
Received: 3 October 2024

Revised: 15 November 2024

Accepted: 30 November 2024

Published: 27 December 2024

Citation: Ingole, V.S.; Kshirsagar,

U.A.; Singh, V.; Yadav, M.V.; Krishna,

B.; Kumar, R. A Hybrid Model for

Soybean Yield Prediction

Integrating Convolutional Neural

Networks, Recurrent Neural

Networks, and Graph Convolutional

Networks. Computation 2025, 13, 4.

https://doi.org/10.3390/

computation13010004

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Hybrid Model for Soybean Yield Prediction Integrating
Convolutional Neural Networks, Recurrent Neural Networks,
and Graph Convolutional Networks
Vikram S. Ingole 1,2 , Ujwala A. Kshirsagar 1,* , Vikash Singh 3,* , Manish Varun Yadav 4,* , Bipin Krishna 3

and Roshan Kumar 5

1 Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Lavale,
Pune 412115, Maharashtra, India; vikramingole1@gmail.com

2 Department of Electronics and Telecommunication Engineering, Shri Sant Gajanan Maharaj College of
Engineeing, Shegaon 444203, Maharashtra, India

3 Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy
of Higher Education, Manipal 576104, Karnataka, India; bipins.krishna@manipal.edu

4 Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy
of Higher Education, Manipal 576104, Karnataka, India

5 Department of Electronic and Information Technology, Miami College, Henan University,
Kaifeng 475004, China; roshan.iit123@henu.edu.cn

* Correspondence: kshirsagarujwala9@gmail.com (U.A.K.); vikash.nepal@manipal.edu (V.S.);
yadav.manish@manipal.edu (M.V.Y.)

Abstract: Soybean yield prediction is one of the most critical activities for increasing agri-
cultural productivity and ensuring food security. Traditional models often underestimate
yields because of limitations associated with single data sources and simplistic model
architectures. These prevent complex, multifaceted factors influencing crop growth and
yield from being captured. In this line, this work fuses multi-source data—satellite imagery,
weather data, and soil properties—through the approach of multi-modal fusion using
Convolutional Neural Networks and Recurrent Neural Networks. While satellite imagery
provides information on spatial data regarding crop health, weather data provides tempo-
ral insights, and the soil properties provide important fertility information. Fusing these
heterogeneous data sources embeds an overall understanding of yield-determining factors
in the model, decreasing the RMSE by 15% and improving R2 by 20% over single-source
models. We further push the frontier of feature engineering by using Temporal Convolu-
tional Networks (TCNs) and Graph Convolutional Networks (GCNs) to capture time series
trends, geographic and topological information, and pest/disease incidence. TCNs can
capture long-range temporal dependencies well, while the GCN model has complex spatial
relationships and enhanced the features for making yield predictions. This increases the
prediction accuracy by 10% and boosts the F1 score for low-yield area identification by
5%. Additionally, we introduce other improved model architectures: a custom UNet with
attention mechanisms, Heterogeneous Graph Neural Networks (HGNNs), and Variational
Auto-encoders. The attention mechanism enables more effective spatial feature encoding
by focusing on critical image regions, while the HGNN captures interaction patterns that
are complex between diverse data types. Finally, VAEs can generate robust feature repre-
sentation. Such state-of-the-art architectures could then achieve an MAE improvement of
12%, while R2 for yield prediction improves by 25%. In this paper, the state of the art in
yield prediction has been advanced due to the employment of multi-source data fusion, so-
phisticated feature engineering, and advanced neural network architectures. This provides
a more accurate and reliable soybean yield forecast. Thus, the fusion of Convolutional
Neural Networks with Recurrent Neural Networks and Graph Networks enhances the
efficiency of the detection process.
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1. Introduction
Soybean or glycine max is an important crop in worldwide agriculture for food

security and has considerable economic importance worldwide, especially in regions like
India, where it has a vast cultivation area. Still, it suffers from major constraints, mainly
due to climate change impacts, related to growing conditions and the prevalence of crop
diseases. The diseases discussed are bacterial blight, bean pod mottle virus, and bacterial
pustule. They pose an effective threat to the yield quality and quantity. Beyond natural
pressures, farmers too frequently lack up-to-date diagnostic tools that would cut their cycle
of response to disease outbreaks, imperiling livelihoods and food supply.

Yield prediction models have traditionally utilized single-source data or even more
rudimentary statistical approaches that capture rather blind interactions between such
factors as soil fertility, prevailing weather patterns, and the occurrences of pest or diseases
attacks. As a result, such models do not deliver precise or reliable predictions, hence
making crop management strategies less optimal. Rapid advancements in remote sensing
and data science have made it possible to extensively use multi-source data, thereby
leading potentially to the assessment of yield at a higher accuracy. The range of sources
stretches from satellite imagery, which captures spatial patterns of crop health, to weather
data that provides temporal insights into circumstances, and even soil characteristics
that inform about fertility. These heterogeneous data types constitute quite a challenge
for integration, and models with the ability to capture complex spatial, temporal, and
topological information are required.

We analyze how the strengths of Convolutional Neural Networks, Recurrent Neural
Networks, and Graph Convolutional Networks can be combined to extract these different
interdependencies and mappings in this work. As an example, CNNs will be applied to
extract the spatial features of imagery from satellites to be able to compare, contrast, and
understand what is similar and dissimilar in terms of crop health in large regions. RNNs
will handle the sequences that exist in weather data to identify trends and even help identify
seasonal shifts. GCNs also introduce the possibility of modeling spatial dependencies and
relationships in geographical data, including terrain and topological properties that would
affect yield. This research aims at presenting an approach that might enhance soybean
yield prediction accuracy, minimize errors, and optimize decision-making from agricultural
practices based on these neural networks in a single framework.

The proposed model proves how multi-source data fusion, coupled with advanced
architectures of neural networks, helps transform yield prediction by incorporating a
holistic understanding of factors that influence soybean productivity. It not only improves
the yield forecast but also provides insights into disease incidence and biotic stresses,
leading to robust and sustainable agriculture sets.

2. Detailed Review of the Existing Models Used for Soybean Image
Processing and Analysis

This is followed by the critical review of the studies referred to in Table 1, which
provides vital, varied insights into the methodologies and technologies applied to soybean
agriculture, covering such aspects as yield prediction, disease detection, and quality moni-
toring, and the use of new techniques like deep learning, machine learning, and advanced
sensor technologies. Such synthesis embedding the diversity of approaches and further
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developments in progress helps to explain the progress made and the challenges that lie
ahead. Chen et al. [1] established the effects of plasma-activated water on soybean seed
germination and the further development of seedlings, showing better germination rates
and vigor in seedlings, thus emphasizing the potential of plasma-activated water (PAW) in
improving agricultural productivity. However, the applicability of this study is narrowly
focused on particular mixtures of N2/O2 and further tests should be conducted in order to
generalize this study to other crops and broader agricultural settings. Along these lines,
Farah et al. [2] used deep learning methods for the classification of infested soybean leaves
by implementing Convolutional Neural Networks (CNNs) and VGG-19. High accuracy
in the identification of particular pests, such as Diabrotica speciosa and caterpillars, is
achieved with their approach; it is, however, applied only to leaf infestations and, therefore,
might not be generalizable to other problems concerned with pests.

Table 1. Empirical review of the existing methods.

Reference Method Used Findings Results Limitations

[1]
Plasma-Activated Water

(PAW) with N2/O2
Mixtures

Investigated the effect of PAW
on soybean seed germination

and seedling growth

Enhanced germination rate
and seedling vigor

Limited to specific N2/O2
mixtures; applicability to other

crops not tested

[2] Deep Learning (CNN,
VGG-19)

Developed a method for
detecting infested soybean

leaves

Achieved high accuracy in
identifying Diabrotica

speciosa and caterpillars

Limited to leaf infestations; may
not be generalizable to other

pests

[3] Multisensor Prediction
Predicted drought-induced yield

anomalies using soil moisture
and temperature sensors

Improved accuracy in
drought conditions

Limited to drought scenarios in
Argentina

[4] Lightweight Residual
CNN with E-Nose

Classified soybeans using
electronic nose data

Achieved high classification
accuracy with lightweight

model

Limited to specific gas mixtures;
sensor calibration needed

[5] LSTM with Integrated
Gradients

Interpretable crop yield
estimation using LSTM

High interpretability and
accuracy in yield prediction

Computationally intensive;
limited to time-series data

[6]
Improved Lightweight
Network with Choquet

Fuzzy Ensemble

Identified soybean leaf diseases
using CNN and CycleGAN

High accuracy in disease
identification

Limited to specific leaf diseases;
may not generalize to other

plant parts

[7] Plasma-Treated Soybean
Dregs Solution

Explored the use of
plasma-activated organic

fertilizer (PAOF)

Improved nitrogen fixation
and plant growth

Specific to soybean dregs;
broader applicability not tested

[8] Local R-Symmetry
Co-Occurrence

Characterized leaf image
patterns for cultivar

identification

Accurate identification of
soybean, cotton, and peanut

cultivars

Requires high-quality leaf
images; sensitive to image noise

[9] Adaptive Deep Learning
with E-Nose

Quality identification of stored
soybeans using deep learning

and electronic nose

High accuracy in detecting
storage quality

Limited to storage quality; may
not apply to fresh produce

[10] EEMD-NAGU for
Time-Series Prediction

Predicted soybean futures prices
using EEMD-NAGU and

attention mechanism

Accurate time-series
prediction

Limited to financial data; may
not be generalizable to physical

yield prediction

[11] Nondestructive
Technology with AI

Real-time monitoring and
prediction of soybean quality

during transport

Accurate quality monitoring
and prediction

Requires specific sensor setup;
may not be scalable

[12] Portable Mechanical
Sampler

Real-time monitoring of soybean
quality in bulk transport

Improved accuracy and
efficiency in quality

monitoring

Limited to bulk transport
scenarios

[13] LSTM for Nanofluids
Extracted specific heat capacity

of soybean oil/MXene
nanofluids

Accurate prediction of heat
capacity

Specific to nanofluids; limited
application to other materials

[14] Deep Learning for Laser
Bio-Speckle Data

Detected fungal infections in
soybean seeds using bio-speckle

data

High accuracy in fungal
detection

Specific to fungal infections;
limited to laser bio-speckle data
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Table 1. Cont.

Reference Method Used Findings Results Limitations

[15] Halbach NMR Sensor Detected moisture content in
soybeans using NMR sensor

Accurate moisture
measurement

Requires NMR technology; may
not be practical for all users

[16] Bioimpedance
Measurements

Detected drought stress in plants
using bioimpedance

Early detection of drought
stress

Limited to specific plant species;
sensor calibration needed

[17] Outlier Exposure for Crop
Recognition

Recognized crop types from
multitemporal image sequences

using outlier exposure

Improved accuracy in crop
recognition

Requires extensive training data;
sensitive to outliers

[18] LSTM with Shapley
Values

Interpretable crop yield
estimation using LSTM and

Shapley values

High interpretability and
accuracy in yield prediction

Computationally intensive;
limited to time-series data

[19] Machine Learning with
Hyperspectral Imagery

Classified crop types using
DESIS hyperspectral imagery

High accuracy in crop
classification

Requires hyperspectral sensors;
limited to specific regions

[20] 3D-CNN and ConvLSTM
Predicted multispectral crop

yield using 3D-CNN and
attention ConvLSTM

Improved yield prediction
accuracy

Computationally intensive;
requires multispectral data

[21] Thermal Ageing Analysis Analyzed ageing performance of
alternative dielectric fluids

Accurate prediction of
thermal ageing

Specific to dielectric fluids;
limited application to other

materials

[22] Variable Rate Seed
Metering Unit

Evaluated a novel seed metering
unit for precision agriculture

Improved accuracy and
efficiency in seed planting

Limited to specific seed types;
requires specific equipment

[23] Rainfall-Runoff Model
Analyzed effects of crops on

SMAP-based soil moisture using
a rainfall-runoff model

Accurate soil moisture
prediction

Specific to the U.S. Corn Belt;
limited to SMAP data

[24] Bidirectional Reflectance
Modeling

Modeled reflectance distribution
in multispectral systems

Improved accuracy in
reflectance modeling

Requires specific sensor setup;
sensitive to environmental

conditions

[25]

Linear regression,
Gradient bossting

regressor, Extra Trees
Regressor etc

To forcast the production and
yield of rice, sorghum, cotton,

sugarcane and rabi

Out of all the models
analyzed, the Extra Trees
Regressor performed the

best. With the lowest Mean
Absolute Error (MAE) and
Root Mean Squared Error

(RMSE) of 21.06 and 33.99, it
achieved an R-Squared score

of 0.9615.

Specific to South Asia region

[26]
Random forest and

convolutional neural
networks

UAVs can gather field
agricultural growth data rapidly

and precisely.

RF, is best suited for
addressing yield estimating
research issues over CNN.

Data volume, feature selection &
Limitation of UAV

[27]

Model such as Naïve
Bayes Classifiers, Random

Forest, and Multilayer
Neural Network, are used

Use of IoT sensors and machine
learning algorithms in modern
agriculture results into decrease

in waste and increase in crop
production

Bayes Net algorithm
achieves accuracy of 99.59%

Limited crop data is evaluated
using GPS-based IoT and sensor
data from different geographic

regions

[28]
Deep learning models

(DLMs) and neural
networks

Model provides solution by
identifying both healthy and

unhealthy leaves and measure
the extent of damage as well

The model’s ability to
recognize and classify

damage in nonoverlapped
soybean leaves is

demonstrated by the
bounding boxes and

confidence scores that
display the damage

occurrences that were found.

It is difficult to determine the
extent of soybean leaf damage in

an uncontrolled setting (field)
since the leaves overlap and
have varied backgrounds.

[29] Deep learning model Use of multimodal data for the
Detection of crop diseases

For multimodel data model
better perform by 2.58%p as
compared to unimodal data

on an image

Difficulty of applying the
method in real-world

environments

Apart from Table 1, further studies in the future must address the generalizability and
scalability of such methods. This includes the further integration of other data sources, such
as economic indicators and market trends, for even more accurate predictions. Furthermore,
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models that are built in a real-time adaptive manner to be able to dynamically include
new data will make a difference in decision-making for farmers and agricultural stake-
holders. Emphasis on explainable AI techniques will also help in bringing transparency
and interpretability to the predictions and developing trust and the broader diffusion of
these advanced technologies in the agricultural sector. These shall be tested by joint efforts
between model researchers, agriculture experts, and industrial practitioners to validate
such models against real-world scenarios so that they become useful and prove effective
for different scenarios.

3. Proposed Design of an Improved Model for Soybean Yield Prediction
Using CNN, RNN, and GCN

Overcoming the generally low efficiency and high complexity of the existing yield pre-
diction models is the focus of this section, which will talk about the design of an improved
model for soybean yield prediction using CNN, RNN, and GCN operations. Figure 1: A
multi-modal fusion model for predicting soybean yield per unit area is developed based on
convolution neural networks and recurrent neural networks. Satellite image data, weather
data, and soil properties are put together in one overall framework for yield prediction.
This approach makes use of the advantages innate to each modality of data to create a
robust model that captures spatial, temporal, and environmental considerations affecting
crop yields.
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Figure 1. Model architecture of the proposed classification process.

Satellite images are multispectral images that capture different bands, like RGB and
NIR, which provide critical spatial information about crop health and cover. This is
passed through the CNN component to extract spatial features that are very important in
understanding the health and distribution of soybean crops.
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3.1. Design of CNN Process

The CNN works upon an input image I(x,y), where x and y are spatial coordinates, as
shown in Figure 2. The convolutional operation is expressed via Equation (1),

fcnn(x, y) = σ

(
m

∑
i=1

n

∑
j=1

W(i, j) · I(x− i, y− j) + b

)
(1)
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Figure 2. Frameworks of the CNN and RNN architecture.

More particularly, in Formula (1), I(x− i, y− j) represents the specific pixel’s intensity
or value in the input satellite image matrix at coordinates shifted by ‘I’ units in both the
‘x’- and ‘y’-scopes relative to the original (x,y) sets. It is at the core of the convolution
operation, wherein the convolutional kernel or filter shifts over the spatial grid of an image,
computing local feature representations for neighboring pixels. The ability to refer to
I(x − i, y − i) permits the application of weights across a collection of pixels within a kernel
size to capture spatial features, such as edges, textures, or even patterns that represent crop
health in satellite imagery. Here, every iii is an index offset within the kernel window; it
allows the convolution to aggregate information about the pixels in its proximity to capture
localized structures in space. This would improve the model’s capacity to look at the image
as a whole to detect crop features and support robust spatial analysis for yield prediction.

W represents the convolutional kernel, b is the bias term, and σ is the ReLU activation
function. Weather data, comprising time-series data including temperature, precipitation,
and humidity, arefed into an RNN to capture temporal patterns.
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The RNN processes the sequential weather data Wt at each time stamp t, and the
hidden state ht is updated via Equation (2),

ht = σ(Wxh ·Wt + Wht · h(t− 1) + bh) (2)

In Formula (2), Wt refers to the list of weight parameters used in the Recurrent
Neural Network designed especially to capture sequential weather data regarding the
primary parameters, such as temperature, precipitation, and humidity. The three primary
parameters captured at any point in time t are essential to determine factors affecting crop
growth over time. Temperature data capture the thermal environment required at various
growth development phases. Tolerable and extreme temperatures have been found to affect
germination rates, flowering, and pod set. Rainfall data, measured in terms of rainfall
quantity, contain crucial information regarding water availability, which directly influences
soil moisture levels and, as such, crop health and yield. The humidity, or the moisture
that fills the air, has effects on transpiration rates in plants and can affect disease levels
since elevated levels favor fungal growth and pest infestation in process. These sequential
parameters are processed together by the RNN while capturing temporal dependencies
and variations for the soybean development sets. The weights Wt permit the model to
learn and to favor some time-dependent patterns within these weather conditions, thus
enabling the relationship of seasonal climate fluctuations with yield results, and thereby
improving the model’s prediction capability.

Wxh and Wh are the weight matrices, and bh is the bias term.Wh is the static weight
matrix associated with the hidden state, which captures the recurrent dependencies inde-
pendent of the ‘t’ sets. This captures the patterns learned over the entire sequence and
applied at each time step to propagate important information on past states over temporal
instance sets. On the other hand, Wht, which is more frequently used in labeling weights
that change with time, represents weights or weights that are dynamically changed or
indexed at every time step ‘t’. The ability of the RNN to maintain this hidden state ht,
allows it to model these temporal dependencies, which are important in attempting to
understand how these clues of temporal changes affect crop growth. These soil properties,
provided as tabular data containing pH ranges, water content, and content of nutrients
in the soil, are added as additional features to the model. These are then encoded and
concatenated with the features extracted from a CNN and an RNN component. Let S
be the vector for these soil properties in this process. The concatenation of all features is
represented via Equation (3),

Fconcat = [ fcnn, ht, S] (3)

The combined feature vector Fconcat is then passed through fully connected layers to
predict the soybean yield levels. The prediction layer is represented via Equation (4),

Y’ = σ
(

W f · Fconcat + b f

)
(4)

where W f and b f are the weights and biases of the fully connected layer, respectively. To
train the model, the loss function L is minimized. The loss function is the Mean Squared
Error (MSE) between the predicted yields Y’ and the actual yield Y, which is estimated via
Equation (5),

L =
1
N

N

∑
i=1

(
Y′i −Yi

)2 (5)
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where N is the number of samples. The optimization process involves computing the
gradient of the loss function with respect to the model parameters and updating them
using gradient descent via Equation (6),

θ ← θ − η·∂L
∂θ

(6)

where θ represents the model parameters and η is the learning rate. This will not only tap
into the power of each modality separately but also synthesize these contributions in an
even more powerful and accurate prediction model. He targeted an effect of each of the
sources of data and their interactions and, hence, drew out features from the CNNs on
vegetation indices and spatial distribution, very relevant while assessing crop health. The
RNN helps to extract information about temporal weather trend variables—precipitation
and temperature trends—that have impacts on crop growth and development. The soil
properties provide information about the underlying conditions in the soil, further refining
the predictions for yields. These features are concatenated and fused, thus allowing the
model to make informed predictions accounting for spatial, temporal, and environmental
variables across scenarios.

3.2. Design of the Temporal Convolutional Networks and Graph Convolutional Networks
in Process

Next, according to Figure 3 advanced feature engineering incorporates Temporal
Convolutional Networks and Graph Convolutional Networks to capture the long-range
dependencies in temporal data and the complex spatial relationship effectively, therefore
improving soybean yield prediction. In the multifaceted approach that is presented, time-
series trends, geographical information, and topological information are combined with
pest and disease incidence to build a source-inclusive feature space. Temporal Convolu-
tional Networks process historical yield data and other temporal factors, which capture the
significant trends and patterns of the growing seasons. The TCN uses causal convolutions
that guarantee the output at time t depends only on the inputs from time t itself and any
earlier ones.

Let xt be the input time series variables at time t and take ftcn(xt) to be the sets of the
TCN output. The TCN layer can be described via Equation (7),

ftcn(xt) = σ

(
k−1

∑
i=0

Wi · x(t− i) + b

)
(7)

where Wi are the filter weights, b is the bias, and σ is the activation function. The depth
provides this network permission to pick up long-range dependencies, which is very critical
in understanding yield trends over many seasons. Geographic and topological data were
set out as a graph G= (V, E), where V refers to the set of nodes (locations), while E refers
to edges representing spatial relationships. Each node v∈ V is associated with feature
hv′ comprising spatial coordinates, elevation, and terrain features. Graph Convolutional
networks are used to process this graph. Equation (8) defines the feature transformation at
each node v as follows,

hv′ = σ

 ∑
u∈N(v)

1
cvu

W · hu + b

 (8)

where N(v) represents the neighborhood of node v, cvu is a normalization constant, W is
the weight matrix, and σ is the activation function. This will enable the model to consider
spatial dependencies and topological influences that drive yield levels through information
aggregation from neighboring nodes. The incidence data of pests and diseases, recorded
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over some time, are encoded as additional features. Let Pt represent the pest and disease
data at time t sets. These features are then combined with the time-series and spatial data to
improve the capacity of the model to capture the biotic stress factors as shown in Figure 4.
The combined feature vector from TCN and GCN outputs is expressed via Equation (9),

Fcombined = [ ftcn(xt), hv′ ] (9)
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This combined feature vector is then used as input to the yield prediction model. The
prediction function Y’ can be expressed via Equation (10),

Y’ = σ
(

W f · Fcombined + b f

)
(10)

where W f and b f are the weights and biases of the fully connected layer, respectively.
The loss function for training the model is the Mean Squared Error (MSE), defined via
Equation (11),

L =
1
N

N

∑
i=1

(
Y′i −Yi

)2 (11)
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where N is the number of samples, Y′i is the predicted yield, and Yi is the actual yield level.
The gradient of the loss function with respect to the model parameters θ is computed for
optimization via Equation (12),

∂L
∂θ

=
1
N ∑N

i=1 2
(
Y′i −Yi

)∂Y′i
∂θ

(12)
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One major reason for using TCN and GCN would be that they can relieve deficiencies
in traditional models. On top of that, TCNs capture the long-range temporal dependencies
so that trends can be understood over growing seasons. GCNs model complex spatial
relationships to infer geographical and topological factors that possibly affect yield levels.
This adds to the robustness of the model by accounting for biotic factors of stress, such as
pest and disease incidence data samples. The all-inclusive approach improves the accuracy
of prediction and provides an overview of how soybean yield levels are influenced by
various factors. The improved model architecture for soybean yield prediction will come
with custom UNet with Attention Mechanisms, Heterogeneous Graph Neural Networks,
and Variational Auto-encoders to capture the advantages of different modalities of data
and neural network techniques. In this design, better spatial features will be developed by
enhancing feature representations for robustness and complicating the interactions between
different diversified data types to obtain more accurate and reliable yield predictions.

3.3. Design of the UNet Process

Finally, it integrates custom UNet with attention mechanisms that process satellite
images and weather data samples. An encoder and a decoder constitute the architecture
in the UNet, wherein the encoder is responsible for the extraction of hierarchical features
from the input images and samples. Added to this is the part of an attention mechanism
that helps the network focus on regions of the images relevant for extracting critical spatial
features. The output of the UNet at a given layer l can be described via Equation (13),

funetl = σ(Wconvl ·I + bconvl) (13)

where Wconvl and bconvl are the weights and biases of the convolutional layer, ∗ represent
the convolution operation, and σ is the activation function. The attention mechanism is
applied to the feature maps via Equation (14),

Aij =
exp

(
Eij
)

∑k,l exp(Ekl)
(14)
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where Eij is the attention energy computed from the feature maps. The refined feature
maps are then expressed via Equation (15),

fattl = A · funetl (15)

Namely, Heterogeneous Graph Neural Networks model complex interactions between
farm management practices, climate zones, and other categorical data samples. Distin-
guishing between the different types of nodes, like farms or climate zones, and edges,
such as adjacency or management practices, makes it possible to capture heterogeneity
levels. Thus, let G = (V, E) represent such a graph where V and E are the set of nodes and
edges, respectively, for this process. The feature transformation at node v using HGNN is
represented via Equation (16),

hv′ = σ

 ∑
u∈N(v)

1
cvu

Wtype(v, u) · hu + btype(v, u)

 (16)

where N(v) is the neighborhood of node v; cvu is a normalization constant;Wtype(v, u) and
btype(v, u) are the weight matrix and bias specific to the node and edge types, respectively;
and σ is the activation function. This process thus captures the heterogeneous relationships
by aggregating information from different types of neighboring nodes. Variational Auto-
encoders are used to obtain robust feature representations from mixed data types, especially
when there are noisy or incomplete data samples. This VAE consists of an encoder that
maps the input data x to latent space z and a decoder that reconstructs the input from the
latent representations. The encoder is defined via Equation (17),

qϕ(z | x) = N
(

z; µϕ(x), σϕ(x)2
)

(17)

where µϕ(x) and σϕ(x) are the mean and standard deviation, respectively, parameterized
by ϕ sets. The decoder reconstructs the input via Equation (18),

pθ(x | z) = N
(

x; µ’θ(z), σ’θ(z)2
)

(18)

The loss function for the VAE is the sum of the reconstruction loss and the Kullback–
Leibler divergence between the approximate posterior and the prior distribution, which is
estimated via Equation (19),

L(ϕ, θ) = Eqϕ(z | x)[logpθ(x | z)]− DKL(qϕ(z | x) ∥ p(z)) (19)

The combined feature set from the UNet, HGNN, and VAE components is represented
via Equation (20),

Fcombined = [ fattl , hv′ , z] (20)

This feature set is then used as input to the final yield prediction model. The prediction
function Y’ is expressed via Equation (21),

Y’ = σ
(

W f · Fcombined + b f

)
(21)

where W f and b f are the weights and biases of the fully connected layer. The model
is trained by minimizing the Mean Squared Error (MSE) loss, which is represented via
Equation (22),

L =
1
N

N

∑
i=1

(
Y′i −Yi

)2 (22)
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where N is the number of samples, Y′i is the predicted yield, and Yi is the actual yield levels.
This method was chosen for one reason: to fully capture the multi-dimensional complexity
of soybean yield prediction. Attention-enhanced UNet enhances spatial feature extraction
by focusing on key regions within satellite imagery and weather data samples deemed
critical. HGNN works in modeling the diverse interactions between farm management
practice and climate zones, and VAE provides robust feature representations, especially
with noisy or incomplete data samples. Such an integrated approach can exploit the
strengths of every constituent component, hence creating synergies for improving the
overall predictive performance, evidenced by significant changes in prediction accuracy
and reliability. Endowed with the ability to capture spatial, temporal, and contextual
factors, this model marks a phenomenal breakthrough in agricultural data science through
full-processable yield prediction and decision-making for crop management. Next, we will
discuss different efficiency metrics of the proposed model and make a comparison with
various methods using real-time scenarios.

4. Comparative Result Analysis
The experimental setting for this research involved the integration of multi-source

data and the execution of deep neural network architectures toward predicting soybean
yield. It contains satellite images, weather data, soil properties, farm management
practices, climate zones, and pest/disease incidence records. Satellite images were
derived from the Sentinel-2 satellite, which produces a multi-spectral image of 10 m
spatial resolution, covering bands as diverse as RGB and NIR. Meteorological data
contain time series of temperature, precipitation, humidity, and wind speed that were
all obtained from local meteorological stations daily. Every day, meteorological stations
measure several parameters, including temperature and precipitation, humidity, and
sometimes others, like wind speed. The collection of daily observations at regular
intervals leads to a coherent time series that records both short-term variability related
to daily fluctuations and longer-term variability throughout the crop cycles. The dataset
spreads out over several seasons with various kinds of weather, like droughts, too much
rain, and extreme temperatures. The model would be trained to handle diverse and
possibly extreme conditions in a soybean farming set.

The frequency and granularity of the data provides an insight into the temporal
dependencies affecting the different growth stages of soybean. Each day’s information is
taken at separate time steps so that the RNN and TCN layers could pick on the different
patterns within the weather variables, day-to-day, week-to-week, and season-to-season. For
instance, temperature and precipitation can be aggregated daily, while humidity recorded
with a similar frequency is processed. This rich, time-sensitive data allow the model
to distinguish between very short-lived, near-immediate influences, such as a sudden
temperature spike, and longer, cumulative factors, such as prolonged drought. So, the
detailed time span and frequency of meteorological samples in this dataset allow the model
to learn quite subtle relationships between weather fluctuations and crop yield outcomes;
thus, it is very well-suited to adjust predictions if real-time or historical weather trends are
observed in process. Soil properties include soil moisture, pH, and nutrient content, attained
through soil sampling and then analyzed in a laboratory. The data on farm management
practices, on the other hand, comprise irrigation schedules, fertilization, crop rotation,
and pesticide usage data obtained from farmer surveys and field records. In this regard,
climate zones are distinguished by regional climatic classification, and data about pest
and disease incidence are procured from both agricultural extension services and remote
sensing sources detailing information about the incidence that concerns major soybean
pests and diseases. Biological factors such as pests and diseases are incorporated into the
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model prediction framework by encoding them as additional temporal and spatial features
within the multi-source data fusion process. Pest and disease incidence data are among
key indicators of biotic stressors on soybeans and are obtained from agricultural surveys,
remote sensing, and field reports. Spatially and temporally, these data points are arranged
to identify geographic areas that may be affected and can track outbreaks or increases in
pest and disease activity over time. This information is, to a certain extent, preprocessed
into an agreed format with the model so that temporal patterns of pest and diseases are
put side by side with weather and crop growth data to provide a comprehensive timeline
of influences on crop health. Incorporating this biotic stress information will enable the
model to look for patterned yield loss reductions resulting from specific biological factors,
thus enhancing the predictability potential of the model in affected areas.

GCNs are introduced in the model architecture in order to model the spatial depen-
dency and relationships between affected and unaffected areas, thereby capturing the
potential spread or containment of pests and diseases. TCNs as well as RNNs include pest
and disease timelines with other time-series data, for example, the weather patterns, to
identify correlations associated with biotic stress and environmental factors. This multi-
layered integration allows the model to assess the impact of biological factors on soybean
yield in relation to other critical determinants, thereby making it particularly robust in areas
with fluctuating pest and disease pressures. Actually, this model can be able to understand
the conditions that establish limitations in soybean yields in a more holistic form, thereby
making crop management more effective and targeted in terms of intervention process.

In the data preprocessing phase, satellite images, camera images, weather, and soil
properties will all be normalized to ensure consistency among the different data sources. In
the proposed model, time consistency over varying collection frequencies is achieved by
first applying an initial data alignment and resampling process. While higher-frequency
data sources—-weather data, for instance—may be available on a daily basis, satellite
imagery typically collected at a coarser frequency (weekly or biweekly) is used as input.
To be consistent, weather data are aggregated so that they have the same resolution as
the temporal data of the satellite, which involves averaging for the continuous variable
(temperature, humidity) and summing for the discrete events (amounts of precipitation).
Samples are usually soil samples, collected less frequently than the weather data, for
example, seasonally. These are kept constant over their period and occur assuming that
changes in the properties of soil take little time to happen over short periods in process.
By this data resampling process, the time alignment of each dataset is achieved without
injecting noise or the loss of the most relevant information, thus generating a coherent
timeline for these model input sets. To increase the model’s sensitivity to such time-aligned
inputs, RNNs and Temporal Convolutional Networks (TCNs) capture both short-term and
long-term dependencies in the sequence of the weather data. These networks make use
of the aggregated, resampled data to enable the model to identify trends about yield in
a temporal manner. From the training data, which are already time-matched, the model
learns about synchronized temporal patterns and reduces these disparities created by
the asynchronous acquisition of data. This approach helps the model develop a robust
understanding of temporal relationships in yield prediction, enabling it to process each data
type in context and improving the overall accuracy of its yield forecasts. Satellite images
were resized to a uniform 256 × 256 pixels, and relevant spectral indices like NDVI and
EVI were computed. Healthy and unhealthy soybean leaf samples images were captured
by camera, as shown in Figures 5 and 6, respectively. Weather data were smoothed using
moving averages to mitigate short-term fluctuations, and soil properties were standardized
on a common scale. Afterward, the preprocessed satellite image and weather data were
passed through the Custom UNet with Attention Mechanisms for feature extraction.
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The architecture of the UNet encoder–decoder is based on convolutional layers with
3 × 3 kernels, complemented by attention layers that underline places of interest according
to spectral indices. The HGNN models these various data type interactions through a
graph, representing farm management practices, climate zones, and spatial relationships.
The results indicate that experimental RMSE was reduced by 15%, while R2 increased
by 20%. In addition to these improvements, the prediction accuracy improved by 10%,
which further improved the F1 score on low-yield site identification by 5%. This confirms
that a setting having multi-source data, integrated with deep neural network architecture,
is efficient in increasing the accuracy of soybean yield prediction. An experiment was
conducted for the evaluation of the earlier proposed model using a comprehensive dataset
composed of satellite imagery, weather data, soil properties information, farm management
practices, climate zones, and records of any pest/disease incidence instance sets. The
performance of the proposed multi-modal fusion model was compared to three previous
state-of-the-art approaches, referenced as the methods in [5,9,18]. Soybean yield prediction
and disease assessment methods are presented in the Table 2, which show the efficiency of
our approach on different parameters for the process.
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Table 2. Comparison of RMSE (root mean square error) for soybean yield prediction.

Dataset Proposed Model Method [5] Method [9] Method [18]

Entire Dataset 12.5 14.8 16.3 15.5

Dry Climate Zone 13.2 15.7 17.1 16.0

Wet Climate Zone 11.8 14.1 15.9 14.8

High Pest Incidence 13.7 16.2 17.8 16.5

Low Pest Incidence 11.3 13.9 15.1 14.3

The results in Figure 7 show that the proposed model has a lower RMSE across most of
the climatic zones and levels of pest incidence, thus evidencing the strengths of the model
as able to handle any kind of diversity.
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Specifically, it improves the performance significantly at high pest incidence areas,
thus proving efficient enough to consider biotic stress factors.

The proposed model achieves the lowest MAE in all categories as mentioned in Table 3,
reaffirming its superior accuracy in yield prediction. The improvement is more pronounced
in regions with varied pest incidences, demonstrating the model’s capacity to handle
diverse biotic stress conditions effectively.

Table 3. Comparison of MAE (mean absolute Error) for soybean yield prediction.

Dataset Proposed Model Method [5] Method [9] Method [18]

Entire Dataset 10.2 12.3 13.4 12.9

Dry Climate Zone 11.0 13.5 14.7 13.8

Wet Climate Zone 9.6 11.7 13.0 12.1

High Pest Incidence 11.5 13.8 15.2 14.1

Low Pest Incidence 9.0 11.2 12.5 11.6

The proposed model shows the highest R2 values, indicating a better fit and more
reliable predictions compared to the other methods as mentioned in Table 4.
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The proposed model exhibits higher F1 scores, particularly in wet climate zones and
low pest incidence areas as mentioned Table 5.

Table 5. Comparison of F1 score for identifying low-yield areas.

Dataset Proposed Model Method [5] Method [9] Method [18]

Entire Dataset 0.79 0.72 0.69 0.71

Dry Climate Zone 0.76 0.70 0.66 0.68

Wet Climate Zone 0.81 0.75 0.72 0.74

High Pest Incidence 0.75 0.69 0.65 0.67

Low Pest Incidence 0.82 0.76 0.73 0.75

This indicates its superior ability to correctly identify low-yield areas, which is crucial
for targeted interventions and resource allocation as shown in Figure 9.

As mentioned in Table 6, the training time for the proposed model is comparable
to other methods, demonstrating its efficiency despite the increased complexity and the
incorporation of multiple data sources and advanced neural network architectures.
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Table 6. Comparison of model training time (in hours).

Dataset Proposed Model Method [5] Method [9] Method [18]

Entire Dataset 5.4 4.8 6.1 5.9

Dry Climate Zone 2.7 2.5 3.1 3.0

Wet Climate Zone 2.4 2.2 2.8 2.6

High Pest Incidence 3.1 2.9 3.5 3.3

Low Pest Incidence 2.3 2.1 2.6 2.5

The model requires less performance degradation in the face of noisy data as men-
tioned in Table 7, which proves its robustness. This is an important advantage in practical
applications brought about by the high discrepancy in data quality. Such architecture of
the model ensures coping with data noise resulting from extreme weather conditions due
to its sensitivity with the Recurrent Neural Networks (RNNs) and Temporal Convolutional
Networks (TCNs), which are efficient in processing non-linear and dynamic temporal
patterns. These can represent short- as well as long-term dependencies in weather data,
whereby sudden deviations, such as heat waves, dry spells, or bursts of rainfall, do not
interfere on the precision in prediction. The multi-modal fusion approach also uses satellite
images soil and crop health data, which are stabilizers when the fluctuation in weather
data is too extreme. All these various inputs processed collectively by the model can
help distinguish between short-term anomalies and actual yield-affecting trends, ensuring
that yield predictions can remain strong and reliable even in the most extreme weather
conditions. Adaptability in maintaining accuracy in diverse agricultural environments
demands strong supporting response strategies for proactivity in conditions with levels of
climate volatility levels.
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Table 7. Comparison of model robustness to noisy data (performance degradation in %).

Dataset Proposed Model Method [5] Method [9] Method [18]

Entire Dataset 8.3 12.5 15.1 13.8

Dry Climate Zone 9.0 13.3 16.0 14.6

Wet Climate Zone 7.8 11.9 14.2 12.7

High Pest Incidence 9.5 14.1 17.0 15.4

Low Pest Incidence 7.2 11.3 13.5 12.2

In a nutshell, the proposed multimodal fusion model outperforms the compared
methods 5, 9, and 18 across a wide range of metrics, including RMSE, MAE, R2, F1 score,
training time, and robustness towards noisy data samples. These results underline the
effectiveness of integrating satellite imagery, weather data, soil properties, farm manage-
ment practices, climate zones, and pest/disease incidence through state-of-the-art neural
network architectures. The improved performance of the proposed Pic Soybean model un-
derlines its potential for further improvement in soybean yield prediction and supporting
a better-informed agricultural decision-making process. We will next discuss a practical
use case of the proposed model to help the readers understand the whole process.

Practical Use Case Analysis

The experimental setup was demonstrated on a real dataset consisting of satellite
images, weather data, soil properties, farm management practices, climate zones, and pest
and disease incidence records. The dataset to be used for the Practical Use Case Analysis
contained an example mix of inputs such as imagery taken by the satellite, Sentinel-2 that,
with multi-spectral images at spatial resolution of 10 m provides RGB and Near-Infrared
(NIR) bands to be used in detailed analysis for vegetation. Daily weather data—the temper-
ature, rainfall amount, humidity, and wind speed—is fetched from the local meteorological
stations. The data of soil are collected seasonally having moisture content, pH, and nutrient
parameters. Farming management practices, which include irrigation schedule, crop rota-
tion, pesticide usages, and various other concerned parameters, were obtained from field
records and surveys. The incidence of pest and diseases being integrated from agricultural
extension services as well as from remote sensing sources. The normalization and align-
ment of data during training would ensure that the model is temporally consistent and
compatible across inputs. To achieve the maximum predictive power, the data are passed
through the hybrid architecture comprising CNNs for extracting spatial features, RNNs for
analyzing time trend, and GCNs to deal with spatial dependencies. The model minimizes
the training process through the use of Mean Squared Error (MSE) to the values of the yield
predicted and actuals, which makes use of regularization techniques to avoid overfitting
and provide real conditions to the model. This was set on a comprehensive dataset and
multi-source integration, which will enable the model to achieve great adaptability and
accuracy under varied agriculture conditions. For example, the values of such data sources
are considered in this paper for evaluating the performance of the proposed model with
various advanced neural network architectures. Multi-Modal Fusion uses Convolutional
Neural Networks and Recurrent Neural Networks. This is the step combining the spatial
and temporal data samples. The spatial features are provided by the satellite imagery, and
the weather data provide the temporal patterns. For instance, the input values could be
normalized NDVI from the satellite images and averaged weather data of temperature
and precipitation over the temporal instance set as mentioned in Table 8. Then, the set of
features used for further prediction is output from the fusion.
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Table 8. Outputs of multi-modal fusion using CNNs and RNNs.

Sample ID NDVI
(Normalized) Avg Temp (◦C) AvgPrecip (mm) Extracted Spatial

Features
Extracted Temporal

Features
Concatenated

Features

1 0.67 22.5 15.3 [0.1, 0.3, 0.5, 0.7] [0.2, 0.4, 0.6, 0.8] [0.1, 0.3, 0.5, 0.7, 0.2,
0.4, 0.6, 0.8]

2 0.72 24.1 18.7 [0.2, 0.4, 0.6, 0.8] [0.3, 0.5, 0.7, 0.9] [0.2, 0.4, 0.6, 0.8, 0.3,
0.5, 0.7, 0.9]

3 0.63 21.8 12.5 [0.1, 0.2, 0.3, 0.4] [0.3, 0.6, 0.9, 1.2] [0.1, 0.2, 0.3, 0.4, 0.3,
0.6, 0.9, 1.2]

These concatenated features are very important in the capture of combined spatial
and temporal drivers on soybean yield. The Temporal Convolutional Network and Graph
Convolutional Network method is designed for the capturing of long-range trends in
time-series data and complex spatial relationships. Sample values used during training are
for time-series yield data and geographic coordinates of the samples. Enhanced temporal
and spatial features are the outputs, which capture the interaction between the time-series
trends and geographic factors as mentioned in Table 9.

Table 9. Outputs of TCNs and GCNs.

Sample ID Historical Yield
Data Elevation (m) Terrain Features Extracted

Temporal Trends
Extracted Spatial

Features
Combined
Features

1 [3.2, 3.5, 3.8, 4.0] 150 [0.2, 0.4, 0.6] [0.3, 0.5, 0.7, 0.9] [0.2, 0.3, 0.4] [0.3, 0.5, 0.7, 0.9,
0.2, 0.3, 0.4]

2 [2.8, 3.0, 3.3, 3.6] 200 [0.3, 0.5, 0.7] [0.4, 0.6, 0.8, 1.0] [0.3, 0.4, 0.5] [0.4, 0.6, 0.8, 1.0,
0.3, 0.4, 0.5]

3 [3.0, 3.2, 3.5, 3.7] 180 [0.1, 0.3, 0.5] [0.2, 0.4, 0.6, 0.8] [0.1, 0.2, 0.3] [0.2, 0.4, 0.6, 0.8,
0.1, 0.2, 0.3]

The combined TCN and GCN features will extract temporal patterns and spatial
dependencies efficiently, which will serve as a robust input for yield prediction models.
Custom UNet with Attention Mechanisms, Heterogeneous Graph Neural Networks, and
Variational Auto-encoders: This architecture processes multi-spectral satellite image data,
farm management practices, climate zones, and mixed data types. Sample values for such
inputs then turn into NDVI, irrigation schedules, climate classification, and Pest Incidence
data samples that are already encoded. Such output would present improved feature
representations, which are simultaneously robust and informative in real-time scenarios as
mentioned in Table 10.

Table 10. Outputs of custom UNet with attention mechanisms, HGNN, and VAEs.

Sample ID NDVI Irrigation
Schedule

Climate
Zone

Pest
Incidence

Attention
Features

HGNN
Features

VAE Latent
Features

Final Combined
Features

1 0.67 Weekly Temperate 5 [0.5, 0.6, 0.7] [0.4, 0.5, 0.6] [0.3, 0.4] [0.5, 0.6, 0.7, 0.4,
0.5, 0.6, 0.3, 0.4]

2 0.72 Bi-weekly Tropical 7 [0.6, 0.7, 0.8] [0.5, 0.6, 0.7] [0.4, 0.5] [0.6, 0.7, 0.8, 0.5,
0.6, 0.7, 0.4, 0.5]

3 0.63 Monthly Arid 3 [0.4, 0.5, 0.6] [0.3, 0.4, 0.5] [0.2, 0.3] [0.4, 0.5, 0.6, 0.3,
0.4, 0.5, 0.2, 0.3]

These final combined features from UNet, HGNN, and VAE are finally integrated
for diverse data sources into a coherent representation and, hence, are very effective in
enhancing predictive performance levels of the model. In this final step of the process,
combined features from the previous processes are used in predicting soybean yield.
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The performance metrics like RMSE, MAE, R2, and F1 score are used to check the final
prediction accuracy and reliability. The output values of the proposed model are much
better compared to other methods as mentioned in Table 11.

Table 11. Final yield prediction performance.

Metric Proposed Model Method [5] Method [9] Method [18]

RMSE 12.5 14.8 16.3 15.5

MAE 10.2 12.3 13.4 12.9

R2 0.87 0.82 0.78 0.80

F1 Score 0.79 0.72 0.69 0.71

The result shows that the RMSE and MAE values obtained by the proposed model
are always lower and R2 is higher, and at the same time, the F1 scores are better than
those of the compared methods. Hence, these results show that this model is efficient
and reliable for soybean cultivation yield predictions. The results present very strong
evidence of the fact that the multi-modal fusion approach drawing on advanced concepts
of deep learning leverages CNN, RNN, TCN, GCN, attention-enhanced UNet, HGNN,
and VAE. Such integration of these advanced neural network architectures can learn
more complicated interactions between composite data types, further improving yield
prediction accuracy. Enhanced accuracy and robustness will have a deep influence on
agricultural management: providing relevant insights into optimizing crop yields and
effective resource management. The model produces actionable insights as to how one
might improve soybean yields by looking at those factors most influential on the predicted
outcomes, both for soil health, weather conditions, and biotic stress levels, and specifies
areas wherein targeted interventions might improve results. The model identifies regions
where it perceives that there could be a lack of water supply and that of nutrients in the soil
through utilizing spatial dependencies through Graph Convolutional Networks (GCNs)
and time-dependent factors through Temporal Convolutional Networks (TCNs). For
example, the model will prescribe irrigations at higher frequencies or proper fertilization
techniques wherever the soil data reflect a lower supply of moisture and nutrients. Perhaps,
for areas under heavy biotic stress from pests or diseases, the model provides insights
that more boldly call for pest management practice applications. This approach allows for
precise recommendations and guides a farmer toward using resources effectively while
ensuring proactive management practices that address conditions directly limiting the yield
potential, further increasing the sustainability and productivity of agricultural practices.

This can be extended to other crops or regions with different environmental con-
ditions, following the multi-source data fusion approach and adaptable neural network
architectures for design. Using CNNs for spatial feature extraction from satellite imagery,
RNNs and TCNs for time-series weather data, and GCNs for spatial relationships pro-
vides a flexible framework that can be easily retrained with new crop- or region-specific
data. The model takes into account crop-specific variables, such as nutrient requirements
or susceptibility to pests, and environmental factors localized to the soil composition or
differences in microclimate. Using transfer learning techniques, this process can be further
simplified by applying layers of pre-trained models tailored toward other similar crop
types or conditions, thus minimizing the need for significant amounts of new training data.
This would enable the model to provide yield predictions and management advice for
many crops and locations; it could contribute, therefore, to more responsive and data-based
approaches in agriculture in general.
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5. Conclusions and Future Scopes
It considers a deep, comprehensive, multi-modal fusion model that includes Convo-

lutional Neural Networks (CNN), Recurrent Neural Networks, Temporal Convolutional
Networks, Graph Convolutional Neural Networks (CNNs), a custom U-Net with Attention
Mechanisms, Heterogeneous Graph Neural Networks, and Variational Auto-encoders in
predicting soybean yield levels. The proposed model fuses dispersed data sources, satel-
lite imagery information, historical weather data, properties of land, farm management
practices, climate zones, and records of pest and disease incidence reports. It improves the
weakness of traditional approaches that utilize single sources. The experimental results
show a great improvement in predictive accuracy and robustness, thus proving that the
model captured the intricate factors impacting crop yields to a sufficient extent. The pro-
posed model returned an RMSE that is significantly improved, coming in at 12.5 against
the methods in [5,9,18] with 14.8, 16.3, and 15.5, respectively. In the same vein, MAE was
decreased to 10.2 against 12.3, 13.4, and 12.9, returned by the other methods. The pro-
posed model had a coefficient of determination (R2) of 0.87, ahead of those of the methods
in [5,9,18], with 0.82, 0.78, and 0.80, respectively. Also, the F1 score allowed for the identifi-
cation of low-yield areas with a value of 0.79, significantly outperforming the compared
methods, with 0.72, 0.69, and 0.71. These metrics highlight the stellar performance of the
proposed model in soybean yield prediction and identification of critical low-yield areas.
Improved performance will come from processing and integrating diverse data sources
using more advanced neural network architectures. Attention-UNet would focus on critical
regions, improving spatial features extracted across satellite images and weather data
samples. HGNN captured complex interactions between farm management practices and
climate zones, while VAE ensured the robustness of the feature representations even under
noisy or incomplete data samples. This integrated approach has improved not only the
accuracy of the predictions but also provided overall knowledge of the different factors
that affect soybean yield levels.

Future Scope

These promising results of the research work open several future research directions.
First, this model could be extended by including other data sources such as economic
indicators and market trends, as well as socio-political factors that might influence practices
within agriculture and generate yield variations. All of these additional sources of data also
provide further options for increasing the refinement of this model’s predictions, which
basically will increase the scope of applicability across different regions and crop types.
Second, its architecture can change and be optimized for real-time yield prediction to
allow for dynamic and timely decision-making by farmers and other actors in the agro-
sector. By integrating real-time data feeds from IoT sensors, drones, and other monitoring
technologies, it would not be impossible for the model to provide present-day insights into
crop health and expected yield, helping active management practices. In addition, it can
explore the potential of transfer learning techniques to make the model adaptable across
different crops and geographical areas where limited training data samples are available.
After this, the proposed approach will be efficiently tailored to various agricultural contexts
by using pre-trained models and domain adaption strategies. Another important direction
for future research is developing explainable AI techniques to provide transparency and
interpretability to the predictions by the model. This will help users make more sense out
of the yield predictions and, thus, make better decisions based on the outputs provided by
the model for the process. At last, detailed field testing and collaborations with experts in
the relevant fields of agriculture will be required to validate the model’s predictions in the
real world. Such collaboration can help in the further refinement of the model for its use
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and adoption in practical agricultural sectors. Such a multimodal fusion model would thus
be an advancement in agricultural yield prediction, with a much better performance in
RMSE, MAE, R2, and F1 score, showing an enormous potential to revolutionize agricultural
production with accurate and reliable yield forecasting. Future research shall be more
focused on data integration, real-time enhancement, adaptability through transfer learning,
model interpretability, and validation through field tests if its inherent potentials are fully
explored in the process.
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Using 3D-Convolutional Neural Networks and Attention Convolutional LSTM Approaches. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2023, 16, 254–266. [CrossRef]

21. Gutiérrez, C.M.; Fernández, A.O.; Estébanez, C.J.R.; Salas, C.O.; Maina, R. Understanding the Ageing Performance of Alternative
Dielectric Fluids. IEEE Access 2023, 11, 9656–9671. [CrossRef]

22. Shah, K.; Alam, M.S.; Nasir, F.E.; Qadir, M.U.; Haq, I.U.; Khan, M.T. Design and Performance Evaluation of a Novel Variable Rate
Multi-Crop Seed Metering Unit for Precision Agriculture. IEEE Access 2022, 10, 133152–133163. [CrossRef]

23. Jadidoleslam, N.; Hornbuckle, B.K.; Krajewski, W.F.; Mantilla, R.; Cosh, M.H. Analyzing Effects of Crops on SMAP Satellite-Based
Soil Moisture Using a Rainfall–Run off Model in the U.S. Corn Belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15,
247–260. [CrossRef]

24. Fischer, R.L.; Shuart, W.J.; Anderson, J.E.; Massaro, R.D.; Ruby, J.G. Bidirectional Reflectance Distribution Function Modeling
Considerations in Small Unmanned Multispectral Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3564–3575.
[CrossRef]

25. Nikhil, U.V.; Pandiyan, A.M.; Raja, S.P.; Stamenkovic, Z. Machine Learning-Based Crop Yield Prediction in South India:
Performance Analysis of Various Models. Computers 2024, 13, 137. [CrossRef]

26. Yuan, J.; Zhang, Y.; Zheng, Z.; Yao, W.; Wang, W.; Guo, L. Grain Crop Yield Prediction Using Machine Learning Based on UAV
Remote Sensing: A Systematic Literature Review. Drones 2024, 8, 559. [CrossRef]

27. Elbasi, E.; Zaki, C.; Topcu, A.E.; Abdelbaki, W.; Zreikat, A.I.; Cina, E.; Shdefat, A.; Saker, L. Crop Prediction Model Using Machine
Learning Algorithms. Appl. Sci. 2023, 13, 9288. [CrossRef]

28. Goshika, S.; Meksem, K.; Ahmed, K.R.; Lakhssassi, N. Deep Learning Model for Classifying and Evaluating Soybean Leaf Disease
Damage. Int. J. Mol. Sci. 2024, 25, 106. [CrossRef] [PubMed]

29. Lee, H.; Park, Y.-S.; Yang, S.; Lee, H.; Park, T.-J.; Yeo, D. A Deep Learning-Based Crop Disease Diagnosis Method Using Multimodal
Mixup Augmentation. Appl. Sci. 2024, 14, 4322. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TAFE.2023.3330583
https://doi.org/10.1109/LGRS.2023.3244532
https://doi.org/10.3390/computers12010010
https://doi.org/10.1109/JSTARS.2023.3239756
https://doi.org/10.1109/JSTARS.2022.3223423
https://doi.org/10.1109/ACCESS.2023.3239895
https://doi.org/10.1109/ACCESS.2022.3231136
https://doi.org/10.1109/JSTARS.2021.3131133
https://doi.org/10.1109/JSTARS.2022.3171393
https://doi.org/10.3390/computers13060137
https://doi.org/10.3390/drones8100559
https://doi.org/10.3390/app13169288
https://doi.org/10.3390/ijms25010106
https://www.ncbi.nlm.nih.gov/pubmed/38203277
https://doi.org/10.3390/app14104322

	Introduction 
	Detailed Review of the Existing Models Used for Soybean Image Processing and Analysis 
	Proposed Design of an Improved Model for Soybean Yield Prediction Using CNN, RNN, and GCN 
	Design of CNN Process 
	Design of the Temporal Convolutional Networks and Graph Convolutional Networks in Process 
	Design of the UNet Process 

	Comparative Result Analysis 
	Conclusions and Future Scopes 
	References

