete strengths up to 25 MPa, from 25 to
50 MPa, and above 50 MPa (Figure 27). In all these categories of concrete quality, similar
performance metrics were obtained, demonstrating comparable accuracy across the subsets.
The results revealed that the model with the GPR ARD Exponential kernel maintained
nearly identical accuracy in all concrete strength intervals, further confirming the robustness
and generalizability of the model across varying concrete qualities (Figure 27).
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Figure 27. Residual histogram for the different concrete strength samples.

While the model is relatively complex, a MATLAB Graphical User Interface (GUI) was
developed to facilitate practical implementation by experts.

The model’s code includes a built-in database, making it easy to adapt the model
through the expansion of the database with additional data. The MATLAB code is provided
in the Supplementary Materials (MATLAB code with the complete database of models
used in the research.). The GUI functions by allowing the user to input the corresponding
values for the six input variables, and the prediction is obtained by clicking the ’Predict
Bond Strength’ button (Figure 28).
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6. Conclusions
The primary contribution of this study lies in the development and evaluation of

robust machine learning models for predicting bond strength between FRP and concrete.
By utilizing a comprehensive dataset from 38 independent studies, this research provides
significant insights into the factors influencing bond strength.

Using an extensive dataset of 855 experimental results, the study assessed multiple
advanced algorithms, including multiple linear regression with interactions, Multigene
Genetic Programming (MGGP), ensemble methods (Gradient Boosted Trees, TreeBagger,
Random Forest), Support Vector Regression (SVR), Gaussian Process Regression (GPR),
and neural networks.

Among the models evaluated, GPR with Automatic Relevance Determination (ARD)
proved to be the most accurate, achieving an RMSE of 2.8671 MPa, MAE od 1.8953 MPa
and a correlation coefficient (R) of 0.9658.

The Gradient Boosted Trees ensemble model also showed high accuracy with an RMSE
of 3.3427 MPa, MAE of 2.2603 MPa and R of 0.9536, especially when optimized through
grid search for learning rate and tree depth, making it a strong candidate for complex,
non-linear interactions between variables. While MGGP achieved slightly lower accuracy, it
provided interpretable models that balance predictive performance with simplicity, which
is advantageous for practical applications.

The analysis of mean-based Shapley values reveals that FRP thickness (t f ) has the most
significant impact on the model’s average prediction, followed by the width of the FRP strip
(b f ) and the elastic modulus (E f ). In contrast, bond length (L f ) and concrete compressive
strength (f′c) show only minimal effects on the average prediction, with concrete substrate
width (bc) contributing the least.

In terms of practical applications, these models can be used to guide the design and
optimization of FRP systems in civil engineering projects. The ability to predict bond
strength with high accuracy can help engineers select appropriate materials and design
parameters, leading to more durable and cost-effective FRP-reinforced concrete structures.
Moreover, the models could be integrated into decision-support systems for real-time
predictions during construction, enhancing the efficiency of FRP application.

However, several areas for future research remain. One potential improvement is
the incorporation of additional experimental methods, such as double-shear tests, to fur-
ther validate the findings across different testing conditions. Further research could also
explore the impact of long-term environmental factors (e.g., temperature, humidity) on
bond strength, which was not fully captured in the current dataset. Additionally, refining
the models through more advanced techniques, such as deep learning approaches, could
improve prediction accuracy and handle larger, more diverse datasets. Also, limitation
of the method is the lack of data regarding the type of failure when the ultimate capacity
of FRP-strengthened concrete is reached. Expanding the database to include information
on failure modes would enhance the analysis and provide a more comprehensive under-
standing of bond behavior. Additionally, while the Shapley method was used to determine
the importance of variables—representing a modern and robust approach—it can become
computationally demanding when dealing with a larger number of variables.

In conclusion, while this study provides a solid foundation for understanding bond
strength prediction in FRP-concrete systems, future work should aim to broaden the dataset,
incorporate environmental variables, and explore new modeling techniques to improve
prediction accuracy and applicability across real-world conditions. These improvements
will help ensure that the models can be widely adopted in industry, further advancing the
use of FRP for reinforced concrete structures.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation13010017/s1, The Supplementary Materials accom-
panying the article include a detailed MATLAB model for implementing the optimal Gaussian
Process Regression with Automatic Relevance Determination (GPR ARD) model. This package is
complemented by a user-friendly graphical user interface (GUI) that allows users to interactively
explore the model’s capabilities, adjust parameters, and visualize the results. Additionally, a GUI has
been also developed for the MGGP model and for calculating the contributions of individual terms
in the MGGP model. The MATLAB models and GUIs for the optimal GPR ARD and MGGP models
are available online.
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Appendix A

Table A1. Comprehensive compilation of published experimental data [4].

Reference Num.
of Tests

fc
(MPa)

Ef
(GPa)

tf
(mm)

Lf
(mm)

bf
(mm)

bc
(mm)

Pu
(kN)

Adhikary and Mutsuyoshi [33] 7 24–36.5 230 0.11–0.33 100–150 100 150 16.75–28.25
Bilotta et al. [34] 29 21.46–26 170–241 0.166–1.4 100–400 50–100 150 17.24–33.56
Bilotta et al. [35] 13 19 109–221 1.2–1.7 300 60–100 160 29.86–54.79
Bimal and Hiroshi [36] 7 24–36.5 230 0.111–0.334 100–150 100 150 16.8–28.3
Carlo et al. [37] 14 58–63 230–390 0.165–0.495 65–130 50 100 12.1–29.8
Chajes et al. [38] 15 24–48.87 108.48 1.016 51–203 25.4 152.4–228.6 8.09–12.81
Czaderski and Olia [39] 8 32–33 165–175 1.23–1.68 300 100 150 43.5–56.1
Dai et al. [40] 19 33.1–35 74–230 0.11–0.59 210–330 100 400 15.6–51
Faella et al. [41] 3 32.78–37.55 140 1.4 200–250 50 150 31–39.78
Fen et al. [42] 11 8–36 240.72–356.75 0.111 50–120 50–100 150 7.13–17.34
Hoseini and Mostofinejad [43] 22 36.5–41.1 238 0.131 20–250 48 150 7.58–10.12
Kanakubo et al. [44] 12 23.8–57.6 252.2–425.1 0.083–0.334 300 50 100 7–25.6
Kamiharako et al. [45] 17 34.9–75.5 270 0.111–0.222 100–250 10–90 100 3.1–14.9
Ko et al. [46] 13 27.7–31.4 165–210 1–1.4 300 60–100 150 27.5–56.5
Liu [47] 57 16–51.6 272.66 0.167 50–300 50 100 10.97–23.87
Lu et al. [48] 3 47.64–64.08 230–390 0.22–0.501 200–250 40–100 100–500 14.1–38
Maeda et al. [49] 5 40.8–44.91 230 0.11–0.22 65–300 50 100 5.8–16.25
Nakaba et al. [50] 41 24.41–65.73 124.5–425 0.167–2 250–300 40–50 100 8.73–27.24
Pham and Al-Mahaidi [51] 23 44.57 209 0.176 60–220 70–100 140 18.8–42.8
Ren [52] 28 22.96–46.07 83.03–207 0.33–0.507 60–150 20–80 150 4.61–22.8
Savoia and Ferracuti [53] 14 52.6 165–291.02 0.13–1.2 200–400 50–80 150 14.4–41
Savoia et al. [54] 20 26 180–241 0.166–1.2 100–400 80–100 150 18.97–40
Sharma et al. [55] 24 23.76–28.66 32.7–300 1.2–4 100–300 30–50 100 12.5–46.35
Tan [56] 6 30.8 97–235 0.111–0.169 70–130 50 100 6.46–11.43
Täljsten [57] 5 41.2–68.33 162–170 1.2–1.25 100–300 50 200 17.3–35.1
Takeo et al. [58] 25 24.7–29.25 230–373 0.111–0.501 100–300 40 100 6.75–14.35
Toutanji et al. [59] 10 17.0–61.5 110 0.495–0.99 100 50 200 11.64–19.03
Ueda et al. [60] 15 23.79–48.85 230–372 0.11–0.55 65–300 10–100 100–500 2.4–38
Ueno et al. [61] 40 23–74.5 42.625–43.537 1.03–1.8 200–230 40 80 9.52–18.29
Wu and Jiang [3] 65 25.3–59.02 238.1–248.3 0.167 30–400 50 150 7.38–30.15
Wu et al. [62] 22 65.73 23.9–390 0.083–1 250–300 40–100 100 11.8–27.25
Woo and Lee [63] 51 24–40 152.2 1.4 50–300 10–50 200 4.55–27.8
Fu et al. [64] 24 24.1–70 230 0.17–0.84 50–300 30–70 100 7.8–31.13
Yao [65] 59 19.12–27.44 22.5–256 0.165–1.27 75–240 25–100 100–150 4.75–19.07
Yuan et al. [66] 1 23.79 256 0.165 190 25 150 5.74
Zhang et al. [67] 20 38.9–43.5 94–227 0.262–0.655 250 50–150 200–250 13.03–52.49
Zhao et al. [68] 5 16.4–29.36 240 0.083 100–150 100 150 11–12.75
Zhou [69] 102 48.56–74.67 71–237 0.111–0.341 20–200 15–150 150 3.75–28

https://www.mdpi.com/article/10.3390/computation13010017/s1
https://www.mdpi.com/article/10.3390/computation13010017/s1
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