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Abstract: High-dimensional data have attracted considerable interest from researchers,
especially in the area of variable selection. However, when dealing with time-to-event
data in survival analysis, where censoring is a key consideration, progress in addressing
this complex problem has remained somewhat limited. Moreover, in microarray research,
it is common to identify groupings of genes involved in the same biological pathways.
These gene groupings frequently collaborate and operate as a unified entity. Therefore, this
study is motivated to adopt the idea of a penalized semi-parametric Bayesian Cox (PSBC)
model through elastic-net and group lasso penalty functions (PSBC-EN and PSBC-GL)
to incorporate the grouping structure of the covariates (genes) and optimally perform
variable selection. The proposed methods assign a beta process prior to the cumulative
baseline hazard function (PSBC-EN-B and PSBC-GL-B), instead of the gamma process
prior used in existing methods (PSBC-EN-G and PSBC-GL-G). Three real-life datasets and
simulation scenarios were considered to compare and validate the efficiency of the modified
methods with existing techniques, using Bayesian information criteria (BIC). The results of
the simulated studies provided empirical evidence that the proposed methods performed
better than the existing methods across a wide range of data scenarios. Similarly, the results
of the real-life study showed that the proposed methods revealed a substantial improvement
over the existing techniques in terms of feature selection and grouping behavior.

Keywords: penalization function; semi-parametric model; shrinkage parameter; joint
posterior function; MCMC algorithm

1. Introduction
Survival analysis is dedicated to investigating the time until a specific event, commonly

termed as a “failure” [1]. This scenario finds widespread application across diverse scientific
domains, including medicine [2,3], biology [3,4], engineering [5], and economics [6,7].
Researchers employ survival analysis to scrutinize the time leading up to events such as
mortality or equipment malfunction [8]. For instance, researchers may investigate the
survival times of cancer patients from the time of diagnosis, where the event of interest
could be the occurrence of relapse or, unfortunately, the death of the patient [3,8–10].

Recently, there has been increasing interest in modeling survival data using deep
learning methods in medical research [11–13]. However, these deep neural network-based
survival models provide only point estimates of the hazard rates and thus cannot properly
convey uncertainty in the estimations. Hence, to properly consider the uncertainties in
deep neural network-based survival models, several researchers have proposed a Bayesian
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deep learning approach [5,14]. As an illustration, Feng, and Zhao [14] proposed a Bayesian
hierarchical deep neural network model that can provide not only a point estimate of
survival probability but also quantification of the corresponding uncertainty. In addition,
ref. [5] handled censored data and captured the non-linear relationship between covariates
and target variable lifetime.

At the same time, Bayesian approaches to variable selection have also become popular,
not least since the relevance of a covariate can be assessed simply by computing the poste-
rior probability that it is included in a model [15,16]. This recasts variable selection as a
model selection problem, with every possible model assigned an individual posterior prob-
ability. One of the most popular forms of such model selection priors is the spike-and-slab
prior [2,17]. Among of the advantages of the method is the ability to adjust concentration
points for flexible prior distributions, resulting in the nonlinear shrinkage of regression co-
efficients and smoothed estimates. In addition, it enables fully Bayesian inference through
Markov Chain Monte Carlo, and aims to create a unified framework for variable selection,
producing sparse coefficient structures in both low- and high-dimensional contexts [18–21].

Interestingly, among of the several traditional modeling methods for survival analysis
well documented in the literature, the Cox proportional hazard (Cox-PH) model stands
out as a prominent semi-parametric technique [22,23]. And, recognized for its practical
applicability, it facilitates a flexible modeling approach with minimal assumptions by
maximizing the partial likelihood and bypassing the need to model the baseline hazard
function. In contrast, the Bayesian paradigm mandates an explicit parametrization of the
baseline hazard function. However, extensive research has demonstrated the adoption
of the gamma process [24–26], a prevalent non-parametric process prior, in Bayesian
proportional hazard models to characterize the cumulative baseline hazard.

Similarly, Ibrahim et al. [25] proposed a semi-parametric approach, combining a non-
parametric prior for the baseline hazard rate (using a discrete gamma process prior for the
baseline hazard) with a fully parametric prior for the regression coefficients. Notably, the
method demonstrated effective performance with low-dimensional data [25,27–29]. How-
ever, the methodology has yet to be applied to high-dimensional data, and its suitability
for grouped data has not been explored.

Subsequently, while there have been studies on variable selection methods, ref. [30–34]
pioneered a variable selection approach incorporating the widely recognized lasso penalty
within the Cox proportional hazard (Cox-PH) model framework, where the likelihood
function is grounded, and the cumulative baseline hazard function is modeled using a
gamma process. The study introduced a prior on the tuning parameter for shrinkage,
offering adaptive control over the model’s sparsity. Similarly, Lee et al. [35] applied a data
augmentation approach to handle censored survival times and enhance prior–posterior
conjugacy. Also, for identifying relevant grouped covariates, a shrinkage prior distribution
for regression coefficients, emulating the effect of a group lasso penalty, was assigned. And
lastly, to address the challenge of not shrinking coefficient estimates to exact zeros in a
Bayesian penalized regression approach, a two-stage thresholding method utilizing the
scaled neighborhood criterion and Bayesian information criterion was employed. However,
the method was found to outperform the competing methods on both simulated and
real-life data, in terms of variable selection accuracy and predictive power.

Hence, in this paper, considering the typical distribution patterns of survival analysis,
which often manifest as either gamma or beta distributions, the researchers have a reason-
able basis to explore the incorporation of a beta process prior. Many researchers [34,36]
have considered using a gamma process prior in Bayesian non-parametric settings due
to its flexibility to adapt to various models; however, its relative complexity presents sig-
nificant challenges for principled inference [37]. This is in contrast to the beta process
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prior, which is mathematically tractable and serves as a fully Bayesian conjugate prior,
enabling analytical posterior calculation and straightforward inference [38,39]. Thus, there
is a need to implement the beta perspective within the framework, representing a mod-
ification of the methodologies proposed by [34,36]. Hence, this study implements and
adopts the beta prior for the baseline hazard for effective prediction and variable selection
in high-dimensional survival data. A similar version of the beta prior was introduced in
the master’s thesis of one of the authors of this study in 2023 [40]. In this phase, we present
the mathematical formulation of the beta prior and the joint posterior for both elastic and
group lasso, as well as real-life applications, respectively.

This paper is structured as follows: In Section 2.1, we present a comprehensive
overview of the penalized semi-parametric Bayesian Cox model, incorporating group-
ing and shrinkage priors. Formulation of the modified joint posteriors is discussed in
Section 2.2, while Section 2.3 provides a thorough computational algorithm for obtaining
both the existing and proposed penalized semi-parametric Bayesian Cox model (PSBC).
To assess the performance of our proposed methods, Section 3.1 present the simulation
of this study. In Section 3.2, we apply the proposed models (PSBC-EN-B and PSBC-GL-B)
alongside the existing models to analyze three distinct microarray gene expression datasets.
Concluding this study, Section 4 presents our closing remarks on this study.

2. Methodology
In this section, we briefly review the general concept of the penalized semi-parametric

Bayesian Cox model, examining existing methods and introducing new methods that
focus on the prior of the cumulative baseline hazard function, joint posterior distributions,
and the full Bayesian technique for selecting tuning parameters. Moreover, we discuss
the formulation of the sequential BIC as a thresholding method for both the existing and
proposed approaches.

2.1. Penalized Semi-parametric Bayesian Cox Model with Grouping and Shrinkage Priors

Suppose that a dataset consists of n subjects, and for the individual ith subject we
record the actual survival time Ti, covariates Xi = (Xi1, . . . , Xip)

′
, and the event indicator

δi ∈ {0, 1}. In right censoring, Ti = min(Tc
i , Ci), where Tc

i and Ci are the survival and
censoring times, respectively, (i = 1, . . . , n), and non-negative random variables, and the
event indicator σi = I(Tc

i ≤ Ci), where I(.) is an indicator function. The data structure for
this scenario is properly illustrated in Table 1.

Table 1. Survival times, event indicators, and covariates for all subjects.

Subject Survival Time T Event Indicator δ Covariates Xi

1 t1 δ1 (x11, x12, . . . , x1p)
2 t2 δ2 (x21, x22, . . . , x2p)
...

...
...

...
n tn δn (xn1, xn2, . . . , xnp)

Assume that the subjects are independent from each other and that Tc
i ⊥ Ci, given Xi.

Thus, the conditional hazard function given by Xi (h(t/Xi)) quantifies the instantaneous
failure rate at a given time t with Xi. Hence, the model that links the conditional hazard
function to Xi is denoted by Equation (1), commonly called the Cox model [22], a well-
known semi-parametric model in survival analysis.

h(t|x) = h0(t)exp(x′β), (1)
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where β = (β1, . . . , βp)′ is a column vector of p regression parameters and h0(t) is un-
specified arbitrary baseline hazard function. Under the Cox model (1), the joint survival
probability of n subjects given the matrix of covariates X is given by

P(T > t|β, X, H0) = exp

{
−

n

∑
i=1

exp(x
′
i β)H0(ti)

}
, (2)

where H0(ti) is the cumulative baseline hazard function. A gamma process prior is assigned
to the cumulative baseline hazard function H0(t)

H0(t) ∼ GP(c0H∗, c0). (3)

H∗(t) is an increasing function with H∗(0) = 0 and c0 is a positive constant. Let hj denote
the increment in the cumulative baseline hazard in the interval Ij, as follows

hj = H0(sj)− H0(sj−1), j = 1, 2, . . . , J. (4)

The gamma process prior in (4) implies that hj follows an independent gamma distribution,
that is

hj = G(α0j − α0j−1, c0), (5)

where α0j = c0H∗(sj). Therefore, the conditional probability of the ith subject failing in the
interval Ij is given by

P(Ti ∈ Ij|h) = exp(−exp(x
′
i β)H(tj−1))− exp(exp(x

′
i β)H(ti))

= exp(−exp(x
′
i β)

j−1

∑
m=1

hm)(1 − exp(−hjexp(x
′
i β))), (6)

where h = (h1, h2, . . . , hj)
′. This leads to our grouped data likelihood function

L(β, h|D) ∝
J

∏
j=1

Gj, (7)

where Gj = exp{−hj ∑k∈Rj−Dj
exp(x

′
i β)}∏l∈Dj

[
1 − exp

{
−hjexp(x

′
i β)
}]

.
The regression coefficients β = (β1, . . . , βp) play a major role in selecting the covariates

in the model (7). So we introduce a prior that will result in shrinkage in our model. The
variable selection is carried out through BIC thresholding. Note that the |β j| in the lasso
penalty is proportional to the (minus) log-density of the Laplace distribution. The Laplace
prior (8) for the regression coefficients is given by

π(β) =
p

∏
j=1

λ

2
exp(−λ|β j|). (8)

Meanwhile, we use the conditional Laplace prior in (9), instead of (8), in order to guarantee
unimodality.

π(β|σ2) =
λ

2
√

σ2
exp
(
−λ|β|√

σ2

)
. (9)

A noninformative marginal prior π(σ2) = 1
σ2 is assigned on σ2. The hierarchical representa-

tion of the Bayesian lasso with prior (9) can thus be obtained by utilizing the representation
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of the Laplace distribution as a scale mixture of normals with an exponential mixing density,
as described in (10).

a
2

e−a|z|
∫ ∞

0

1√
2πs

e−
z2
2s · a2

2
e−

a2s
2 ds. (10)

The comprehensive details and theoretical foundation of the existing methods are
discussed in the studies by [34,36].

2.2. Formulation of Proposed Methods: PSBC-EN-B and PSBC-GL-B Joint Posteriors

This section presents the formulation of the joint posterior of the PSBC-EN-B and
PSBC-GL-B models. These models are constructed upon the grouped data likelihood (11),
wherein the cumulative baseline hazard function in the Cox model is a priori modeled by
a beta process. Moreover, the joint posterior of each model is based on the full Bayesian
approach for selecting the tuning parameters.

However, these posteriors aim to improve the accuracy and efficiency of parameter
estimation in high-dimensional statistical modeling, especially in scenarios characterized
by complex data structures and a plethora of predictors. Additionally, through the incorpo-
ration of grouping and shrinkage priors, this modification seeks to strike a balance between
variable selection, coefficient estimation, and computational tractability.

2.2.1. Development of PSBC Elastic Net (PSBC-EN-B) Joint Posterior

Assigning a beta process prior to the cummulative baseline hazard function H0(t), the
likelihood can be written as

L(β, h|D) ∝
J

∏
j=1

Bj, (11)

where Bj =
(
(1 − hj)

∑ exp(x′i β)
)

∏l∈Dj
[1 − (1 − hj)

exp(x′i β)].

Here, h = (h1, h2, . . . , hj)
′. To complete the discretized beta process model, we specify

independent beta priors for the hjs. Specifically, we take

hj ∼ B(c0jα0j, c0j(1 − αoj)) (12)

as independent for j = 1, 2, . . . , J.
Hence, the final joint posterior distribution of our PSBC-EN-B model can be written as

π(β, h, σ2, τ, λ2
1, λ2|D) ∝ L(D|β, h)× π(h)× π(β|σ2, τ, λ2)× π(τ|λ2

1, λ2)× π(σ2)

×π(λ2
1)× π(λ2)

∝
J

∏
j=1

(
(1 − hj)

∑k∈Rj−D j exp(x′i β)
)

∏
l∈Dj

[1 − (1 − hj)
exp(x′i β)] (13)

×
J

∏
j=1

[
h

α0jα0,j−1
j (1 − hj)

c0j(1−α0j)−1
]
|σ2D∗

τ |−
1
2 exp

{
− 1

2σ2 β′D∗−1
τ β

}
× 1

σ2 (λ
2
1)

r1−1exp(−δ1λ2
1)λ

r2−1
2 exp(−δ2λ2)

×
p

∏
j=1

1√
1 + λ2τ2

j
exp

(
−

λ2
1τ2

j

2

)
C1(λ

2
1, λ2).

2.2.2. Development PSBC Group Lasso (PSBC-GL-B) Joint Posterior

For the joint posterior distribution for the PSBC Group Lasso (PSBC-GL-B) model,
given the cumulative baseline hazard function H0(t), the beta process prior can be expressed
as follows:
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π(β, h, σ2, τG, λ2|D) ∝ L(D|β, h)× π(h)× π(β|σ2, τG)× π(τG|λ2)× π(σ2)× π(λ2)

∝
J

∏
j=1

(
(1 − hj)

∑k∈Rj−D j exp(x′i β)
)

∏
l∈Dj

[1 − (1 − hj)
exp(x′i β)]

×
J

∏
j=1

[
h

α0jα0,j−1
j (1 − hj)

c0j(1−α0j)−1
] K

∏
k=1

(σ2τ2
k Imk)

− 1
2 exp

{
− 1

2σ2 ||βk||2Gk

}
(14)

×
K

∏
k=1

(λ2)(mk+1)/2τ
(mk+1)/2
k exp

(
−

λ2τ2
k

2

)

× 1
σ2 (λ

2)r−1 exp(−δλ2).

2.3. Computational Scheme

This study adopts the Markov Chain Monte Carlo (MCMC) algorithm to fit our
proposed models (PSBC-EN-B, Equation (13), and PSBC-GL-B, Equation (14)), described in
the previous section, since the parameters in Equations (13) and (14) cannot be estimated
analytically and thus require computational approaches. The computational approach
in this study is similar to the method adopted by [34,41], and the MCMC simulation is
used for variable selection, parameter estimation, and prediction in our proposed models
(PSBC-EN-B, Equation (13), and PSBC-GL-B, Equation (14)). We refer the reader to [34]
for full details of this computational scheme. However, the steps in Algorithms 1 and 2
depict the step-by-step MCMC algorithms adopted in fitting both the existing and proposed
penalized semi-parametric Bayesian Cox model (PSBC).

Algorithm 1: MCMC algorithm step-by-step procedure for elastic-net

Data: Initial values: β(0), h(0), τ(0), σ2(0), λ
2(0)
1 , andλ

(0)
2 . The index g denote the gth

iteration, and we start by setting g = 1
1 Set g = 1;
2 while g < M do
3 Update β using Metropolis-Hastings algorithm with adaptive jumping rule;
4 Sample hj;
5 from a gamma distribution (see Equation (5)) or beta distribution (using

Equation (12)) Sample 1/τ2
j ;

6 Sample σ2 from its full conditional distribution (inverse-gamma);
7 Update λ2

1 using Metropolis-Hastings algorithm and the full conditional for λ2;
8 Update λ2 using Metropolis-Hastings algorithm and the full conditional for λ2;
9 Increment g = g + 1;

10 end
11 Calculate the posterior mean and median of β to obtain estimators;

After obtaining the posterior estimates for each method, the sequential BIC were com-
puted using Equation (15) below. The Bayesian information criterion (BIC) was then used
as a thresholding method for variable selection in both the proposed and existing models.
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Algorithm 2: MCMC algorithm step-by-step procedure for group lasso

Input : Initial values, β(0), h(0), τ(0), σ2(0), and λ2(0). The index g denote the gth

iteration, and we start by setting g = 1
Output : Posterior samples of parameters

1 Set g = 1 ;
2 while g ≤ M (M is the number of posterior samples desired) do
3 Update β using Metropolis-Hastings algorithm with adaptive jumping rule;
4 Sample hj’s from a gamma distribution (see Equation (5)) or beta distribution

(using Equation (12));
5 Sample 1/τ2

k from inverse-Gaussian distribution;
6 Sample σ2 from inverse-gamma distribution;
7 Sample λ2 from gamma distribution;
8 g = g + 1;
9 end

10 Calculate posterior mean and median of β to obtain estimators;

2.4. Bayesian Information Criterion (BIC)

The Bayesian information criterion (BIC) was adopted in this study to choose the
variables for the models. After a model’s absolute value estimations of β j are sorted in
descending order, the BIC values are calculated step by step by adding significant covariates
in Equation (15).

BICj = −2{lj(β̂(1:j))− l0}+ j log(n), j = 1, . . . , p, (15)

where lj(β̂(1:j)) is the maximized log likelihood under a model Mj that includes covariates
corresponding to the largest j|β j|′s given by (β̂(1:j)), and l0(0) is the log likelihood under
the null model. The lowest point on the BIC curve refers to the best choice of covariates.

3. Results
3.1. Simulation Study

In this section, we discuss simulation studies that were carried out to compare the
performance of the methods. A simulation scenario, where a group of relevant covariates
are correlated with others while the rest of the covariates are independent of each other,
was designed.

Simulation Procedure: A ρ = 0.5 is used to generate the dataset. The 10 significant
variables, whose coefficients are set equal to 4, are arranged near one another. This study
assumes a pairwise correlation, with ρ = 0.5 only for the 10 important variables. The other
p − 10 variables are assumed to be independent of each other. A dataset is generated using
ρ = 0.5. The 10 significant variables, with coefficients set to 4, are positioned close to each
other. This study assumes pairwise correlations of ρ = 0.5 for these 10 important variables
only, while the remaining p − 10 variables are considered independent of each other.

Table 2 reports the Bayesian information criteria (BIC) and the average ranks of the
BIC values across the PSBC models. The results reveal that PSBC-GL-B with a beta prior
gives very impressive results by outperforming the competing models in terms of variable
selection accuracy. Additionally, in almost all the cases the PSBC model (PSBC-GL-B)
consistently gives the lowest BIC values (Table 2) compared to all other models.
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Table 2. Simulation results based on 100 replications, with ρxi ,xj = 0.5 and the average rank (AR) of
the BIC.

Pr
io

r

Method 20 80 100 200 300 400 500 600 700 800 1000 AR

G
am

m
a PSB

C-G
L-G 2nd 2nd 2nd 1st 1st 2nd 2nd 2nd 2nd 2nd 2nd

−44.3 −230.1 −362.2 −889.3 −1175.4 −1564.9 −1941.1 −2181.7
−27

79
.4

−31
54

.9

−38
17

.5
1.8

1

PSB
C-E

N-G 4th 3rd 3rd 4th 4th 3rd 3rd 4th 4th 3rd 4th

−28.5 −224.7 −264.9 −598.5 −939.7 −1482.8 −1614.6 −2047.3
−21

63
.8

−25
85

.6

−30
32

.5

3.5
4

Be
ta

PSB
C-G

L-B 1st 1st 1st 2nd 2nd 1st 1st 2nd 1st 1st 1st

−44.3 −269.3 −365.5 −862.9 −1120.7 −1567.3 −1971.2 −2186.8
−28

62
.1

−31
71

.8

−38
42

.5

1.1
8

PSB
C-E

N-B 3rd 4th 4th 3rd 3rd 4th 4th 3rd 3rd 4th 3rd

−36.9 −197.4 −252.4 −611.7 −971.7 −1271.4 −1507.4 −2118.7
−23

87
.9

−24
28

.3

−31
53

.4

3.4
5

Overall, judging by the AR of the method based on the BIC values for each method
across the selected number of predictors, we discovered that PSBC-GL-B with a beta prior
was ranked first, and PSBC-GL-G with a gamma prior ranked second, followed by PSBC-EN-B
beta prior and PSBC-EN-G gamma prior. Table 3 depicts the number of predictors selected by
the PSBC models.

Table 3. The number of genes selected by PSBC models, using the BIC.

Cases PSBC-GL-G PSBC-GL-B PSBC-EN-G PSBC-EN-B

20 9 10 10 10
80 8 9 7 12
100 12 13 6 10
200 6 6 10 10
300 3 3 8 2
400 3 1 7 4
500 9 1 5 8
600 12 5 13 2
700 10 9 4 2
800 10 4 9 13
1000 21 15 15 16

Average Selection 9.3 6.9 8.5 8.1

Table 3 reveals the number of variables or predictors selected by the methods for each
number of predictors in the data simulated. The last row of the table indicates the average
number of predictors selected by the methods. The result indicate that modified PSBC-GL-B
performed reasonably well compared to the competing methods.

To further demonstrate the performance of the proposed models, we considered using
four operating characteristics, as has been applied in similar previous studies ([34–36]).
The operating characteristics considered include the true positive rate (TPR or sensitivity),
true negative rate (TNR or specificity), time-dependent ROC curve (AUC) [42,43], and the
concordance index (c-index) [44].

The results presented in Table 4 summarize the overall averages and standard devia-
tions of the four metrics for both the proposed and existing methods. From Table 4, it is
evident that the PSBC-EN-B model outperforms the existing methods in terms of c-index
accuracy. However, when considering time-dependent ROC curve (AUC) accuracy, both
the proposed and existing methods appear to perform competitively. This observation
suggests that as survival time increases, the hazard ratio distribution may exhibit properties
of both gamma and beta distributions, influenced by patient demographic history (such as
age, gender, etc.). Moreover, with regard to TPR accuracy, we observed equal performance
across all models, while in terms of TNR, the existing methods were found to be relatively
sensitive. For interested readers, we provide a visual presentation of the average AUC over
time across various numbers of variables in the Supplementary Material (Figures S1–S4).
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Table 4. Results of the average performance metrics of the simulation scenarios. The metrics are
reported as percentages (%), with standard deviations provided in parentheses.

No. of Variables (P) Method TPR % (SD) TNR % (SD) AUC C-INDEX

PSBC-GL-G 67.00 (0.295) 40.40 (0.301) 0.770 0.720
20 PSBC-GL-B 60.80 (0.296) 44.60 (0.302) 0.664 0.612

PSBC-EN-G 79.90 (0.307) 30.70 (0.335) 0.997 0.970
PSBC-EN-B 79.90 (0.307) 30.70 (0.335) 0.996 0.971

PSBC-GL-G 60.90 (0.284) 43.20 (0.307) 0.678 0.638
200 PSBC-GL-B 58.40 (0.303) 44.70 (0.291) 0.638 0.598

PSBC-EN-G 80.40 (0.307) 30.70 (0.334) 1.000 0.982
PSBC-EN-B 80.60 (0.309) 30.50 (0.336) 1.000 0.989

PSBC-GL-G 54.20 (0.323) 45.90 (0.284) 0.583 0.575
500 PSBC-GL-B 61.30 (0.277) 44.00 (0.311) 0.674 0.630

PSBC-EN-G 80.30 (0.307) 30.90 (0.335) 0.999 0.980
PSBC-EN-B 80.10 (0.308) 30.50 (0.334) 1.000 0.985

PSBC-GL-G 60.10 (0.295) 42.70 (0.301) 0.675 0.642
1000 PSBC-GL-B 63.00 (0.286) 42.30 (0.302) 0.709 0.661

PSBC-EN-G 80.80 (0.311) 30.20 (0.333) 1.000 0.979
PSBC-EN-B 79.00 (0.311) 29.80 (0.333) 0.997 0.972

Figure 1 presents the overall performance of the PSBC models, using the corresponding
BIC values of each model. The plot indicate that PSBC-GL-B outperformed the competing
PSBC models, followed by PSBC-GL-G, and so on.

Figure 1. Overall comparison of the PSBC models on the simulated dataset.

3.2. Real-Life Studies

This section focuses on the practical application of proposed PSBC models along with
existing models using three (3) different microarray gene expression datasets. The three
datasets are NCI breast cancer data [45] (Data 1), Dutch breast cancer data [46] (Data 2),
and Diffuse large-B-cell lymphoma data [47] (Data 3).

A detailed description of the datasets are presented in Table 5. For the first dataset,
the number of observations (n) is less than that of predictors (p < n), while the remaining
two (2) datasets include more predictors than observations (p > n).
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The results from Table 5 reveal the dimensions of the three datasets. The first dataset
(Data 1: NKI70) consists of low-dimensional data, since the number of individual genes is
fewer than the number of individuals in the dataset. On the other hand, the remaining two
datasets are high-dimensional.

Table 5. The description of the three datasets used in this study.

Data ID Description No. of Subjects n No. of Predictors p

Data 1. NK170 NCI breast cancer data,
[45] 144 70

Data 2. DutchBC Dutch breast cancer data,
[46] 295 4919

Data 3. DLBCL

Diffuse large-B-cell
lymphoma data from
patients undergoing
R-CHOP treatment, [47]

181 3835

3.3. Data Description Using Kaplan–Meier Survival Curve

To assess the statistical significance of differences between treatment subgroups in the
datasets, this study employed the Kaplan–Meier survival curve. This curve was utilized to
analyze the duration from the manifestation of cancer symptoms to the incidence of the
primary endpoint.

Figure 2 (left to right) indicates a significant difference in survival times for the patients
in low- and high-risk groups (log rank test p = 0.018). The Kaplan–Meier survival
probability estimates at 12 months were about 0.76 for the patients in the low-risk group,
and about 0.375 for the patients at high risk.

Figure 2. Kaplan–Meier survival curves depicting the duration from the onset of breast cancer
symptoms to the occurrence of the primary endpoint (death) for different groups. The curves also
highlight the ongoing risk of reaching the primary endpoint at various time points, indicating the
number of patients still susceptible to the event [Data 1].

Also in the case where the patients were subgrouped into three groups (Low, Middle,
and High risk), survival differences were noticed between the three (3) subgroups (log
rank test p = 0.021). Additionally, the result revealed that the survival probability estimates
at 12 months were well above 0.75 for patients at low risk, a little above 0.5 for patient at
middle risk, and roughly above 0.25 for patients at high risk.

Figure 3 (left to eight) indicates a significant difference in survival times for the patients
with breast cancer in the low- and high-risk groups (log rank test p = 0.0094). The
Kaplan–Meier survival probability estimates at 12 months were about 0.80 for the patients
in the low-risk group, and about 0.60 for the patients at high risk.
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Figure 3. Kaplan–Meier survival curves depicting the duration from the onset of breast cancer
symptoms to the occurrence of the primary endpoint (death) for different groups. The curves also
highlight the ongoing risk of reaching the primary endpoint at various time points, indicating the
number of patients still susceptible to the event [Data 2].

Furthermore, in the case where the patients were subgrouped into three groups
(Low, Middle, and High risk), survival differences were noticed between the three (3)
subgroups (log rank test p = 0.004). In addition, the survival probability estimates at
12 months were well above 0.90 for patients at low risk, a little above 0.80 for patient at
middle risk, and roughly above 0.30 for patients at high risk.

Figure 4 (left to right) indicates a significant difference in survival times for the patients
receiving rituximab immunotherapy in the low- and high-risk groups (log rank test p =
0.63). The Kaplan–Meier survival probability estimates at 12 months were about 0.80 for
the patients in the low-risk group, and about 0.60 for the patients at high risk.

Figure 4. Kaplan–Meier survival curves depicting the duration from the onset of rituximab im-
munotherapy in addition to chemotherapy symptoms to the occurrence of the primary endpoint
(death) for different groups. The curves also highlight the ongoing risk of reaching the primary
endpoint at various time points, indicating the number of patients still susceptible to the event
[Data 3].

In addition, in the case where the patients were subgrouped into three groups
(Low, Middle, and High risk), survival differences were noticed between the three (3)
subgroups (log rank test p = 0.73). And the survival probability estimates at 12 months
were well above 0.90 for patients at low risk, a little above 0.80 for patient at middle risk,
and roughly above 0.30 for patients at high risk.
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3.4. Comparison of the Methods’ Performance on the Real-Life Dataset

This study evaluates the performance of both the existing and proposed methods
by employing BIC thresholding (Equation (15)), which facilitates effective grouped vari-
able selection. Table 6 showcases the comparative results for both the existing and
proposed methodologies.

Table 6. Real-life results based on 100 replications.

Datasets Prior Method No. of Predictors Selected BIC

Gamma PSBC-GL-G 31 −195.1181

Data 1 PSBC-EN-G 31 −196.9853

Beta PSBC-GL-B 33 −219.3794

PSBC-EN-B 39 −168.7433

Gamma PSBC-GL-G 20 −26,773.67

Data 2 PSBC-EN-G 20 −26,242.25

Beta PSBC-GL-B 9 −26,871.26

PSBC-EN-B 15 −26,285.90

Gamma PSBC-GL-G 33 −17,512.08

Data 3 PSBC-EN-G 106 −12,293.08

Beta PSBC-GL-B 20 −17,879.20

PSBC-EN-B 40 −13,735.29

Similar to the results from the simulated study, Table 6 indicates that PSBC-GL-B
demonstrates superior variable selection capability compared to the other three competing
methods, as it consistently exhibits the lowest BIC values across the three datasets.

For instance, in the case of Data 1, PSBC-GL-B achieves the lowest BIC value of
−219.3794, followed by PSBC-EN-G, with PSBC-EN-B performing the least effectively. Simi-
larly, for Data 2, PSBC-GL-B outperforms the other methods with a BIC of −26871.26, fol-
lowed by PSBC-GL-G with −26773.67. The trend continues with Data 3, where PSBC-GL-B
again achieves the lowest BIC value of −17879.20.

We further our investigation by considering the performance metrics of the real-life
datasets, alongside the results of the BIC and the number of variables selected. The results
of these metrics, which measure the model’s accuracy, are presented in Table 7. The results
in Table 7 reveal competitive performance among the four methods based on the true
positive eate (TPR) and true negative rate (TNR), while the existing models show slightly
higher performance based on the average AUC and C-index. On the other hand, the NKI70
and DutchBC datasets demonstrate better performance across all methods compared to the
DLBCL dataset. The DLBCL dataset seems to be a challenging one for all the methods, with
a reduced TPR, AUC, and C-Index.We are not surprised by these prediction performances
of the DLBCL dataset, as similar prediction performances were recorded in the study by
Lee et al., 2015 [36].

Moreover, to account for the predictive performance of all the models over time, we
visualize the AUC results in the Figure 5, since the AUC is the area under the ROC curve.
The results from Figure 5 present the average AUC curves for the four methods across
the three real-life datasets. Again, the results reveal competitive performance at some time
points and slightly higher performance in PSBC-GL-G and PSBC-GL-B than in the other
models in the DutchBC dataset (Figure 5B).
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Table 7. Performance metrics of different methods across three datasets (NKI70, DutchBC,
and DLBCL).

Data Method TPR % (SD) TNR % (SD) AUC C-INDEX

PSBC-GL-G 78.10 (0.266) 39.30 (0.321) 0.892 0.861
NKI70 PSBC-GL-B 78.20 (0.268) 39.10 (0.321) 0.895 0.863

PSBC-EN-G 79.80 (0.307) 30.80 (0.334) 0.995 0.971
PSBC-EN-B 79.80 (0.306) 30.90 (0.334) 0.994 0.969

PSBC-GL-G 65.20 (0.264) 45.80 (0.302) 0.695 0.656
DutchBC PSBC-GL-B 63.70 (0.281) 46.10 (0.295) 0.667 0.660

PSBC-EN-G 83.50 (0.269) 39.90 (0.319) 0.937 0.913
PSBC-EN-B 83.10 (0.268) 40.10 (0.319) 0.932 0.910

PSBC-GL-G 60.30 (0.296) 43.30 (0.294) 0.672 0.628
DLBCL PSBC-GL-B 54.70 (0.302) 45.80 (0.296) 0.589 0.571

PSBC-EN-G 48.10 (0.309) 51.90 (0.282) 0.461 0.462
PSBC-EN-B 47.00 (0.302) 51.90 (0.284) 0.451 0.451

Figure 5. Prediction capability of the four models on three real-life datasets.

3.5. Posterior Credible Region

In addition to the results in the previous section on the performance of the methods
using the real-life dataset, we estimated the credible interval or region for the posterior
estimates using both the proposed and the competing methods. However, the solid dots
denote the posterior mode of the coefficients and the lines denote the 95% confidence
intervals. The closer the posterior mode is to the right side indicates significant features at
a p < 0.05. Hence, the plot reveals that few of the features are significantly related to the
survival curve.

Figures 6 and 7 depict the posterior credible region for the methods for Data 1. From
the figures, we notice that in the case of PSBC-GL-B and PSBC-EN-B the dots drift more to the
right-hand side compared to those of the competing methods. This simply implies that the
proposed methods are more adequate in more variables in a dataset with a grouping effect.
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Similar to the findings on Data 1, Figures 8 and 9 represent the posterior credible
region for the methods for Data 2; this study provides the posterior mode of the coefficient
estimates across the four methods. The results reveal that the proposed methods identified
more significant features compared to existing methods. This is evident as the posterior-
mode dots for the proposed methods drift further to the right or left (i.e., farther from the
center) than those of the existing methods. In contrast, the posterior-mode dots closer to
the center (0) indicate less significant features. We also observe a similar pattern in the third
dataset (see Figures 10 and 11) .

Figure 6. Posterior credible region of the 20 genetic features; only these 20 features are presented to
maintain the figure’s legibility for PSBC-GL: (a) gamma prior; (b) beta prior for Data 1.

Figure 7. Posterior credible region of the 20 genetic features; only these 20 features are presented to
maintain the figure’s legibility for PSBC-EN: (a) gamma prior; (b) beta prior for Data 1.
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Figure 8. Posterior credible region of the 20 genetic features; only these 20 features are presented to
maintain the figure’s legibility for PSBC-GL: (a) gamma prior; (b) beta prior for Data 2.

Figure 9. Posterior credible region of the 20 genetic features; only these 20 features are presented to
maintain the figure’s legibility for PSBC-EN: (a) gamma prior; (b) beta prior for Data 2.

Figure 10. Posterior credible region of the 20 genetic features; only these 20 features are presented to
maintain the figure’s legibility for PSBC-GL: (a) gamma prior; (b) beta prior for Data 3.
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Figure 11. Posterior credible region of the 20 genetic features; only these 20 features are presented to
maintain the figure’s legibility for PSBC-EN: (a) gamma prior; (b) beta prior for Data 3.

4. Conclusions
In this study, we have successfully developed two new penalized Bayesian models for

fast variable selection in survival analysis. The new methods (PSBC-GL-B and PSBC-EN-B)
are highly efficient in identifying significant covariates, shrinking the coefficients of related
(or grouped) variables toward a common value, and, as a result, uncovering any grouping
behavior among the covariates, which is a common issue in large-scale omics data. Our
methodologies implemented a beta process for the cumulative baseline hazard function,
contrasting with the gamma process considered in the previous study, thus leading to
improvements in the penalized Bayesian model framework.

Through extensive comparative methodologies, the efficacy of our proposed ap-
proaches is demonstrated. The results show that the proposed method (PSBC-GL-B)
performed better under our simulation settings and real-life datasets in term of variable se-
lection capability and prediction accuracy than the three competing methods, PSBC-GL-G,
PSBC-EN-B, and PSBC-EN-G. However, in terms of performance metrics, all four models
seem to compete favorably with each other. Although PSBC-GL-G shows slight improve-
ment on real-life data compared to the other methods, PSBC-EN-B also demonstrates a
slight performance advantage over others in the simulation scenarios based on the average
AUC and c-index.
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Abbreviations
The following abbreviations are used in this manuscript:

PSBC Penalized semi-parametric Bayesian Cox
PSBC-EN Penalized semi-parametric Bayesian Cox with elastic-net
PSBC-GL Penalized semi-parametric Bayesian Cox with group lasso
PSBC-EN-B Penalized semi-parametric Bayesian Cox model with elastic-net and a beta prior
PSBC-GL-B Penalized semi-parametric Bayesian Cox model with group lasso and a beta prior
PSBC-EN-G Penalized semi-parametric Bayesian Cox model with elastic-net and a gamma prior
PSBC-GL-G Penalized semi-parametric Bayesian Cox model with group lasso and a gamma prior
BIC Bayesian information criteria
Cox-PH Cox proportional hazard
MCMC Markov Chain Monte Carlo
AR Average Rank
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