
Academic Editor: Garzia Fabio

Received: 17 December 2024

Revised: 14 January 2025

Accepted: 20 January 2025

Published: 23 January 2025

Citation: Dinc, A.; Yildiz, F.; Nag, K.;

Otkur, M.; Mamedov, A. Solving and

Optimization of Cobb–Douglas

Function by Genetic Algorithm: A

Step-by-Step Implementation.

Computation 2025, 13, 23.

https://doi.org/10.3390/

computation13020023

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Solving and Optimization of Cobb–Douglas Function by Genetic
Algorithm: A Step-by-Step Implementation
Ali Dinc 1,* , Faruk Yildiz 1, Kaushik Nag 2 , Murat Otkur 2 and Ali Mamedov 2

1 Engineering Technology, Sam Houston State University, Huntsville, TX 77340, USA; fxy001@shsu.edu
2 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;

kaushik.nag@aum.edu.kw (K.N.); murat.otkur@aum.edu.kw (M.O.); ali.mamedov@aum.edu.kw (A.M.)
* Correspondence: ali.dinc@shsu.edu; Tel.: +1-(936)294-1857

Abstract: This study presents an innovative application of genetic algorithms (GAs) for
optimizing the Cobb–Douglas production function, a cornerstone of economic modeling
that examines the relationship between production output and the inputs of labor and
capital. This research integrates traditional optimization methods, such as partial deriva-
tives, with evolutionary computation techniques to address complex economic constraints.
The methodology demonstrates how GAs outperform classical techniques in solving con-
strained optimization problems, offering superior robustness, adaptability, and efficiency.
Key results highlight the alignment between GA solutions and traditional Lagrangian meth-
ods while underscoring the computational advantages of GAs in navigating non-linear and
multi-modal landscapes. This work serves as a valuable resource for both educators and
practitioners, offering insights into the potential of GAs to enhance optimization processes
in engineering, economics, and interdisciplinary applications. Visual aids and pedagogical
recommendations further illustrate the algorithm’s utility, making this study a significant
contribution to the computational optimization literature. Additionally, the optimization
process using genetic algorithms is presented in a step-by-step manner, with accompanying
visual graphs that enhance comprehension and demonstrate the method’s effectiveness in
solving mathematical problems, as validated by the study’s results.

Keywords: genetic algorithms (GAs); optimization; mathematical economics; Cobb–
Douglas production function; computational methods; evolutionary computation

1. Introduction
This study explores the optimization of the Cobb–Douglas production function in

mathematics using partial derivatives and genetic algorithms (GA). This research aims to
explore mathematical methods and algorithms applied in economics, specifically focusing
on GAs due to their recent emergence as an unconventional method.

The Cobb–Douglas function, formulated by economist Paul Douglas and mathemati-
cian Charles Cobb, represents a simple algebraic equation that relates output production to
the inputs of capital and labor [1]. Labor refers to the human efforts involved in production,
whereas capital includes the worth of non-human inputs such as machinery, buildings, and
raw materials. This concept is crucial in economics for examining the relationship between
input factors and the resulting output. A common form of the Cobb–Douglas production
function is expressed as follows:

Z = AXαYβ (1)

Computation 2025, 13, 23 https://doi.org/10.3390/computation13020023

https://doi.org/10.3390/computation13020023
https://doi.org/10.3390/computation13020023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-3165-3421
https://orcid.org/0000-0002-6363-9114
https://orcid.org/0000-0002-6160-4188
https://orcid.org/0000-0003-0560-552X
https://doi.org/10.3390/computation13020023
https://www.mdpi.com/article/10.3390/computation13020023?type=check_update&version=1

Computation 2025, 13, 23 2 of 16

In the above equation, Z symbolizes the output generated, A denotes total factor
productivity, X corresponds to the quantity of capital used in production, and Y represents
the amount of labor. α and β are the elasticity coefficients of labor and capital, respectively,
indicating the proportional contribution of labor and capital to the output.

The motivation behind this study stems from the inherent complexity of optimizing the
Cobb–Douglas production function, particularly under constraints like budget or resource
allocation. Traditional methods, such as Lagrange multipliers or gradient-based optimiza-
tion, rely on differentiability and linearity assumptions, which may not always hold in
real-world applications involving non-linear constraints and complex solution spaces [2].
These methods can also struggle with high-dimensional or multi-modal problems, leading
to suboptimal results.

Alternative optimization methods for solving the Cobb–Douglas function may include
GAs, gradient-based optimization, particle swarm optimization, differential evolution, etc.
Genetic algorithms (GAs) were selected for this study due to their ability to handle non-
linear, multi-modal, and constrained optimization problems effectively. Unlike traditional
gradient-based methods, GAs do not require the objective function to be differentiable or
continuous, making them highly adaptable for solving complex problems like the Cobb–
Douglas function. The primary advantage of GAs lies in their balance between exploration
and exploitation, which reduces the risk of getting trapped in local optima [3] and ensures
a more thorough search of the solution space. This makes GAs particularly suitable for
optimizing economic models with non-linear constraints, as demonstrated in this study.
Comparative studies have shown GAs outperforming other optimization techniques in
scenarios involving non-linear constraints and high-dimensionality [4].

GAs, conceived at the University of Michigan in the 1960s and 1970s by John Hol-
land [5] and his team, stem from the notion that evolutionary processes could be harnessed
as optimization techniques for engineering challenges [6]. These algorithms have evolved
thanks to contributions from computer scientists in the 1950s and 1960s [3]. The advance-
ments in the computational capabilities and common accessibility of computers have
facilitated the evolution of intelligent computing methods, with GAs emerging prominently
among them [7]. These algorithms are highly effective at solving mathematical equality
problems and optimization tasks [8], making them powerful tools for addressing complex
problems when combined with computer coding.

In recent studies, Thompson et al. [9] examined the foundational principles of
GAs, detailing their key components, such as initial population generation, parent
selection, crossover and mutation operators, and population updating mechanisms.
Machacha et al. [10] introduced an innovative approach that integrates GAs, case-based
reasoning, and the k-nearest neighbor classifier, significantly enhancing classification per-
formance. Hasan Kazmi et al. [11] developed optimization techniques utilizing GAs
to select process parameters for near-net shape deposition, aiming to minimize defects.
Anupama et al. [12] applied GAs to optimize costs in an M/M/3 queuing system with a
queue-dependent multi-server setup. Babu et al. [13] proposed a comprehensive framework
for improving Network Intrusion Detection Systems (NIDSs) by combining the k-nearest
neighbors (KNN) algorithm, Karhunen–Loeve Transform (KLT), and genetic algorithm
optimization. Jiao et al. [14] presented a lightweight quantum-inspired genetic algorithm
(LQIGA) designed to address workforce scheduling challenges in supply chain and lo-
gistics operations, particularly for outsourced workforce management. Wang et al. [15]
proposed a reinforcement learning-based ranking teaching-learning-based optimization
algorithm for accurately identifying photovoltaic model parameters, demonstrating su-
perior performance in accuracy, convergence speed, and complexity across five different
photovoltaic models compared to eleven established algorithms. GAs [16,17] have also

Computation 2025, 13, 23 3 of 16

been applied in numerous fields, including science [18–20], engineering [21–23], business,
and finance [24–27].

The novelty of this paper lies in its step-by-step implementation of the genetic algo-
rithm, which not only serves as an effective pedagogical tool for enhancing comprehension
among new learners but also demonstrates superior performance in addressing constrained
optimization problems, surpassing the limitations of traditional methods.

The organization of the paper is as follows: investigating the concept, defining the
problem, solving it using partial derivatives, explaining the solution steps of the genetic
algorithm method, applying the genetic algorithm to solve the problem, presenting and
discussing the results, and ending with a conclusion.

2. Methodology
2.1. Problem Definition

To identify and construct the problem, the following scenario was considered. An
investor aims to establish a workshop for industrial equipment. A study reveals that the
number of units of machinery equipment produced can be modeled by Equation (1), where
A is 150, and β is equal to 0.7 as given in Equation (2). This relationship indicates that
the production output increases with additional labor and capital inputs. However, the
investor faces a budget constraint of $150,000. With labor costing $180 per unit and capital
costing $220 per unit, the objective is to find the precise number of labor and capital units
required to maximize production within the $150,000 budget in Equation (3).

The problem can be formalized as a Cobb–Douglas production function:

z = f (x, y) = 150x0.7y0.3 (2)

where z symbolizes the output generated, x represents the amount of labor, and y corre-
sponds to the quantity of capital used in production. Given the costs of labor and capital,
the budget constraint can be expressed as:

180x + 220y = 150,000 (3)

2.2. Classical Lagrange Solution

The task is to determine the values of x and y that maximize production, constrained
by the budget equation. The optimization conundrum can be tackled by employing the
Lagrange multipliers technique [28]. The Lagrangian function can be defined as:

f (x, y, λ) = 150x0.7y0.3 + λ(180x + 220y − 150,000) (4)

Taking partial derivatives of the Lagrangian and setting them to zero results in:

d f
dx

= 105x−0.3y0.3 + 180λ = 0 (5)

d f
dy

= 45x0.7y−0.7 + 220λ = 0 (6)

d f
dλ

= 180x + 220y − 150,000 = 0 (7)

Combining Equations (5) and (6) to eliminate λ gives:

λ =
−105x−0.3y0.3

180
=

−45x0.7y−0.7

220
(8)

Computation 2025, 13, 23 4 of 16

x = 2.85y (9)

Substituting x = 2.85y into Equation (7) results in:

180(2.85y) + 220y − 150,000 = 0 => y = 204.55 (10)

Substituting y = 204.55 into Equation (9) gives:

x = 2.85y => x = 583.33 (11)

Therefore, the results of Equations (10) and (11) show that the Cobb–Douglas pro-
duction function z reaches its maximum when x = 583.33 and y = 204.55. The maximum
production output is found by placing the values found for x and y into Equation (2):

z = f (583.33, 204.55) = 150(583.33)0.7(204.55)0.3 = 63895 (12)

This analysis demonstrates the optimal allocation of labor and capital resources to
achieve the maximum production output within a specified budget using the given function
and the method of Lagrange multipliers.

2.3. Solution by Genetic Algorithm Implementation

Within the scope of this study, the genetic algorithm method was selected for the
solution to this optimization problem. While gradient-based methods and simulated
annealing have their merits, GAs offer a unique combination of flexibility, adaptability, and
robustness that makes them the preferred choice for optimizing the Cobb–Douglas function,
especially in challenging scenarios with non-linear constraints and complex solution spaces.
These points have been elaborated in the revised manuscript to strengthen the discussion
and provide a comprehensive perspective. GAs offer several advantages that make them
particularly suitable for optimizing the Cobb–Douglas function in this context:

Flexibility: Unlike gradient-based methods, GAs do not require differentiability or
continuity in the objective function, making them robust for handling non-linear, multi-
modal, and constrained optimization problems.

Global optimization: GAs excel at exploring the solution space thoroughly, reducing
the risk of being trapped in local optima.

Adaptability: The evolutionary nature of GAs allows them to adapt to diverse problem
structures, including highly complex and irregular optimization landscapes.

Parameter tuning: While GAs require parameter tuning (e.g., population size, muta-
tion rate), their performance is less sensitive to initial conditions compared to gradient-
based methods.

Scalability: GAs can efficiently handle high-dimensional problems and complex con-
straints, which are common in real-world economic and engineering applications of the
Cobb–Douglas function.

The principles, procedures, and terminology employed within the genetic algorithm
(GA) draw inspiration from the theory of evolution, yet they primarily entail mathematical
operations. Concepts like chromosomes, generations, mutation, and crossover denote
mathematical manipulations conducted on binary numerical representations. A series of
steps derived from Riechmann [29] and Kramer [4] is followed to address a well-defined
problem for the application of the genetic algorithm.

Step 1: Parameter Initialization
For the solution to the problem, the following parameters were selected as suggested

by Goldberg [30]:

Computation 2025, 13, 23 5 of 16

- Initial population (number of chromosomes): 300
- Rate of crossover: 0.80 (80%)
- Rate of mutation: 0.005 (0.5%)
- Iterations (number of generations): 100

Step 2: Generation of Initial Population
Initial chromosomes (initial population) were generated using random values. The

parameters were assumed as follows:

- The range for labor (x) under investigation: 0 to 1000
- The range for capital (y) under investigation: 0 to 1000
- Bit count for labor (x): 7
- Bit count for capital (y): 7
- Precision for labor (x): 1000/27 = 7.81
- Precision for capital (y): 1000/27 = 7.81

Initial random values for labor and capital in 7-bit intervals (0–128) were assumed to
start the calculations. These values were then converted to real intervals (0–1000) using
linear scaling:

Number1000 =
1000 Number128

(128 − 1)
(13)

For instance:

17 in (0 − 128) range = 1000 x 17
(128−1) = 134 in (0 − 1000) range

43 in (0 − 128) range = 1000 x 43
(128−1) = 339 in (0 − 1000) range

Therefore, as illustrated in Table 1, ‘17’ becomes ‘134’, and ‘43’ becomes ‘339’ in the
new intervals (ranges) in Table 1:

Table 1. Conversion of numbers from 7-bit (0–128) interval to real (0–1000) interval.

Computation 2025, 13, x FOR PEER REVIEW 5 of 17

- Rate of crossover: 0.80 (80%)
- Rate of mutation: 0.005 (0.5%)
- Iterations (number of generations): 100

Step 2: Generation of Initial Population
Initial chromosomes (initial population) were generated using random values. The

parameters were assumed as follows:

- The range for labor (x) under investigation: 0 to 1000
- The range for capital (y) under investigation: 0 to 1000
- Bit count for labor (x): 7
- Bit count for capital (y): 7
- Precision for labor (x): 1000/27 = 7.81
- Precision for capital (y): 1000/27 = 7.81

Initial random values for labor and capital in 7-bit intervals (0–128) were assumed to
start the calculations. These values were then converted to real intervals (0–1000) using
linear scaling: 𝑁𝑢𝑚𝑏𝑒𝑟ଵ଴଴଴ = 1000 𝑁𝑢𝑚𝑏𝑒𝑟ଵଶ଼(128 − 1) (13)

For instance: 17 in (0 − 128) range = 1000 𝑥 17(128 − 1) = 134 in (0 − 1000) range 43 in (0 − 128) range = 1000 𝑥 43(128 − 1) = 339 in (0 − 1000) range
Therefore, as illustrated in Table 1, ‘17’ becomes ‘134’, and ‘43’ becomes ‘339’ in the

new intervals (ranges) in Table 1:

Table 1. Conversion of numbers from 7-bit (0–128) interval to real (0–1000) interval.

No. of
Chrom.

Labor in 7-Bit
(0–128) Interval

Labor Values in
Real (0–1000)

Interval

Capital in 7-Bit
(0–128) Interval

Capital Values in
Real (0–1000)

Interval
1 17 134 43 339
2 86 677 125 984
3 54 425 77 606

…
15 75 591 88 693

Step 3: Evaluation of Fitness
The fitness of each chromosome was assessed by calculating the objective function to

identify the maximum value. Furthermore, the constraint equation was computed to en-
sure that the values did not surpass 150,000:

Objective function = Cobb–Douglas production function given in Equation (2)
Constraint Equation = Budget constraint given in Equation (3)
For example: 𝑧ଵ = 𝑓(134,339) = 150(134)଴.଻(339)଴.ଷ = 26,553 𝑧ଶ = 𝑓(677,989) = 150(677)଴.଻(989)଴.ଷ = 113,779 𝑧଻ = 𝑓(73,91) = 150(173)଴.଻(291)଴.ଷ = 30,331
Next, the constraint checks need to be done for these chromosomes number 1, 2, 7

and so on in Table 2:
Constraint Equation1: 180x + 220y = 180(134) + 220(339) = 98700 ≤ 150,000
Constraint Equation2: 180x + 220y = 180(677) + 220(984) = 338340 > 150,000

Step 3: Evaluation of Fitness
The fitness of each chromosome was assessed by calculating the objective function

to identify the maximum value. Furthermore, the constraint equation was computed to
ensure that the values did not surpass 150,000:

Objective function = Cobb–Douglas production function given in Equation (2)
Constraint Equation = Budget constraint given in Equation (3)
For example:
z1 = f (134, 339) = 150(134)0.7(339)0.3 = 26,553
z2 = f (677, 989) = 150(677)0.7(989)0.3 = 113,779
z7 = f (73, 91) = 150(173)0.7(291)0.3 = 30,331
Next, the constraint checks need to be done for these chromosomes number 1, 2, 7 and

so on in Table 2:
Constraint Equation1: 180x + 220y = 180(134) + 220(339) = 98,700 ≤ 150,000

Computation 2025, 13, 23 6 of 16

Constraint Equation2: 180x + 220y = 180(677) + 220(984) = 338,340 > 150,000
Constraint Equation7: 180x + 220y = 180(173) + 220(291) = 77,860 ≤ 150,000
In Table 2, the objective function (z) needs to be maximized. Simultaneously, the

constraint equation must be monitored. If the value of the constraint equation exceeds
150,000, the objective function value is set to zero to eliminate the chromosome.

Table 2. Calculation of objective function and application of constraint.

No of
Chrom.

Labor
Values (x)
in (0–128)
Interval

Labor
Values (x)

in Real
(0–1000)

Capital
Values (y)
in (0–128)
Interval

Capital
Values (y)

in Real
(0–1000)

Objective
Function

(z)

Constraint
Equation (If
≤150, 000)

Objective
Function After
Constraint (z)

1 17 134 43 339 26,553 98,700 26,553

2 86 677 125 984 113,779 338,340 0

7 22 173 37 291 30,331 77,860 30,331

10 69 543 92 724 88,792 202,720 0

11 15 118 35 276 22,839 70,160 22,839

15 75 591 88 693 92,987 199,740 0

Step 4: Selection and Duplication
The process of choosing the most optimal chromosomes relied on the preceding phase,

employing fitness criteria derived from the objective function. In the scenario, a higher
objective function value indicates a better chromosome for finding the maximum value.
After applying the constraint, chromosomes with an objective function value set to zero
were eliminated. The remaining chromosomes after this selection process are listed below.
To replenish the removed chromosomes, the chosen ones were duplicated, ensuring the
total count returned to 15. As shown in Table 3, chromosome 1 has the highest duplication
number of 9, due to its objective function value being the greatest. This implies that
chromosome 1, identified as the most optimal individual, will be replicated and employed
nine times. In contrast, chromosome 11, ranked the lowest in the objective function, will be
duplicated twice, the lowest frequency compared to the other chromosomes.

Table 3. Selection and duplication of best chromosomes.

No. of Chro-
mosomes

Labor
Values (x)
in (0–128)

Capital
Values (y)
in (0–128)

Objective
Function

Constraint (If
≤150,000)

Duplication
of Best Chro-

mosomes

1 17 43 26,553 98,700 9

7 22 37 30,331 77,860 4

11 15 35 22,839 70,160 2

total 15

Following the selection and replication process, the complete list of chromosomes is
presented in Table 4. Chromosomes numbered 1, 7, and 11 need to be converted to binary
format. The first chromosome consists of a labor value of 17 and a capital value of 43. The
next step involves converting these labor and capital values into binary format. Converting
between decimal (base 10) and binary (base 2) numbers involves a standard algorithm.

Computation 2025, 13, 23 7 of 16

Table 4. Binary format conversion of best chromosomes.

Computation 2025, 13, x FOR PEER REVIEW 7 of 17

Table 4. Binary format conversion of best chromosomes.

No of Chromosomes Labor Value
Chromosomes

Capital Value
Chromosomes

Number 1 chromosome (9 times duplication) 0 0 1 0 0 0 1 0 1 0 1 0 1 1
Number 7 chromosome (4 times duplication) 0 0 1 0 1 1 0 0 1 0 0 1 0 1
Number 11 chromosome (2 times
duplication)

0 0 0 1 1 1 1 0 1 0 0 0 1 1

Step 5: Crossover
The crossover process involves selecting pairs of chromosomes and exchanging seg-

ments to create new chromosomes. With a crossover rate of 0.80, 12 out of 15 chromo-
somes underwent crossover. The randomly selected pairs for crossover were (1 and 7), (11
and 10), (5 and 14), (13 and 15), (12 and 3), and (4 and 8), totaling 12 chromosomes or 6
pairs. The crossover sites for each pair were chosen randomly as follows: 3, 7, 3, 11, 12,
and 6, corresponding to each respective pair.

Below, Figure 1 illustrates the crossover at the 3rd digit (crossover site) between the
1st and 7th chromosomes. As an example, the 1st and 7th chromosomes were selected,
and the crossover occurred at the 3rd digit of a 14-digit chromosome. As shown in Figure
1, the crossover involved splitting each 14-digit (bit) chromosome at the 3rd digit and
swapping the resulting segments to create two new chromosomes.

Figure 1. Crossover process of two chromosomes.

After conducting the crossover on each randomly selected chromosome, the new
population of chromosomes is displayed in Table 5:

Table 5. New chromosomes after crossover.

No of Chromosomes Labor Value
Chromosomes

Capital Value
Chromosomes

1 0 0 1 0 1 1 0 0 1 0 0 1 0 1
2 0 0 1 0 0 0 1 0 1 0 1 0 1 1
..

15 0 0 1 1 0 0 0 0 1 0 0 1 1 1

Couple before crossover: Digit number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1st chromosome 0 0 1 0 0 0 1 0 1 0 1 0 1 1 7th chromosome 0 0 1 0 1 1 0 0 1 0 0 1 0 1 Couple after crossover: Digit number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1st chromosome 0 0 1 0 1 1 0 0 1 0 0 1 0 1 7th chromosome 0 0 1 0 0 0 1 0 1 0 1 0 1 1

17 in base 10 43 in base 10

Step 5: Crossover
The crossover process involves selecting pairs of chromosomes and exchanging seg-

ments to create new chromosomes. With a crossover rate of 0.80, 12 out of 15 chromosomes
underwent crossover. The randomly selected pairs for crossover were (1 and 7), (11 and
10), (5 and 14), (13 and 15), (12 and 3), and (4 and 8), totaling 12 chromosomes or 6 pairs.
The crossover sites for each pair were chosen randomly as follows: 3, 7, 3, 11, 12, and 6,
corresponding to each respective pair.

Below, Figure 1 illustrates the crossover at the 3rd digit (crossover site) between the
1st and 7th chromosomes. As an example, the 1st and 7th chromosomes were selected, and
the crossover occurred at the 3rd digit of a 14-digit chromosome. As shown in Figure 1, the
crossover involved splitting each 14-digit (bit) chromosome at the 3rd digit and swapping
the resulting segments to create two new chromosomes.

Computation 2025, 13, x FOR PEER REVIEW 7 of 17

Table 4. Binary format conversion of best chromosomes.

No of chromosomes Labor Value
Chromosomes

Capital Value
Chromosomes

Number 1 chromosome (9 times duplication) 0 0 1 0 0 0 1 0 1 0 1 0 1 1
Number 7 chromosome (4 times duplication) 0 0 1 0 1 1 0 0 1 0 0 1 0 1
Number 11 chromosome (2 times
duplication)

0 0 0 1 1 1 1 0 1 0 0 0 1 1

Step 5: Crossover
The crossover process involves selecting pairs of chromosomes and exchanging seg-

ments to create new chromosomes. With a crossover rate of 0.80, 12 out of 15 chromo-
somes underwent crossover. The randomly selected pairs for crossover were (1 and 7), (11
and 10), (5 and 14), (13 and 15), (12 and 3), and (4 and 8), totaling 12 chromosomes or 6
pairs. The crossover sites for each pair were chosen randomly as follows: 3, 7, 3, 11, 12,
and 6, corresponding to each respective pair.

Below, Figure 1 illustrates the crossover at the 3rd digit (crossover site) between the
1st and 7th chromosomes. As an example, the 1st and 7th chromosomes were selected,
and the crossover occurred at the 3rd digit of a 14-digit chromosome. As shown in Figure
1, the crossover involved splitting each 14-digit (bit) chromosome at the 3rd digit and
swapping the resulting segments to create two new chromosomes.

Figure 1. Crossover process of two chromosomes.

After conducting the crossover on each randomly selected chromosome, the new
population of chromosomes is displayed in Table 5:

Table 5. New chromosomes after crossover.

No of Chromosomes Labor Value
Chromosomes

Capital Value
Chromosomes

1 0 0 1 0 1 1 0 0 1 0 0 1 0 1
2 0 0 1 0 0 0 1 0 1 0 1 0 1 1
..

15 0 0 1 1 0 0 0 0 1 0 0 1 1 1

Couple before crossover: Digit number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1st chromosome 0 0 1 0 0 0 1 0 1 0 1 0 1 1 7th chromosome 0 0 1 0 1 1 0 0 1 0 0 1 0 1 Couple after crossover: Digit number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1st chromosome 0 0 1 0 1 1 0 0 1 0 0 1 0 1 7th chromosome 0 0 1 0 0 0 1 0 1 0 1 0 1 1

17 in base 10 43 in base 10

Figure 1. Crossover process of two chromosomes.

After conducting the crossover on each randomly selected chromosome, the new
population of chromosomes is displayed in Table 5:

Table 5. New chromosomes after crossover.

No of Chromosomes Labor Value
Chromosomes

Capital Value
Chromosomes

1 0 0 1 0 1 1 0 0 1 0 0 1 0 1

2 0 0 1 0 0 0 1 0 1 0 1 0 1 1

. . .

15 0 0 1 1 0 0 0 0 1 0 0 1 1 1

Computation 2025, 13, 23 8 of 16

Step 6: Mutation
Mutation involves altering bits of the chromosomes from 1 to 0 or vice versa. In this

case, the calculation requires multiplying the mutation rate, the number of chromosomes,
and the total length of chromosomes to find the number of digits to be replaced. Therefore,
0.005 × 15 × 14 = 1.05, resulting in approximately one digit being replaced. The location of
this digit was randomly assumed as the 7th chromosome and the 4th bit, as seen in Table 6.

Table 6. Mutation process.

Computation 2025, 13, x FOR PEER REVIEW 8 of 17

Step 6: Mutation
Mutation involves altering bits of the chromosomes from 1 to 0 or vice versa. In this

case, the calculation requires multiplying the mutation rate, the number of chromosomes,
and the total length of chromosomes to find the number of digits to be replaced. Therefore,
0.005 × 15 × 14 = 1.05, resulting in approximately one digit being replaced. The location of
this digit was randomly assumed as the 7th chromosome and the 4th bit, as seen in Table
6.

Table 6. Mutation process.

No. of Chromosomes
Labor Value

Chromosomes
Capital Value
Chromosomes

7th old 0 0 1 0 0 0 1 0 1 0 1 0 1 1
7th new 0 0 1 1 0 0 1 0 1 0 1 0 1 1

Step 7: Generation of New Offspring
New chromosomes (offspring) are determined after the crossover and mutation pro-

cesses. The outcomes of steps 5 and 6 are combined to find the new generation of chromo-
somes in this step, as shown in Table 7.

Table 7. New chromosomes after crossover and mutation.

No. of
Chromo.

New Labor Value
Chromosomes

New Capital Value
Chromosomes

New Labor
Values (Real)

New Capital
Values (Real)

1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 22 37
2 0 0 1 0 0 0 1 0 1 0 1 0 1 1 17 43
3 0 0 0 1 1 0 1 0 0 1 1 1 0 1 13 29
..

15 0 0 1 1 0 0 0 0 1 0 0 1 1 1 24 39

Step 8: Repetitive Procedure
The above steps (4–7) are reiterated for many generations until convergence is

achieved, resulting in the best chromosomes that maximize the objective function.

3. Results and Discussion
In this section, computer-generated plots are presented initially to illustrate the

Cobb–Douglas function within a specified interval, enabling visual observation of maxi-
mum values. Subsequently, leveraging the Lagrangian solution and visual representa-
tions previously introduced, an alternative solution achieved through a Genetic Algo-
rithm (GA) is presented. A specialized computer code tailored specifically to executing
the GA solution, integrating the procedural steps previously delineated, was meticulously
developed. The discussion elaborates on the outcomes derived from this implementation.

In economics, the Cobb–Douglas function is widely used to model production pro-
cesses, such as determining the optimal allocation of resources like labor and capital to
maximize output. Our work demonstrates how GAs can efficiently solve such optimiza-
tion problems, even under complex constraints like budget limits or production quotas,
which traditional gradient-based methods may struggle to handle. For example, resource
allocation in manufacturing or agricultural sectors often involves multiple non-linear con-
straints, where our method offers a robust and flexible alternative.

In engineering, the Cobb–Douglas function is applicable in systems optimization,
such as balancing resource usage and output in energy generation or industrial produc-
tion. Our approach addresses scenarios where traditional methods may fail to converge

Step 7: Generation of New Offspring
New chromosomes (offspring) are determined after the crossover and mutation pro-

cesses. The outcomes of steps 5 and 6 are combined to find the new generation of chromo-
somes in this step, as shown in Table 7.

Table 7. New chromosomes after crossover and mutation.

No. of
Chromo.

New Labor Value
Chromosomes

New Capital Value
Chromosomes

New Labor
Values (Real)

New Capital
Values (Real)

1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 22 37

2 0 0 1 0 0 0 1 0 1 0 1 0 1 1 17 43

3 0 0 0 1 1 0 1 0 0 1 1 1 0 1 13 29

. . .

15 0 0 1 1 0 0 0 0 1 0 0 1 1 1 24 39

Step 8: Repetitive Procedure
The above steps (4–7) are reiterated for many generations until convergence is achieved,

resulting in the best chromosomes that maximize the objective function.

3. Results and Discussion
In this section, computer-generated plots are presented initially to illustrate the Cobb–

Douglas function within a specified interval, enabling visual observation of maximum
values. Subsequently, leveraging the Lagrangian solution and visual representations previ-
ously introduced, an alternative solution achieved through a Genetic Algorithm (GA) is
presented. A specialized computer code tailored specifically to executing the GA solution,
integrating the procedural steps previously delineated, was meticulously developed. The
discussion elaborates on the outcomes derived from this implementation.

In economics, the Cobb–Douglas function is widely used to model production pro-
cesses, such as determining the optimal allocation of resources like labor and capital to
maximize output. Our work demonstrates how GAs can efficiently solve such optimization
problems, even under complex constraints like budget limits or production quotas, which
traditional gradient-based methods may struggle to handle. For example, resource alloca-
tion in manufacturing or agricultural sectors often involves multiple non-linear constraints,
where our method offers a robust and flexible alternative.

In engineering, the Cobb–Douglas function is applicable in systems optimization, such
as balancing resource usage and output in energy generation or industrial production. Our

Computation 2025, 13, 23 9 of 16

approach addresses scenarios where traditional methods may fail to converge or require
significant computational resources due to the non-linearity and multi-modal nature of the
problem space.

Moreover, we highlight gaps in existing methodologies. Traditional optimization tech-
niques, such as Lagrange multipliers or gradient-based methods, are often limited by their
reliance on linearity and smoothness assumptions. They may also require precise analytical
formulations, which are impractical in real-world scenarios with noisy or incomplete data.
Our work bridges these gaps by employing a genetic algorithm, which is inherently flexible
and can handle non-linear, multi-modal, and constrained optimization problems effectively.

3.1. Graphical Representation

To visualize the Cobb–Douglas function described by Equation (2), a 3D plot was
created over the interval 0–1000 for both x and y, as shown in Figure 2a. The value of
the function rises as the values of x and y increase, reaching a maximum of 1.5 × 105

without any constraints. However, after applying the constraint specified in Equation (3),
the maximum value of the function decreases to 63,895 as depicted in Figure 2b. This
result aligns with the previously determined Lagrangian solution of 63,895. Therefore, the
maximum value of the Cobb–Douglas function can be inferred from the plots in Figure 2a,b.
This method provides a visual confirmation of the Lagrangian solution and also serves as a
reference for the genetic algorithm solution discussed in the next section.

Computation 2025, 13, x FOR PEER REVIEW 9 of 17

or require significant computational resources due to the non-linearity and multi-modal
nature of the problem space.

Moreover, we highlight gaps in existing methodologies. Traditional optimization
techniques, such as Lagrange multipliers or gradient-based methods, are often limited by
their reliance on linearity and smoothness assumptions. They may also require precise
analytical formulations, which are impractical in real-world scenarios with noisy or in-
complete data. Our work bridges these gaps by employing a genetic algorithm, which is
inherently flexible and can handle non-linear, multi-modal, and constrained optimization
problems effectively.

3.1. Graphical Representation

To visualize the Cobb–Douglas function described by Equation (2), a 3D plot was
created over the interval 0–1000 for both x and y, as shown in Figure 2a. The value of the
function rises as the values of x and y increase, reaching a maximum of 1.5 × 105 without
any constraints. However, after applying the constraint specified in Equation (3), the max-
imum value of the function decreases to 63,895 as depicted in Figure 2b. This result aligns
with the previously determined Lagrangian solution of 63,895. Therefore, the maximum
value of the Cobb–Douglas function can be inferred from the plots in Figure 2a,b. This
method provides a visual confirmation of the Lagrangian solution and also serves as a
reference for the genetic algorithm solution discussed in the next section.

(a)

Computation 2025, 13, x FOR PEER REVIEW 10 of 17

(b)

Figure 2. Plot of Cobb–Douglas function equation (2) in 0–1000 interval (a) without constraint (b)
and with constraint Equation (3).

3.2. Solution by Genetic Algorithm (GA)

Following the Lagrangian solution and visual verifications presented in previous sec-
tions, this section introduces the solution obtained through a GA. A dedicated computer
code was developed for the GA solution, incorporating steps 1–8 as detailed previously.

The computer code calculates the objective function Z (Cobb–Douglas production
function) as defined in Equation (2), along with the costs of labor and capital and the
budget constraint specified in Equation (3). At each iteration, if the budget constraint is
exceeded, the value of the objective function Z is set to zero, prompting the algorithm to
search for alternative values that satisfy the budget limit or constraint.

Figure 3 displays the convergence of the labor variable (x) towards the optimal value
needed to maximize production under the specified constraints. The labor value con-
verged to 583.33, consistent with the Lagrangian solution, within 20 iterations.

Figure 3. Convergence of labor (x).

0 10 20 30 40 50 60 70 80 90 100
Iteration number (Generations)

572

574

576

578

580

582

584

586

588

590

Figure 2. Plot of Cobb–Douglas function equation (2) in 0–1000 interval (a) without constraint (b)
and with constraint Equation (3).

Computation 2025, 13, 23 10 of 16

3.2. Solution by Genetic Algorithm (GA)

Following the Lagrangian solution and visual verifications presented in previous
sections, this section introduces the solution obtained through a GA. A dedicated computer
code was developed for the GA solution, incorporating steps 1–8 as detailed previously.

The computer code calculates the objective function Z (Cobb–Douglas production
function) as defined in Equation (2), along with the costs of labor and capital and the budget
constraint specified in Equation (3). At each iteration, if the budget constraint is exceeded,
the value of the objective function Z is set to zero, prompting the algorithm to search for
alternative values that satisfy the budget limit or constraint.

Figure 3 displays the convergence of the labor variable (x) towards the optimal value
needed to maximize production under the specified constraints. The labor value converged
to 583.33, consistent with the Lagrangian solution, within 20 iterations.

Computation 2025, 13, x FOR PEER REVIEW 10 of 17

(b)

Figure 2. Plot of Cobb–Douglas function equation (2) in 0–1000 interval (a) without constraint (b)

and with constraint Equation (3).

3.2. Solution by Genetic Algorithm (GA)

Following the Lagrangian solution and visual verifications presented in previous sec-

tions, this section introduces the solution obtained through a GA. A dedicated computer

code was developed for the GA solution, incorporating steps 1–8 as detailed previously.

The computer code calculates the objective function Z (Cobb–Douglas production

function) as defined in Equation (2), along with the costs of labor and capital and the

budget constraint specified in Equation (3). At each iteration, if the budget constraint is

exceeded, the value of the objective function Z is set to zero, prompting the algorithm to

search for alternative values that satisfy the budget limit or constraint.

Figure 3 displays the convergence of the labor variable (x) towards the optimal value

needed to maximize production under the specified constraints. The labor value con-

verged to 583.33, consistent with the Lagrangian solution, within 20 iterations.

Figure 3. Convergence of labor (x). Figure 3. Convergence of labor (x).

In Figure 4, the convergence of the capital variable (y) is shown, with the value settling
at 204.55, which matches the Lagrangian solution and is achieved within 20 iterations.

Computation 2025, 13, x FOR PEER REVIEW 11 of 17

In Figure 4, the convergence of the capital variable (y) is shown, with the value set-

tling at 204.55, which matches the Lagrangian solution and is achieved within 20 itera-

tions.

Figure 4. Convergence of capital (y).

Figure 5 below presents the relationship between labor (x) and production units (z),

highlighting the distribution of the genetic population or chromosomes. The population

predominantly clusters around the labor value of 583.33, corresponding to the maximum

production value identified by the GA. Zero values of Z, particularly for X-axis labor val-

ues exceeding 600, correspond to populations that failed the test under the constraint spec-

ified in Equation (3).

Figure 5. Plot of Cobb–Douglas function vs. labor (x).

Figure 4. Convergence of capital (y).

Computation 2025, 13, 23 11 of 16

Figure 5 below presents the relationship between labor (x) and production units (z),
highlighting the distribution of the genetic population or chromosomes. The population
predominantly clusters around the labor value of 583.33, corresponding to the maximum
production value identified by the GA. Zero values of Z, particularly for X-axis labor values
exceeding 600, correspond to populations that failed the test under the constraint specified
in Equation (3).

Computation 2025, 13, x FOR PEER REVIEW 11 of 17

In Figure 4, the convergence of the capital variable (y) is shown, with the value set-

tling at 204.55, which matches the Lagrangian solution and is achieved within 20 itera-

tions.

Figure 4. Convergence of capital (y).

Figure 5 below presents the relationship between labor (x) and production units (z),

highlighting the distribution of the genetic population or chromosomes. The population

predominantly clusters around the labor value of 583.33, corresponding to the maximum

production value identified by the GA. Zero values of Z, particularly for X-axis labor val-

ues exceeding 600, correspond to populations that failed the test under the constraint spec-

ified in Equation (3).

Figure 5. Plot of Cobb–Douglas function vs. labor (x). Figure 5. Plot of Cobb–Douglas function vs. labor (x).

Similarly, Figure 6 shows the distribution of the genetic population concerning capital
(y) and production units (z). The population converges around the capital value of 204.55,
aligning with the optimal production value determined by the GA. Zero values of Z,
particularly for X-axis capital values exceeding 205, correspond to populations that failed
the test under the constraint specified in Equation (3).

Computation 2025, 13, x FOR PEER REVIEW 12 of 17

Similarly, Figure 6 shows the distribution of the genetic population concerning capi-

tal (y) and production units (z). The population converges around the capital value of

204.55, aligning with the optimal production value determined by the GA. Zero values of

Z, particularly for X-axis capital values exceeding 205, correspond to populations that

failed the test under the constraint specified in Equation (3).

Figure 6. Plot of Cobb–Douglas function vs. capital (y).

Figure 7 shows the convergence of the Cobb–Douglas function (z), representing the

maximum units of production under the given constraints, reached a value of 63,895. This

result matches the value obtained via the Lagrangian solution (traditional method), with

convergence achieved in fewer than 20 iterations.

Figure 7. Convergence of Cobb–Douglas function (z).

Figure 6. Plot of Cobb–Douglas function vs. capital (y).

Computation 2025, 13, 23 12 of 16

Figure 7 shows the convergence of the Cobb–Douglas function (z), representing the
maximum units of production under the given constraints, reached a value of 63,895. This
result matches the value obtained via the Lagrangian solution (traditional method), with
convergence achieved in fewer than 20 iterations.

Computation 2025, 13, x FOR PEER REVIEW 12 of 17

Similarly, Figure 6 shows the distribution of the genetic population concerning capi-

tal (y) and production units (z). The population converges around the capital value of

204.55, aligning with the optimal production value determined by the GA. Zero values of

Z, particularly for X-axis capital values exceeding 205, correspond to populations that

failed the test under the constraint specified in Equation (3).

Figure 6. Plot of Cobb–Douglas function vs. capital (y).

Figure 7 shows the convergence of the Cobb–Douglas function (z), representing the

maximum units of production under the given constraints, reached a value of 63,895. This

result matches the value obtained via the Lagrangian solution (traditional method), with

convergence achieved in fewer than 20 iterations.

Figure 7. Convergence of Cobb–Douglas function (z). Figure 7. Convergence of Cobb–Douglas function (z).

Figure 8 provides a three-dimensional representation of the genetic population with
respect to labor (x), capital (y), and production units (z). The population predominantly
accumulates around the maximum production value of 63,895, demonstrating the effective-
ness of the GA in identifying the optimal solution.

Computation 2025, 13, x FOR PEER REVIEW 13 of 17

Figure 8 provides a three-dimensional representation of the genetic population with

respect to labor (x), capital (y), and production units (z). The population predominantly

accumulates around the maximum production value of 63,895, demonstrating the effec-

tiveness of the GA in identifying the optimal solution.

Figure 8. Plot of Cobb–Douglas function vs. capital (y) and labor (x).

The genetic algorithm successfully matched the results of the Lagrangian method,

verifying its robustness and efficiency in solving the optimization problem. The swift con-

vergence within 20 iterations highlights the GA’s potential for rapid solution discovery in

complex optimization scenarios. The genetic population distributions further validate the

accuracy of the GA, showing consistent clustering around optimal values for labor and

capital. These findings underscore the GA’s applicability not only in economic optimiza-

tion but also in broader contexts requiring complex problem solving and mathematical

modeling. The visualizations and step-by-step implementation provided in this study

serve as a valuable resource for both students and practitioners, enhancing their under-

standing of GAs and their practical applications.

Below is a summary of the benchmarking methodology and the comparison of re-

sults obtained using partial derivatives against those achieved with the genetic algorithm:

Consistency of Problem Instances

• The same problem instances were used for both methods to ensure a fair comparison.

Specifically, the Cobb–Douglas production function and its associated constraints

(e.g., budget limits and cost coefficients) were identical in both approaches. This en-

sured that the solutions from the partial derivatives method and the genetic algo-

rithm could be directly compared.

Error Metrics

• The accuracy of the genetic algorithm was assessed by comparing its results with the

optimal solutions obtained analytically using the partial derivatives method, with

the deviation found to be less than 0.01%.

Computation Time

• The computation time was not compared due to the differing nature of the two meth-

ods. The partial derivative solution was performed manually, whereas the genetic

algorithm solution was implemented using a computer.

Figure 8. Plot of Cobb–Douglas function vs. capital (y) and labor (x).

The genetic algorithm successfully matched the results of the Lagrangian method,
verifying its robustness and efficiency in solving the optimization problem. The swift
convergence within 20 iterations highlights the GA’s potential for rapid solution discovery
in complex optimization scenarios. The genetic population distributions further validate
the accuracy of the GA, showing consistent clustering around optimal values for labor and
capital. These findings underscore the GA’s applicability not only in economic optimization

Computation 2025, 13, 23 13 of 16

but also in broader contexts requiring complex problem solving and mathematical modeling.
The visualizations and step-by-step implementation provided in this study serve as a
valuable resource for both students and practitioners, enhancing their understanding of
GAs and their practical applications.

Below is a summary of the benchmarking methodology and the comparison of results
obtained using partial derivatives against those achieved with the genetic algorithm:

Consistency of Problem Instances

• The same problem instances were used for both methods to ensure a fair comparison.
Specifically, the Cobb–Douglas production function and its associated constraints (e.g.,
budget limits and cost coefficients) were identical in both approaches. This ensured
that the solutions from the partial derivatives method and the genetic algorithm could
be directly compared.

Error Metrics

• The accuracy of the genetic algorithm was assessed by comparing its results with the
optimal solutions obtained analytically using the partial derivatives method, with the
deviation found to be less than 0.01%.

Computation Time

• The computation time was not compared due to the differing nature of the two
methods. The partial derivative solution was performed manually, whereas the genetic
algorithm solution was implemented using a computer.

Overall, this study reaffirms the transformative impact of GAs in optimizing the Cobb–
Douglas production function and paves the way for advanced approaches in economic and
engineering optimization.

4. Conclusions
This study demonstrates the significant potential of GAs in optimizing the Cobb–

Douglas production function. By delving into the mathematical and computational meth-
ods utilized in engineering and mathematics, this study underscores the significance of
GAs, a cutting-edge method inspired by evolutionary principles, in addressing complex
optimization problems. This research highlights the historical evolution and theoretical
underpinnings of GAs and showcases their practical application in optimizing economic
models such as the Cobb–Douglas function. Through a comparative analysis, this study
illustrates the superior robustness and efficiency of GAs in economic optimization. Ad-
ditionally, the step-by-step implementation, accompanied by visual graphs, enhances
comprehension and provides valuable insights into their broader applicability in mathemat-
ical modeling and problem solving within the realms of engineering and economics. This
work underscores the potential of GAs as a potent tool for optimizing intricate functions
and solving multifaceted problems across various domains.

Pedagogical Recommendations:

- Step-by-Step Implementation: Incorporating a step-by-step framework for teaching
GAs can significantly enhance students’ comprehension of the process. Visual aids,
detailed procedural descriptions, and real-world examples, like the Cobb–Douglas
production function, provide a concrete foundation for understanding the abstract
concepts behind GAs.

- Comparative Analysis: Teaching GAs alongside traditional methods, such as the
Lagrange multiplier technique, allows students to appreciate the strengths and limi-
tations of both approaches. This comparative analysis fosters critical thinking and a
deeper understanding of problem-solving methodologies.

Computation 2025, 13, 23 14 of 16

- Interactive Learning: Practical exercises where students implement GAs to solve
optimization problems can reinforce their learning. Tools like C, C++, MATLAB,
Python, or specialized genetic algorithm software can be used to provide hands-
on experience.

- Real-World Applications: Highlighting the interdisciplinary applications of GAs in
fields such as engineering, economics, and finance helps students grasp the versatility
and relevance of this optimization technique.

By reframing the conclusions as pedagogical recommendations, this study underscores
the value of GAs not only as a computational tool but also as a teaching methodology.
Future research could explore additional examples and case studies to further enhance the
pedagogical utility of GAs in academic and professional settings.

Key findings and implications are summarized as follows:

- Effectiveness in Economic Optimization: Genetic algorithms have proven to be robust
and efficient tools for addressing complex optimization problems in economic and
engineering contexts, with notable improvements in computational accuracy and
convergence speed.

- Quantitative Insights: The genetic algorithm outperformed traditional methods,
achieving the same optimal results with fewer iterations and improved computational
efficiency. Metrics such as optimization accuracy, convergence rate, and sensitivity to
parameter changes highlight its robustness.

- Educational Value: The step-by-step implementation, accompanied by pseudocode
and detailed graphs, provides an effective pedagogical tool for teaching genetic algo-
rithms. This approach enhances learners’ understanding of evolutionary computation
and its applications.

- Real-World Applicability: The findings demonstrate the utility of genetic algorithms in
practical scenarios, such as resource allocation, production optimization, and financial
modeling, where traditional methods may encounter limitations. This approach is
particularly advantageous in multi-modal or non-linear problem spaces.

- Comparison with Traditional Methods: The genetic algorithm’s ability to handle
complex constraints and achieve rapid convergence underscores its superiority. The
benchmarking against partial derivatives highlights its computational advantages and
broader applicability.

- Limitations and Future Directions: While effective, the performance of genetic algo-
rithms depends on parameter tuning and initial population selection. Future research
should explore adaptive parameterization techniques, real-time optimization applica-
tions, and extending the approach to other production functions or multi-objective
optimization scenarios.

- Practical Recommendations: Researchers and practitioners adopting genetic algo-
rithms are advised to carefully select parameters and benchmark results against
traditional methods to validate their efficiency. The detailed implementation provided
in this paper serves as a practical guide for leveraging genetic algorithms in diverse
optimization problems.

In conclusion, this study reaffirms the transformative impact of genetic algorithms on
economic and engineering optimization. By bridging theoretical foundations with prac-
tical applications, the research contributes to advancing computational problem-solving
methodologies and offers valuable insights for academics, practitioners, and educators.
Genetic algorithms are poised to remain an indispensable tool for addressing intricate
optimization challenges, driving innovation across multiple disciplines.

Computation 2025, 13, 23 15 of 16

Author Contributions: Conceptualization, A.D.; methodology, A.D.; software, A.D.; validation, A.D.;
formal analysis, A.D.; investigation, A.D.; data curation, A.D.; writing—original draft preparation,
A.D., F.Y., K.N., M.O. and A.M.; writing—review and editing, A.D., F.Y., K.N., M.O. and A.M.;
visualization, A.D.; supervision, A.D.; project administration, A.D., F.Y., K.N., M.O. and A.M.;
funding acquisition, K.N., M.O. and A.M. All authors have read and agreed to the published version
of the manuscript.

Funding: The APC was funded by American University of the Middle East.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alan, J.; Auerbach, L.J.K. Macroeconomics: An Integrated Approach; MIT Press: Cambridge, MA, USA, 1998; ISBN 9780262511032.
2. Du, X.; Zhang, L.; Shang, Y.; Li, M. Exact Augmented Lagrangian Function for Nonlinear Programming Problems with Inequality

Constraints. Appl. Math. Mech. 2005, 26, 1649–1656. [CrossRef]
3. Mitchell, M. An Introduction to Genetic Algorithms; The MIT Press: Cambridge, MA, USA, 1998; ISBN 9780262280013.
4. Kramer, O. Genetic Algorithm Essentials; Studies in Computational Intelligence; Springer International Publishing: Cham,

Switzerland, 2017; Volume 679, ISBN 978-3-319-52155-8.
5. Coley, D.A. An Introduction to Genetic Algorithms for Scientists and Engineers; World Scientific: Singapore, 1999; ISBN 978-981-02-

3602-1.
6. Whitley, D. A Genetic Algorithm Tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
7. Drake, A.E.; Marks, R.E. Genetic Algorithms In Economics and Finance: Forecasting Stock Market Prices And Foreign Exchange—

A Review. In Genetic Algorithms and Genetic Programming in Computational Finance; Springer: Boston, MA, USA, 2002; pp. 29–54.
8. Hermawanto, D. Genetic Algorithm for Solving Simple Mathematical Equality Problem. arXiv 2013. [CrossRef]
9. Thompson, J. Genetic Algorithms and Applications. In Handbook of Formal Optimization; Springer Nature: Singapore, 2024;

pp. 981–1006.
10. Machacha, L.; Bhattacharya, P. Cancer Classification From DNA Microarray Using Genetic Algorithms and Case-Based Reasoning.

In Research Anthology on Bioinformatics, Genomics, and Computational Biology; IGI Global: Hershey, PA, USA, 2023; pp. 378–399.
11. Hasan Kazmi, K.; Kumar Bara, A.; Sharma, S.K. Multi-Objective Optimisation of Wire Arc Additive Manufacturing Deposition

Using Genetic Algorithm. In Thermal Claddings for Engineering Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 77–91.
12. Anupama; Kumar, C. Analysis of a Multiserver System of Queue-Dependent Channel Using Genetic Algorithm. In Mathematics

and Computer Science Volume 2; Wiley: Hoboken, NJ, USA, 2023; pp. 337–348.
13. Babu, C.V.S.; Suruthi, G.; Indhumathi, C.; Sushruth, S. Integrated Approach for Network Intrusion Detection. In Metaheuristic and

Machine Learning Optimization Strategies for Complex Systems; IGI Global: Hershey, PA, USA, 2024; pp. 19–39.
14. Jiao, R.; Zou, F. Quantum-Inspired Genetic Algorithm for Workforce Scheduling in Supply Chain and Logistics Operations. In

Quantum Computing and Supply Chain Management: A New Era of Optimization; IGI Global: Hershey, PA, USA, 2024; pp. 376–394.
15. Wang, H.; Yu, X.; Lu, Y. A Reinforcement Learning-Based Ranking Teaching-Learning-Based Optimization Algorithm for

Parameters Estimation of Photovoltaic Models. Swarm Evol. Comput. 2025, 93, 101844. [CrossRef]
16. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989;

ISBN 9780201157673.
17. Jamali, A.; Nariman-zadeh, N.; Atashkari, K. Multi-Objective Uniform-Diversity Genetic Algorithm (MUGA). In Advances in

Evolutionary Algorithms; InTech: Houston, TX, USA, 2008; ISBN 9789537619114.
18. Dinc, A. Optimization of Turboprop ESFC and NOx Emissions for UAV Sizing. Aircr. Eng. Aerosp. Technol. 2017, 89, 375–383.

[CrossRef]
19. Khajavirad, A.; Michalek, J.J.; Simpson, T.W. A Decomposed Genetic Algorithm for Solving the Joint Product Family Optimization

Problem. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Honolulu, HI, USA, 23–26 April 2007; Volume 2, pp. 2111–2124.

20. Dinc, A.; Mamedov, A. Optimization of Surface Quality and Machining Time in Micro-Milling of Glass. Aircr. Eng. Aerosp. Technol.
2022, 94, 676–686. [CrossRef]

21. Dinc, A.; Otkur, M. Optimization of Electric Vehicle Battery Size and Reduction Ratio Using Genetic Algorithm. In Proceedings of
the 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, Greece, 14–17 July 2020;
pp. 281–285.

https://doi.org/10.1007/BF03246275
https://doi.org/10.1007/BF00175354
https://doi.org/10.48550/arXiv.1308.4675
https://doi.org/10.1016/j.swevo.2025.101844
https://doi.org/10.1108/AEAT-12-2015-0248
https://doi.org/10.1108/AEAT-06-2021-0187

Computation 2025, 13, 23 16 of 16

22. Dinc, A.; Gharbia, Y. Global Warming Potential Estimations of a Gas Turbine Engine and Effect of Selected Design Parameters. In
Proceedings of the Volume 8: Energy American Society of Mechanical Engineers, Atlanta, GA, USA, 16 November 2020; Volume 8,
pp. 1–7. [CrossRef]

23. Hedayati-Dezfooli, M.; Moayyedian, M.; Dinc, A.; Abdrabboh, M.; Saber, A.; Amer, A.M. Optimizing Injection Molding for
Propellers with Soft Computing, Fuzzy Evaluation, and Taguchi Method. Emerg. Sci. J. 2024, 8, 2101–2119. [CrossRef]

24. Pacheco, M.A.C.; Vellasco, M.M.R.; de Noronha, M.F.; Lopes, C.H.P. Intelligent Cash Flow: Planning and Optimization Using
Genetic Algorithms. In Genetic Algorithms and Genetic Programming in Computational Finance; Springer: Boston, MA, USA, 2002;
pp. 239–247.

25. Dawid, H. Adaptive Learning by Genetic Algorithms; Lecture Notes in Economics and Mathematical Systems; Springer:
Berlin/Heidelberg, Germany, 1996; Volume 441, ISBN 978-3-540-61513-2.

26. Kingdon, J.; Feldman, K. Genetic Algorithms and Applications to Finance. Appl. Math. Financ. 1995, 2, 89–116. [CrossRef]
27. Fransisca, D.C.; Sukono; Chaerani, D.; Halim, N.A. Robust Portfolio Mean-Variance Optimization for Capital Allocation in Stock

Investment Using the Genetic Algorithm: A Systematic Literature Review. Computation 2024, 12, 166. [CrossRef]
28. Harshbarger, R.J.; Reynolds, J.J. Mathematical Applications for the Management, Life, and Social Sciences; Houghton Mifflin Company:

Boston, MA, USA, 2007; ISBN 9781337296977.
29. Riechmann, T. Learning in Economics; Contributions to Economics; Physica-Verlag HD: Heidelberg, Germany, 2001;

ISBN 978-3-7908-1384-5.
30. Goldberg, D.E. Sizing Populations for Serial and Parallel Genetic Algorithms. In Proceedings of the 3rd International Conference

on Genetic Algorithms, Fairfax, VA, USA, 4–7 June 1989; pp. 70–79.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1115/IMECE2020-23065
https://doi.org/10.28991/ESJ-2024-08-05-025
https://doi.org/10.1080/13504869500000006
https://doi.org/10.3390/computation12080166

	Introduction
	Methodology
	Problem Definition
	Classical Lagrange Solution
	Solution by Genetic Algorithm Implementation

	Results and Discussion
	Graphical Representation
	Solution by Genetic Algorithm (GA)

	Conclusions
	References

