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Abstract: The escalating complexity of cyber threats, coupled with the rapid evolution of
digital landscapes, poses significant challenges to traditional cybersecurity mechanisms.
This review explores the transformative role of LLMs in addressing critical challenges
in cybersecurity. With the rapid evolution of digital landscapes and the increasing so-
phistication of cyber threats, traditional security mechanisms often fall short in detecting,
mitigating, and responding to complex risks. LLMs, such as GPT, BERT, and PaLM, demon-
strate unparalleled capabilities in natural language processing, enabling them to parse vast
datasets, identify vulnerabilities, and automate threat detection. Their applications extend
to phishing detection, malware analysis, drafting security policies, and even incident re-
sponse. By leveraging advanced features like context awareness and real-time adaptability,
LLMs enhance organizational resilience against cyberattacks while also facilitating more
informed decision-making. However, deploying LLMs in cybersecurity is not without
challenges, including issues of interpretability, scalability, ethical concerns, and suscepti-
bility to adversarial attacks. This review critically examines the foundational elements,
real-world applications, and limitations of LLMs in cybersecurity while also highlighting
key advancements in their integration into security frameworks. Through detailed analy-
sis and case studies, this paper identifies emerging trends and proposes future research
directions, such as improving robustness, addressing privacy concerns, and automating
incident management. The study concludes by emphasizing the potential of LLMs to
redefine cybersecurity, driving innovation and enhancing digital security ecosystems.

Keywords: cybersecurity; deep learning; large language models; intrusion detection;
malware detection; phishing attack detection

1. Introduction
In the modern era of technology, cybersecurity has emerged as one of the most criti-

cal priorities for individuals, businesses, and governments around the world. As digital
transformation continues to reshape how we live, work, and interact, the importance of safe-
guarding digital ecosystems cannot be overstated. The landscape of cybersecurity threats is
ever-evolving and increasingly complex [1], characterized by sophisticated cyberattacks [2],
large-scale data breaches, ransomware incidents, and zero-day vulnerabilities [3]. These
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threats not only compromise sensitive information but also disrupt operations, damage
reputations, and impose significant financial losses. The rise of advanced technologies,
including artificial intelligence (AI), Internet of Things (IoT), and cloud computing, has
further expanded the attack surface, creating new challenges for securing digital assets [4,5].
Consequently, addressing these threats requires innovative and proactive strategies that
go beyond traditional defense mechanisms. Organizations must invest in cutting-edge
technologies, robust policies, and continuous threat intelligence to enhance their resilience
against cyber risks. Moreover, fostering cybersecurity awareness and collaboration among
stakeholders is crucial to building a secure digital future [6,7].

In this context, the emergence of LLMs [8] represents a transformative advancement
in cybersecurity, offering groundbreaking capabilities to address increasingly complex
challenges and enhance cyber resilience. These advanced models, including Generative
Pre-trained Transformer (GPT) [8,9] and Bidirectional Encoder Representations from Trans-
formers (BERT) [10], have garnered significant attention due to their remarkable proficiency
in understanding and generating natural language with human-like accuracy [11]. Orig-
inally designed to support a range of linguistic tasks such as language translation [12],
text summarization [9] and sentiment analysis [13], language analysis, and fake news
detection [14], LLMs have since evolved to play a pivotal role in various domains, includ-
ing cybersecurity.

In the realm of cybersecurity, LLMs enable the automation of threat detection, real-time
monitoring, and contextual analysis of cyber risks. They excel at parsing vast amounts
of unstructured data to identify vulnerabilities, generate actionable insights, and predict
potential attack vectors [15]. Additionally, LLMs enhance incident response by providing
detailed reports, guiding mitigation efforts, and enabling faster decision-making. Their
ability to comprehend nuanced language patterns also supports the detection of phishing
attempts, social engineering tactics, and malicious communication. Moreover, LLMs con-
tribute to workforce training by simulating cyber scenarios and improving understanding
of evolving threats. By integrating LLMs, cybersecurity systems can achieve unprecedented
efficiency and adaptability, paving the way for a more secure digital future [16].

Through a critical examination of recent advancements, case studies, and real-world
applications, this review presents a comprehensive review of LLMs in cybersecurity, empha-
sizing their transformative role in enhancing threat detection, malware analysis, phishing
detection, and policy automation. By leveraging advanced natural language processing
capabilities, LLMs demonstrate significant potential in improving efficiency, adaptability,
and context-driven insights in cybersecurity frameworks. This study also delves into the
ethical, technical, and operational challenges associated with deploying LLMs, proposing
strategies to address these limitations while highlighting future opportunities. The inte-
gration of LLMs into cybersecurity is further enriched through in-depth case studies and
analyses of key applications, such as incident response, intrusion detection, vulnerability
management, and social engineering detection. The findings underscore the importance
of continuous innovation and robust frameworks to harness the full potential of LLMs
while mitigating risks such as bias, adversarial attacks, and scalability constraints. Overall,
the main contributions of this review are summarized as follows:
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• Explores the integration of LLMs in key cybersecurity tasks such as threat detection,
phishing detection, and incident response.

• Discusses ethical and technical challenges, including privacy, bias, and adversarial
vulnerabilities in LLM applications.

• Presents a taxonomy and evaluation of existing LLM frameworks for malware analysis,
intrusion detection, and vulnerability management.

• Highlights innovative use cases like LLM-driven automation in incident response and
social engineering prevention.

• Proposes strategies for future research, focusing on robustness, continual learning,
and tailored educational programs for cybersecurity.

Figure 1 offers a clear and intuitive depiction of the comprehensive structure of our
proposed LLM-based cybersecurity review, guiding readers through its framework. The re-
view begins in Section 2, where we explore the foundational concepts behind LLMs. Next,
Section 3 delves into the diverse applications of LLMs within the realm of cybersecurity.
Section 4 shifts focus to the security policies and compliance considerations associated
with LLMs. In contrast, Section 5 examines the vulnerabilities of LLMs to various cyberat-
tacks. Building on this, Section 7 highlights the challenges involved in deploying LLMs
for cybersecurity purposes. Looking ahead, Section 8 sheds light on potential research
directions to enhance the performance and reliability of LLMs in this domain. Finally,
Section 9 concludes the paper, summarizing the key findings and their implications.
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Figure 1. Structure of the proposed LLM-based cybersecurity review.
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2. Foundations of LLMs
2.1. Cybersecurity Requirements

Today’s interconnected digital environment presents cybersecurity with a wide range
of difficulties and urgent requirements. Organizations struggle to fight against cyberat-
tacks that could steal critical data [17], disrupt operations, and erode confidence due to
the ever-evolving nature of cyber threats and the sophisticated strategies used by bad
actors [18]. Ransomware, supply chain weaknesses, Advanced Persistent Threats (APTs),
and Internet of Things (IoT) security issues are major concerns that necessitate ongoing
attention and flexible security solutions [19]. Cloud migrations bring additional challenges,
and data protection laws demand strict adherence to compliance standards. The severe lack
of cybersecurity experts and the necessity of encouraging a cybersecurity-aware culture
among stakeholders and employees exacerbate these problems. A diversified strategy
is required to address these issues, including proactive risk management, strong threat
intelligence, and raising investment. GPT-3 and other LLMs have become effective instru-
ments for meeting particular cybersecurity demands. LLMs can be trained to detect and
classify a variety of cybersecurity threats, such as malware, phishing emails, and suspicious
network activity. They can also be trained to identify anomalous behavior in system logs,
network traffic, or user activities by learning normal patterns and flagging deviations
that may indicate potential security incidents or breaches [20]. These capabilities can help
mitigate cybersecurity threats. Security analysts can concentrate on more complicated
risks by using LLMs to automate repetitive security operations like analyzing security
incidents, creating incident response playbooks, and prioritizing alerts. LLMs can mimic
social engineering attacks or produce realistic phishing emails to teach users how to spot
and react to possible dangers.

2.2. History and Development

The development of LLMs has evolved from early rule-based systems to advanced neu-
ral network-based architectures. Beginning with simple algorithms in the mid-20th century,
the field has witnessed significant milestones, including the introduction of sequence-to-
sequence learning and attention mechanisms, culminating in the development of trans-
formers that have revolutionized natural language processing [20].

Figure 2 serves as a visual roadmap for understanding how LLMs can be systematically
integrated into cybersecurity workflows. It highlights the synergy between cutting-edge
AI models and traditional cybersecurity practices, showcasing their potential to revolu-
tionize the detection, analysis, and mitigation of complex cyber threats. This framework
underscores the importance of automation, adaptability, and continuous improvement in
safeguarding digital ecosystems.

2.3. Key Features and Capabilities

LLMs are cutting-edge AI systems built on deep learning architectures. Trained on vast
datasets spanning multiple domains and languages, these models excel in understanding,
processing, and generating human-like text. Their versatility allows them to handle a wide
range of NLP tasks—including text classification, summarization, translation, and anomaly
detection—without needing task-specific fine-tuning [21,22].
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Figure 2. LLMs’ integration into cybersecurity frameworks.

2.3.1. Foundational Role in Enhancing Cybersecurity

LLMs have become game changers in cybersecurity, tackling both strategic and op-
erational challenges. Their unique capabilities make them indispensable for bolstering
security frameworks across various domains. Here is a closer look at their roles [15]:

• Threat Intelligence Augmentation: LLMs analyze diverse data sources, such as threat
reports, logs, and cybersecurity databases, to identify vulnerabilities, attack patterns,
and emerging threats. By synthesizing information from different contexts, they
provide actionable insights, enabling quicker and more informed decision-making [23].

• Automated Log and Anomaly Analysis: Security logs are often dense and complex,
requiring significant effort to review manually. LLMs streamline this process by
parsing logs, detecting unusual patterns, and flagging potential security incidents [24].
This not only improves detection accuracy but also reduces response times.

• Social Engineering Prevention: Cyberattacks frequently exploit social engineering
tactics like phishing emails or deceptive messages. LLMs are adept at identifying
linguistic cues that suggest phishing attempts or fraudulent activities [25]. They can
alert users in real time or even automate responses to suspected threats.

• Automated Vulnerability Assessment: By examining technical documentation, code
repositories, and system configurations, LLMs can pinpoint vulnerabilities or mis-
configurations [26]. This accelerates the vulnerability discovery process and reduces
dependence on manual audits.

• Incident Response and Documentation: During security breaches, LLMs assist by
generating detailed incident reports and automating routine response tasks, such
as notifying stakeholders or outlining containment measures [27]. This streamlines
incident management and minimizes response delays.

• Cybersecurity Training and Awareness: LLMs enhance training programs by creating
realistic, context-specific simulations, such as tailored phishing scenarios [28]. This
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approach boosts employee awareness of evolving attack methods and improves overall
cybersecurity posture.

• Policy Generation and Risk Assessment: LLMs can review regulatory requirements
and compliance frameworks to identify gaps or inconsistencies [29]. They also gener-
ate detailed risk assessments by correlating information from various sources, helping
decision-makers act on potential threats proactively.

2.3.2. Interpretable and Context-Aware Decision-Making

A major strength of LLMs in cybersecurity lies in their ability to understand context
and provide human-readable explanations for their decisions. Unlike rigid rule-based
systems, LLMs use their contextual knowledge to distinguish between benign and mali-
cious activities. This interpretability fosters trust and enhances usability for cybersecurity
professionals [30].

2.3.3. Bridging the Gap Between Domains

LLMs serve as bridges between different cybersecurity domains. For instance, they
integrate threat intelligence with vulnerability management, synthesizing insights from var-
ied datasets to present a holistic view of an organization’s security posture. This adaptability
makes LLMs critical for building interconnected, efficient cybersecurity ecosystems [31].

2.3.4. Continuous Learning and Adaptability

As cyber threats evolve, LLMs remain resilient through fine-tuning and retraining
with domain-specific data [32]. This capacity for continuous learning ensures they stay
relevant and effective, making them future-proof solutions for the ever-changing cyberse-
curity landscape.

2.4. Overview of Leading LLMs

LLMs have undergone significant evolution over the past decade, with several models
leading advancements in NLP and related fields. Among these, OpenAI’s GPT series
stands out, particularly with GPT-3 and its successors [33]. GPT-3, built with 175 billion pa-
rameters, showcases exceptional capabilities in understanding and generating human-like
text. Its applications range from conversational agents to creative writing, programming
assistance, and beyond, setting a new standard for contextual coherence and semantic
understanding in text generation [34]. Google’s BERT (Bidirectional Encoder Representa-
tions from Transformers) has revolutionized the domain of language comprehension tasks.
By employing a bidirectional training approach on vast amounts of text, BERT captures
nuanced contextual relationships in language [35]. Derivatives of BERT, such as RoBERTa
(Robustly Optimized BERT Approach) and T5 (Text-To-Text Transfer Transformer), have
further refined these capabilities. RoBERTa enhances pretraining strategies, while T5 adopts
a unified framework to handle a variety of NLP tasks by reframing them into text-to-text
problems [36].

Other noteworthy LLMs include Microsoft’s Turing-NLG, which is renowned for
its vast scale and generative abilities, and OpenAI’s Codex, designed specifically for
programming-related tasks like code completion and debugging [37]. Additionally, Meta’s
LLaMA (Large Language Model Meta AI) focuses on efficiency, achieving high perfor-
mance with fewer parameters compared to other LLMs [38]. These LLMs have paved
the way for transformative applications in text generation, summarization, translation,
and more [39]. They have also laid the foundation for specialized adaptations in fields such
as cybersecurity, healthcare, education, and software development, where domain-specific
fine-tuning enables enhanced utility and performance [40].
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2.5. Mathematical Background

The mathematical foundation of LLMs primarily revolves around neural networks,
particularly transformer architectures. These models leverage self-attention mechanisms
to process sequences of text, allowing them to weigh the importance of different words
within a sentence or document. Key mathematical concepts include vector representa-
tions of words (embeddings), positional encoding to maintain the sequence order, and the
use of multi-head attention to enable the model to focus on different parts of the input
sequence for prediction tasks. Training involves adjusting millions, or even billions, of pa-
rameters through gradient descent to minimize a loss function, typically cross-entropy for
language tasks.

2.5.1. GPT-3

The self-attention mechanism in the GPT-3 model is mathematically represented as [41]:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

where Q, K, and V represent the queries, keys, and values matrices derived from the input
embeddings, respectively, and dk denotes the dimensionality of the keys. The softmax
function ensures the attention weights across the input sequence sum to 1.

2.5.2. BERT

BERT uses a transformer architecture with a unique twist: it processes words in
relation to all the other words in a sentence, rather than one at a time. This is achieved
through the attention mechanism, which in BERT’s case, is bidirectional. Mathematically,
this involves calculating attention scores for each word, using a softmax function to weigh
these scores, and then applying them to produce contextually enriched word embeddings.
The core formula involves the softmax of the dot product of query and key vectors, divided
by a scaling factor, influencing the final output embeddings [10].

2.5.3. T5

The T5 model, Text-to-Text Transfer Transformer, employs the encoder–decoder ar-
chitecture of the transformer. It is distinctive for treating every NLP task as a text-to-text
problem, using a unified approach for both inputs and outputs. The core mathematical
operations involve self-attention mechanisms similar to other transformers, calculating
attention scores to determine the relevance of different parts of the text to each other. It also
uses cross-attention mechanisms in the decoder, allowing it to focus on relevant parts of the
encoder’s output. The model is trained on a “span corruption” objective, predicting missing
parts of the input text, which generalizes well across different types of NLP tasks [42].

2.6. Popular LLM-Based Platforms

LLMs have transformed the field of NLP, enabling a wide range of applications
across industries. Table 1 provides a comparative overview of some of the most promi-
nent LLM platforms, highlighting their developers, primary use cases, parameter sizes,
and accessibility. This diversity reflects the growing demand for LLMs in tackling tasks
such as text generation, natural language understanding, sentiment analysis, multilingual
processing, and programming-related functions [8,10]. The applications of LLMs are as
varied as the platforms themselves. Advanced models like GPT-4 (OpenAI) [8] and PaLM
(Google) [43] support a wide range of generative tasks, including creative writing, sum-
marization, and problem-solving. Other models, such as BERT (Google) [10] and Falcon
180B (Technology Innovation Institute) [44], are optimized for NLP-specific tasks like senti-
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ment analysis and commercial use. Meanwhile, community-driven platforms like Vicuna
13-B [45] address domain-specific needs in customer service, healthcare, and education.

The size of these models varies significantly, reflecting their intended scope and
complexity. For example, PaLM boasts an impressive 540 billion parameters [43], making it
one of the largest LLMs, while lighter models such as XGen-7B [46] are designed for specific
tasks with fewer parameters, enabling faster processing and deployment in constrained
environments. Accessibility is another critical factor that differentiates LLM platforms.
Open-source models, including BLOOM [47], Mistral 7b [48], and GPT-NeoX [49], provide
unrestricted access, fostering collaboration and innovation within the research community.
In contrast, restricted models like GPT-4 [8], LLaMA 2 [50], and Turing-NLG [51] are
proprietary and require licensing or authorization for use, reflecting their developers’ focus
on controlled deployment and proprietary advancements.

The developer landscape showcases contributions from both tech giants like OpenAI,
Google, and Microsoft and open-source initiatives such as Hugging Face and EleutherAI.
This blend of corporate and community-driven efforts illustrates a dynamic ecosystem
where innovation thrives, addressing challenges across research, industry, and everyday
digital interactions. By comparing these platforms, it becomes clear how LLMs are tailored
to specific needs, balancing factors like accessibility, scalability, and performance. Their
continued evolution promises further advancements in AI, reshaping how we interact with
technology across various domains [8,43,47].

Table 1. Comparison of LLMs.

LLM Platform Developer (Company) Applications/Tasks Number of Parameters Accessibility

LLaMA 2 Meta Generative text model, chatbot,
programming tasks 7 to 70 billion Restricted

BLOOM Hugging Face Text continuation, multilingual text
generation, programming 176 billion Open-source

BERT Google Natural language processing tasks (e.g.,
sentiment analysis, clinical note analysis) Varies (several models) Open-source

Falcon 180B Technology Innovation Institute (UAE) Various NLP tasks, research, commercial
use 180 billion Restricted

OPT-175B Meta Research use cases 125 M to 175 billion Restricted

XGen-7B Salesforce Long context window text generation,
commercial and research use 7 billion Restricted

GPT-NeoX EleutherAI Text generation, sentiment analysis,
research, marketing 20 billion Open-source

GPT-J EleutherAI Text generation, sentiment analysis,
research, marketing 6 billion Open-source

Vicuna 13-B ShareGPT Community Conversational AI, customer service,
healthcare, education, finance 13 billion Restricted

Mistral 7b Mistral AI Text generation, sentiment analysis,
coding, spam detection, chatbots 7.3 billion Open-source

GPT-3.5 OpenAI Text generation, coding, customer
support, creative content 175 billion Restricted

GPT-4 OpenAI
Wide range of generative tasks including
writing, explaining, summarizing,
translating

Over 500 billion Restricted

Turing-NLG Microsoft Text generation, summarization,
language translation 17 billion Restricted

PaLM Google Problem solving, conversation,
summarization 540 billion Restricted
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2.7. LLM-Based Cybersecurity Datasets

Benchmark datasets are indispensable in evaluating LLMs within cybersecurity, offer-
ing a multifaceted approach to assess their knowledge and capabilities. They provide a
standardized evaluation framework, ensuring fair comparison across models while cover-
ing a comprehensive range of cybersecurity concepts. These datasets incorporate real-world
data to ensure relevance and test LLMs’ contextual understanding and reasoning, crucial
for identifying threats and suggesting countermeasures. Moreover, they highlight knowl-
edge gaps and facilitate incremental improvements by serving as benchmarks for progress,
ultimately fostering model transparency and building trust among users. The critical role
of benchmark datasets extends beyond assessment to driving advancements in LLM capa-
bilities, ensuring they meet the practical demands of cybersecurity challenges effectively.

The evaluation of LLMs in cybersecurity relies on diverse and specialized datasets
tailored to benchmark their capabilities across various tasks. CyberMetric is a comprehen-
sive dataset comprising 10,000 questions drawn from standards, certifications, research
papers, books, and other cybersecurity publications. It serves as a robust tool for assessing
LLMs’ general knowledge in topics like cryptography, reverse engineering, and risk assess-
ment [52]. Similarly, SecQA provides a question-answering dataset specifically designed
to evaluate LLMs’ understanding of computer security. The multiple-choice questions in
SecQA, generated using GPT-4, are based on the “Computer Systems Security: Planning for
Success” textbook and focus on testing the models’ ability to apply core security principles
effectively [53].

In addition to theoretical benchmarks, practical datasets like the NYU CTF Dataset
and LLMSecEval focus on real-world applications of LLMs in cybersecurity. The NYU
CTF Dataset aggregates a variety of Capture the Flag (CTF) challenges from prominent
competitions, enabling the evaluation of LLMs in solving offensive security tasks such
as vulnerability detection and mitigation [54]. On the other hand, LLMSecEval provides
150 natural language prompts describing code snippets prone to vulnerabilities identified
in MITRE’s Top 25 Common Weakness Enumeration (CWE). By including secure imple-
mentation examples, LLMSecEval facilitates the comparative evaluation of code produced
by LLMs, making it a valuable resource for analyzing the models’ proficiency in code
security [55]. Together, these datasets provide a holistic framework for assessing LLMs in
both theoretical and practical cybersecurity contexts.

3. Applications of LLMs in Cybersecurity
The integration of LLMs in cybersecurity operations enables organizations to enhance

threat detection, incident response, and overall security posture. By leveraging the natural
language processing capabilities of LLMs, organizations can analyze large volumes of data,
extract valuable insights, and take proactive measures to mitigate cyber threats, ultimately
strengthening their defenses against evolving security challenges [56].

By automating incident response processes, evaluating security alarms, and providing
security teams with insightful information, LLMs are essential to enhancing security opera-
tions. Using past data and industry best practices, they assist in prioritizing issues, looking
into security warnings, and developing incident response playbooks. LLMs let enterprises
to react to security problems quickly and effectively, lessening the impact of breaches and
interruptions, by enhancing the capacities of human analysts.

Threat intelligence analysis, vulnerability management, and policy enforcement are
just a few of the areas where LLMs improve security operations [57]. They can identify
software and system vulnerabilities, analyze and contextualize threat information feeds,
and enforce security policies in accordance with organizational and legal demands. LLMs
empower security teams to proactively identify and mitigate security threats by automating
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typical security processes and delivering real-time information, hence strengthening the
overall security posture.

LLMs continuously learn from new data and feedback, enabling them to adapt to
evolving cyber threats and changing business environments. Through the use of ML
techniques, LLMs can improve their efficiency by refining their models to better detect and
respond to emerging threats [58]. This agility allows organizations to stay ahead of cyber
adversaries and effectively defend against evolving attack strategies.

Ferrag and al [59] introduce SecurityBERT, an innovative architecture utilizing the
BERT model for cyber threat detection in IoT networks. SecurityBERT employs a novel
privacy-preserving encoding technique called Privacy-Preserving Fixed-Length Encoding
(PPFLE) in combination with the Byte-level Byte-Pair Encoder (BBPE) Tokenizer to structure
network traffic data effectively. The model outperforms traditional ML and DL methods,
such as CNNs and RNNs, in identifying cyber threats. Using the Edge-IIoTset dataset,
SecurityBERT achieved a remarkable 98.2 overall accuracy in detecting fourteen different
attack types, exceeding previous benchmarks set by hybrid models like GAN-Transformer
and CNN-LSTM architectures. With an inference time of less than 0.15 s on an average
CPU and a compact model size of 16.7 MB, SecurityBERT is well-suited for real-time
traffic analysis and deployment on resource-constrained IoT devices. Figure 3 presents a
high-level workflow of the SecurityBERT model.

Original Network Traffic data

Feature extraction

Text Data Input (PPFLE
output)

ByteLevelBPETokenizer 

BERT Embedding 

BERT Encoder 

Textual Representation
using PPFLE

Tokenized Trafic Data Contextuel Representation

Softmax Classifier 

DDoS UDP

DDoS ICMP

DDoS TCP

DDoS HTTP

Fingerprint

MITM

SQL injection

Uploading

Password

Backdoor

Vuln Scan

XSS

Ransomware

Normal

dbaf efb 447 ejf
Features                    Category

1AE4FDO67EC23AB  Ransomware

AEC89021D56FA231         Normal

Port scan

3) Model Training2) Datset Tokenization 4) Classification

A Pre-trained Language Model (SecurityBERT)

1) Dataset Preparation

Figure 3. High-level workflow of SecurityBERT model.

3.1. Threat Identification and Analysis

The ability of LLMs to analyze broad amounts of textual data from different
sources [41,60] is a game changer in cybersecurity Traditional cybersecurity approaches
often struggle to keep pace with the rapidly changing threat landscape, including emerging
threats, vulnerabilities and attack patterns [61]. However, LLMs offer a powerful solution
through their natural language understanding capabilities to analyze unstructured data. By
monitoring security blogs, forums, social media platforms, and other textual data sources,
LLMs can identify patterns, trends, and irregularities that could indicate potential cyber
threats. They can sift through large amounts of data in real time, extracting information
relevant and have provided valuable insights for security researchers. This allows organiza-
tions to proactively identify and manage cyber risks, rather than reacting to incidents after
they happen. In addition, LLMs help enhance threat reporting capabilities by detecting
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emerging threats and vulnerabilities at an early stage [20]. By carefully analyzing logs from
various sources, LLMs can identify signs of compromise, malicious activity, and attack
techniques used by cyber adversaries This enables security researchers to deploy them
to prioritize work, efficiently allocate resources, and develop strategies to protect against
evolving cyber threats.

3.2. Phishing Attack Detection

LLMs have demonstrated significant potential in enhancing phishing detection, revo-
lutionizing how cybersecurity threats are identified and mitigated. By leveraging their vast
training on diverse datasets, LLMs can adeptly recognize and classify phishing content,
from deceptive emails to fraudulent websites. Their ability to understand context and
nuances in language enables them to detect sophisticated phishing attempts that might
elude traditional detection systems. Furthermore, the integration of LLMs into phishing
detection tools allows for continuous learning and adaptation to new and evolving threats,
offering a dynamic defense mechanism that can significantly reduce the success rate of
phishing attacks. This adaptability, coupled with high accuracy rates in detecting phishing
indicators, underscores the transformative impact of LLMs in the realm of cybersecurity.

In this regard, several studies have been proposed in the literature to explore the
use of LLMs for phising detection. Trad et al. [62] and Koide et al. [63] both delve into
the utilization of LLMs for detecting phishing URLs and emails, respectively. Trad et al.
compare the effectiveness of prompt-engineering and fine-tuning LLMs for phishing URL
detection, finding that while prompt-engineered LLMs are quick and fairly effective, fine-
tuned models surpass them significantly in performance. On the other hand, Koide et al.
introduce ChatSpamDetector, which leverages LLMs to provide both detection and explana-
tory reasoning behind the classification of emails, enhancing user trust and understanding
of phishing threats.

Chataut et al. [64] and Lee et al. [65] further the discussion by assessing the capabilities
of LLMs against sophisticated phishing techniques. Chataut et al. test various LLMs against
a curated dataset of phishing and legitimate emails, illustrating the nuanced capabilities
and limitations of these models in real-world applications. Lee et al. approach the problem
from the angle of brand impersonation in phishing webpages, using multimodal LLMs to
detect discrepancies between webpage content and known brand characteristics, showing
high efficacy in identifying phishing attempts.

In another vein, Patel et al. [66] and Roy et al. [67] explore the generative capabilities
of LLMs in creating and detecting phishing content. Patel et al. evaluate the ability of
several LLMs to detect “419 Scam” emails, highlighting the high accuracy of models like
ChatGPT 3.5 in phishing detection. Roy et al. develop PhishLang, a lightweight LLM that
excels in detecting phishing URLs with high accuracy and efficiency, demonstrating its
utility in practical, resource-constrained environments.

Moreover, Bethany et al. [68] and Mahendru et al. [69] address the organizational
impact and the broader implications of phishing attacks facilitated by LLMs. Bethany et al.
conduct a longitudinal study on the use of LLMs to generate phishing emails targeting
a large university, proposing ML-based detection techniques that show a high F1 score
in identifying such emails. Mahendru et al. assess the performance of LLMs against the
Deberta V3 model in detecting phishing content across various data sources, with Deberta
V3 slightly outperforming LLMs in certain scenarios.

Heiding et al. [70] investigate the effectiveness of both manually and automatically (us-
ing GPT-4) created phishing emails. It also explores the combination of GPT-4 with manual
strategies (V-Triad) for crafting phishing emails and assesses their effectiveness through a
red teaming approach. The study includes a detailed analysis of user responses to phishing
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attempts and compares the detection capabilities of human participants with that of LLMs.
Uddin et al. [71] present an optimized, fine-tuned transformer-based DistilBERT model
for detecting phishing emails. The model’s effectiveness is demonstrated through high
precision, recall, and F1 scores, and the use of Explainable-AI (XAI) techniques like LIME
and Transformer Interpret to provide insights into the model’s decision-making process.

The study in [72] proposes a model that detects phishing attacks based on the text of
suspicious web pages using natural language processing (NLP) and DL algorithms. The ef-
fectiveness of various DL algorithms like LSTM and GRU is compared, and the model’s
performance is validated through high accuracy rates. The study in [73] addresses the
limitations of reference-based phishing detectors by proposing an automated knowledge
collection pipeline that assembles a large-scale multimodal brand knowledge base, Know-
Phish. The performance of the KnowPhish Detector (KPD), which uses this knowledge
base, is evaluated, showing substantial improvements in detecting phishing webpages.

The research in [74] introduces a lightweight phishing detection algorithm that differ-
entiates phishing from legitimate websites based solely on URLs for use in mobile devices.
The performance of deep transformers like BERT and ELECTRA is tested against standard
and custom vocabularies for URL-based phishing detection [74]. Wang [75] develops
an LLM agent framework that dynamically fetches and utilizes online information for
phishing detection, overcoming the constraints of traditional static reference-based sys-
tems. The framework demonstrates superior performance compared to existing solutions,
with significant accuracy improvements.

Maneriker [76] conducts a comprehensive analysis of transformer models on the
phishing URL detection task. The proposed URLTran uses transformers to enhance the
performance of phishing URL detection significantly, including robustness against clas-
sical adversarial phishing attacks. The study in [77] introduces an improved phishing
and spam detection model, IPSDM, based on fine-tuning the BERT family of models. It
demonstrates superior classification accuracy, precision, recall, and F1 score over baseline
models, addressing concerns of overfitting and class imbalance.

Lastly, Nguyen et al. [78] and Roy et al. [79] discuss the integration of LLMs in user-
centric anti-phishing systems. Nguyen et al. present a framework that combines LLMs
with user insights to generate meaningful anti-phishing warnings, achieving over 80%
effectiveness in phishing detection. Similarly, Roy et al. evaluate the potential misuse
of LLMs in generating phishing content and propose a BERT-based detection tool that
effectively identifies malicious prompts, aiding in the prevention of phishing attacks
generated by LLMs.

Table 2 presents a comparative analysis of various studies that investigate the ef-
fectiveness of LLMs in detecting phishing attacks. It provides detailed insights into the
models used, datasets, key contributions, best performance metrics, and limitations of each
study. These studies explore the use of models such as GPT-4, GPT-3.5, BERT, RoBERTa,
MobileBERT, and others, evaluating their capabilities for detecting phishing emails, URLs,
and webpages using different datasets and techniques like fine-tuning, prompt engineering,
and multimodal approaches. Important findings from the table include the impressive
performance of fine-tuned models such as DistilBERT, which achieved a high F1 score of
0.99, and KnowPhish, which uses a multimodal knowledge graph for phishing detection,
obtaining an F1 score of 92.05%. Additionally, studies leveraging GPT-4 for phishing detec-
tion and content generation show high accuracy rates, with some models achieving 99.7%
accuracy. However, limitations such as computational cost, data dependence, and class
imbalance are prevalent, highlighting the challenges and areas for further improvement
in the field. Overall, the table underscores the potential of LLMs in enhancing phishing
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detection systems across various modalities, but also points out the need for optimization
in terms of scalability and resource efficiency.

Table 2. Comparison of studies on LLMs in phishing detection.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Value Limitation

[62]
GPT-3.5-turbo, Claude 2,
GPT-2, Bloom, Baby LLaMA,
DistilGPT-2

Phishing URL dataset

Comparison of
prompt-engineering and
fine-tuning techniques for
phishing URL detection

F1 score of 97.29%, AUC
99.56%

High computational costs for
fine-tuning

[63] GPT-4 Comprehensive phishing
email dataset

ChatSpamDetector for
detecting phishing emails
with reasoning explanations

Accuracy: 99.70% High resource demands for
continuous usage

[70] GPT-4, Claude, PaLM,
LLaMA Custom red-teaming dataset

Comparison of LLMs and
V-Triad for phishing email
generation and detection

V-Triad phishing emails
click-through rate: 69–79%,
Claude detection: 100%

High variance in
click-through rates

[64] GPT-3.5, GPT-4, custom
ChatGPT

Phishing and legitimate
emails

Comparison of different
LLMs for phishing email
detection

Custom ChatGPT
performance higher than
GPT-4

Variability in results between
models

[65] GPT-4, Claude 3 Newly collected dataset of
phishing webpages

Multimodal system using
LLMs for brand-based
phishing detection

F1 score: GPT-4 0.92, Claude
3 0.90

Need for consistent
meta-data collection

[66]
ChatGPT 3.5,
GPT-3.5-Turbo-Instruct,
ChatGPT

419 scam phishing email
dataset

Evaluation of LLMs for
phishing email detection

Confidence scores:
8–10 across models

Dependence on pre-defined
criteria

[67] MobileBERT, GPT-3.5 Turbo Phishing website dataset
Development of lightweight
PhishLang model for
phishing detection

Accuracy: 96%, Precision:
95%, Recall: 96%

Limited browser extension
compatibility

[68] Custom LLMs University infrastructure
dataset

Use of LLMs for lateral
phishing detection in
real-world conditions

F1 score: 98.96% Requires integration with
existing infrastructure

[69] DeBERTa V3, GPT-4,
Gemini 1.5

Public phishing dataset
(email, HTML, SMS, etc.)

Comparative analysis of
LLMs and DeBERTa for
phishing detection

DeBERTa V3 Recall: 95.17%,
GPT-4 Recall: 91.04%

Challenges in fine-tuning
and transfer learning

[78] LLM-driven framework Phishing email dataset
Human-centric framework
combining LLM and user
input for phishing detection

Effectiveness: 80%, no false
positives/negatives Limited dataset size

[79] ChatGPT, GPT-4, Claude,
Bard

Generated phishing email
and website prompts

Analysis of LLMs’ potential
to create phishing content

Detection tool accuracy: 96%
(websites), 94% (emails)

Vulnerabilities in
LLM-generated phishing
content

[71] DistilBERT (fine-tuned) Phishing email dataset

Optimized transformer
model for phishing detection
with Explainable AI (LIME,
Transformer Interpret)

Precision: 0.97, Recall: 1.00,
F1 Score: 0.99, Accuracy:
98.48%

Class imbalance issues,
mitigated via preprocessing

[72] LSTM, BiLSTM, GRU,
BiGRU Suspicious web page text

Proposed NLP and DL
approach using GloVe
embedding for phishing
detection

BiGRU achieved 97.39%
accuracy

Loss of semantic richness
between words due to
non-sequential word input

[73] LLM-based (KnowPhish
Detector)

Multimodal phishing
detection dataset (TR-OP)

Developed KnowPhish for
enhancing RBPD by
combining multimodal
knowledge graphs

F1 Score: 92.05%, Precision:
97.84%, Recall: 86.90%

Scalability issues with
manually constructed
knowledge base

[74] BERT, ELECTRA, ANN Phishing website dataset
(URL-based features)

Lightweight phishing
detection model suitable for
mobile devices

Accuracy: 86.2%
(URL-based)

URL-based features alone
insufficient for phishing
detection

[75] LLM agent-based framework Dynamic phishing detection
system

LLM-based dynamic
reference system for
phishing detection

Accuracy: 94.5% Dependent on external data
fetching for effectiveness

[76] URLTran (transformers) Phishing URL dataset
Transformer-based model for
phishing URL detection,
with adversarial robustness

True Positive Rate (TPR):
86.80%, FPR: 0.01%

Susceptibility to adversarial
attacks

[77] BERT, RoBERTA (fine-tuned
IPSDM)

Phishing and spam email
dataset (balanced and
imbalanced)

Fine-tuned BERT/ RoBERTA
models for phishing and
spam detection (IPSDM)

Accuracy: 97.50%, Precision:
0.98 (RoBERTA)

Bias towards majority class,
mitigated with ADASYN
sampling

3.3. Malware Classification and Analysis

LLMs can effectively analyze textual data from diverse sources, including malware
reports, security blogs, technical documents, and threat intelligence feeds. This analysis
enables them to extract valuable features and insights that greatly assist in the classification
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and analysis of malware [58]. One of the key advantages of LLMs is their ability to learn
patterns and characteristics of known malware families and attack techniques [80]. This
knowledge allows them to accurately classify and categorize new malware samples, even
in situations where traditional signature-based detection methods may fail. By leverag-
ing their understanding of these patterns, LLMs can effectively identify and categorize
malicious activities, thereby aiding in malware behavior analysis. They can interpret de-
scriptions of observed behaviors and correlate them with known malware behaviors and
attack patterns, providing security analysts with a deeper understanding of the threats they
are dealing with. Furthermore, LLMs can also assist in the interpretation of code snippets,
scripts, and command-line instructions associated with malware samples. This capability
provides valuable insights into the functionality, propagation mechanisms, and potential
impact of malware on targeted systems. By analyzing these aspects [81], LLMs contribute
to a more comprehensive understanding of the nature and potential consequences of
malware attacks.

Hu et al. [82] introduced MalGPT, a DL-based causal language model that significantly
improves adversarial malware generation by enabling single-shot evasion in black-box
settings. Building on the theme of improving malware detection, Sanchez et al. [83]
extended the use of LLMs by integrating them with system call analysis for malware
detection, highlighting the importance of context size in enhancing detection rates. Both
studies emphasize the role of LLMs in addressing the challenges of detecting sophisticated
cyberattacks, particularly in high-stakes environments.

Similarly, Ferrag et al. [59] contributed to the cybersecurity domain by focusing on
IoT networks. They proposed SecurityBERT, a transformer-based model for detecting
cyber threats in IoT devices, achieving high accuracy and low inference time, making
it suitable for real-time applications. Complementing this, Demirci et al. [84] proposed
Stacked BiLSTM and GPT-2 models for analyzing assembly instructions of executable files,
demonstrating that DL models are also effective in detecting malware at the code level,
with high F1 scores across various datasets.

Continuing the focus on enhancing malware detection techniques, Gao et al. [85] intro-
duced a novel approach that leverages control-flow graphs (CFG) and Graph Isomorphism
Networks (GIN) for malware classification, achieving impressive detection rates. Along
similar lines, Zahan et al. [86] presented SecurityAI, a workflow combining GPT-3 and
GPT-4 for detecting malicious code in the npm ecosystem, significantly improving over
traditional static analysis techniques and highlighting the potential of LLMs in automating
code review tasks.

While these studies showcase the capabilities of DL and LLMs in strengthening
cybersecurity, Madani et al. [87] raised an important concern regarding the potential misuse
of LLMs. They explored the risks posed by code metamorphism, proposing a framework
using LLMs to generate and test next-generation metamorphic malware, emphasizing
the ethical challenges associated with AI-driven code mutation. Similarly, in Android
security, Khan et al. [88] proposed a multi-level technique that combines graph-based
representations and LLMs to capture both high-level structural and semantic features,
further enhancing malware detection in Android applications by addressing both the
structural and contextual aspects of mobile threats.

Finally, Fang et al. [89] provided a comprehensive evaluation of LLMs for code analysis,
demonstrating the effectiveness of GPT-4 in analyzing non-obfuscated code across multiple
programming languages. This study underscores the utility of LLMs in automating code
analysis tasks, while also acknowledging the challenges associated with obfuscated code,
thus providing valuable insights for future research in code analysis and cybersecurity.
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Algorithm 1 outlines a structured framework for leveraging LLMs in malware detec-
tion and analysis. It begins by collecting and preprocessing malware-related data, followed
by feature extraction using an LLM to identify meaningful patterns. The extracted features
are used to train the model for malware classification, enabling it to categorize malware into
predefined types and analyze its behavior by correlating observed activities with known
attack patterns. The framework also incorporates LLMs for code and command analysis
to understand malware functionality and impacts. To enhance detection, it integrates
LLMs with complementary methods, such as system call analysis and control-flow graphs.
Performance is evaluated using metrics like accuracy and F1 score, while measures are im-
plemented to address challenges such as adversarial samples and obfuscated code. Finally,
the model is continuously updated with new data to adapt to evolving threats, providing a
comprehensive and adaptive approach to malware detection. Figure 4 represents the steps
of a large language model (LLM)-based Malware Detection Framework.

Algorithm 1: LLM-based Malware Detection Framework
Input: Dataset D = {d1, d2, . . . , dn}, Pretrained LLM MLLM

Output: Malware classification and behavior insights

Step 1: Data Collection and Preprocessing
Collect raw textual and technical data related to malware.
Preprocess the dataset D: Dpreprocessed = P(D).

Step 2: Feature Extraction
Extract features F = MLLM(Dpreprocessed).

Step 3: Malware Classification
Define malware classes C = {c1, c2, . . . , ck}.
Train LLM to map features to classes: C : F → C.
Minimize classification loss L.

Step 4: Behavior Analysis
Identify observed behaviors B and correlate with known patterns P: A : B → P.

Step 5: Code and Command Analysis
Analyze code snippets S = {s1, s2, . . . , sp}: F : S → I.

Step 6: Model Integration
Integrate with additional methods (e.g., system calls S , CFGs G):

D = αMLLM(Dpreprocessed) + βS(D) + γG(D)

Step 7: Performance Evaluation
Evaluate metrics such as Accuracy, F1 Score, and Detection Rate.

Step 8: Addressing Challenges
Mitigate adversarial or obfuscated samples O: M̂LLM = R(MLLM, O).

Step 9: Continuous Learning
Update model parameters with new data Dnew:

θt+1 = θt − η∇L(Dnew)

return Malware classification, behavior insights, and improved security frameworks.
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Figure 1: Steps of the LLM-based Malware Detection Framework with Color
Coding
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Figure 4. Steps of using LLMs for malware detection.

Table 3 presents a comprehensive comparison of various studies focused on malware
detection and code analysis, highlighting the different models used, datasets or data types,
main contributions, best performance values, and limitations. Key findings include the
use of DL and LLMs to address complex malware detection challenges. For instance,
Hu et al. [82] introduced MalGPT for adversarial malware generation, achieving a 24.51%
evasion rate, while Ferrag et al. [59] proposed SecurityBERT, which achieved 98.2% ac-
curacy in IoT threat detection. Similarly, Gao et al. [85] used a graph-based approach
for malware classification, with a detection rate of 97.44%. Studies like Zahan et al. [86]
and Fang et al. [89] demonstrated the effectiveness of GPT models for malicious code
detection and code analysis, achieving F1scores as high as 97% with GPT-4. However, limi-
tations such as high computational complexity, inference time constraints, and challenges
in handling obfuscated code were noted across several studies. This table underscores the
diversity of approaches and the promising potential of LLMs in advancing cybersecurity.

Table 3. Comparison of studies on malware detection and code analysis.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation

[82] MalGPT (DL-based
causal language model)

Real-world malware
dataset from VirusTotal

Single-shot evasion
using MalGPT for AMG 24.51% evasion rate

Focus on black-box
attacks, single-shot
evasion approach

[83] LLMs (BigBird,
Longformer)

Over 1TB of system call
data

Malware classification
using system call data
with LLMs

0.86 F1 score
Computational
complexity due to large
context size

[59] SecurityBERT
(BERT-based)

Edge-IIoTset
cybersecurity dataset

Privacy-preserving IoT
threat detection using
BERT

98.2% accuracy
Inference time on
resource-constrained IoT
devices
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Table 3. Cont.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation

[84] Stacked BiLSTM, GPT-2,
DistilBERT

Malicious and benign PE
files

Assembly
instruction-based
malware detection using
deep language models

98.3% F1 score
Focused on
assembly-level
instruction analysis

[85] GIN, MiniLM, MLP
Malware Geometric
Dataset (CFG from PE
files)

Malware classification
using CFGs and GIN 97.44% detection rate High complexity of

CFG-based approach

[86] GPT-3, GPT-4, CodeQL Benchmark dataset of
npm packages

LLM-based malicious
code detection in the
npm ecosystem

99% precision, 97% F1
score (GPT-4)

Static analysis needed as
a pre-screening step

[87] LLMs (ChatGPT, Google
Bart) Code mutation datasets

Framework for
self-testing program
mutation engines for
malware

N/A
Ethical concerns over
misuse by malware
creators

[88] Graph Convolutional
Networks (GCN), LLMs

Android apps
(source-level and
graph-based features)

Multi-level malware
detection in Android
using GCN and LLMs

N/A
Complexity due to the
integration of structural
and semantic features

[89] GPT-4 Non-obfuscated code (C,
JavaScript, Python)

Systematic evaluation of
LLMs for code analysis 97.4% accuracy Struggles with

obfuscated code

3.4. Intrusion Detection

The use of LLMs in intrusion detection represents a transformative shift in cybersecu-
rity strategies, integrating advanced AI to address complex and evolving threats. LLMs,
especially those based on the transformer architecture, are being adapted for various cy-
bersecurity applications, from network intrusion detection to the protection of vehicular
and Internet of Things (IoT) networks. Their ability to process and interpret vast amounts
of unstructured data allows for enhanced detection capabilities that can identify subtle
patterns and anomalies that traditional systems might overlook. Furthermore, the incorpo-
ration of these models into existing cybersecurity frameworks not only enhances detection
accuracy but also improves the explainability of security alerts, thus aiding cybersecurity
professionals in quick and effective decision-making. This synergy between LLMs and
intrusion detection systems paves the way for more robust defenses against an increasingly
sophisticated landscape of cyber threats.

The exploration of LLMs in intrusion detection is extensive, showcasing their potential
through diverse approaches and methodologies aimed at enhancing network security.
For instance, studies by [90,91] evaluate the application of LLMs, specifically GPT variants,
in network intrusion detection systems (NIDS). While [90] assesses the feasibility and
explanatory power of LLMs in detecting malicious NetFlows, ref. [91] emphasizes the
efficiency of in-context learning for automatic intrusion detection, highlighting significant
performance improvements without the need for further model training.

Adapting transformer-based models like BERT for cybersecurity tasks is explored in
several studies. The authors in [92] introduce CAN-BERT for detecting intrusions in vehicle
networks, demonstrating its superiority over traditional methods. Meanwhile, refs. [22,93]
both leverage BERT’s capabilities to enhance intrusion detection in Internet of Vehicles (IoV)
and general network environments, respectively, showing notable advances in detection
accuracy and robustness. In this regard, Li et all. [94] integrate BERT within a condi-
tional generative adversarial network framework to address class imbalances in intrusion
detection datasets, achieving high classification performance across multiple datasets.

Algorithm 2 outlines an LLM-based Intrusion Detection Framework, leveraging large
language models for feature extraction, intrusion classification, and explainable insights. It
integrates real-time detection, performance evaluation, and continuous learning to adapt
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to evolving threats. Advanced applications, including knowledge graphs and domain
adaptation, enhance its effectiveness for robust cybersecurity solutions.

Algorithm 2: LLM-based Intrusion Detection Framework
Input: Dataset D = {d1, d2, . . . , dn}, Pretrained LLM MLLM

Output: Intrusion detection insights and robust security framework

Step 1: Data Collection and Preprocessing
Collect raw intrusion-related data (e.g., network traffic, system logs, IoT data).
Preprocess D: Dprocessed = P(D), and balance if needed:

Dbalanced = A(Dprocessed).

Step 2: Feature Extraction
Extract features using LLM: F = MLLM(Dprocessed).

Step 3: Intrusion Detection Model Design
Define intrusion categories C = {c1, c2, . . . , ck} and map features to categories:
C : F → C.

Adapt domain-specific models: MID = MLLM +H.

Step 4: Model Training and Fine-Tuning
Train model to minimize loss: L = −∑m

i=1 ∑k
j=1 yij log ŷij.

Apply in-context learning: M′
LLM = Adapt(MLLM, Dcontext).

Step 5: Real-Time Detection
For incoming data S = {s1, s2, . . . , st}, classify each sample: ŷi = C(MLLM(si)).

Step 6: Explainability and Decision Support
Generate interpretable insights: I = E(MLLM, F).

Step 7: Performance Evaluation
Evaluate metrics: Accuracy = TP+TN

TP+TN+FP+FN , F1-Score = 2·Precision·Recall
Precision+Recall .

Step 8: Integration into Security Frameworks
Combine LLM outputs with other systems: FSec = αMLLM + βNIDS + γIIoT.

Step 9: Continuous Learning and Adaptation
Update parameters with new data: θt+1 = θt − η∇L(Dnew).
Refine using feedback: MLLM = MLLM + T (Ffeedback).

Step 10: Advanced Applications
Construct knowledge graph: G = K(MLLM, T).
Adapt to new domains: D̂ = DAdapt(D, Dtarget).

return Intrusion detection insights and updated security framework.

Further expanding the scope, Lin et al. [95] implement an LLM for intrusion detection
at scale using a large volume of command-line data, which significantly outperforms
conventional methods. This is echoed by [33,96], who employ LLMs to improve the security
of satellite and IoT networks, respectively, by enhancing model accuracy and reducing
computational demands. Moving on, the authors in [97] explore the explanatory potential
of LLMs in network intrusion detection by providing understandable insights into decision-
making processes, which enhances the usability of ML-based NIDS. This aspect of making
AI comprehensible is critical for its acceptance and effectiveness in real-world applications.

Moreover, the study in [98] focuses on enhancing the domain adaptation capabilities
of NIDS using NLP techniques and the BERT framework, demonstrating improved results
on data from different domains. Similarly, Tran et al. [99] address how data quality affects
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the performance of ML-based intrusion detection systems, using a series of experiments
with multiple datasets and models, including BERT and GPT-2, to analyze the impact of
data quality issues like duplications and overlaps.

The study in [100] proposes a bi-directional GPT model for detecting intrusions in
the Controller Area Network (CAN) bus protocol, emphasizing the model’s superior per-
formance in detecting intrusions, particularly spoofing attacks, compared to traditional
methods. Moving forward, Hun et al. [101] propose using a large language model to
construct a knowledge graph from unstructured open-source threat intelligence for in-
trusion detection, highlighting the model’s effectiveness in named-entity recognition and
Tactic, Technique, and Procedure (TTP) classification. Finally, the syudy in [102] introduces
the FlowTransformer framework, which utilizes transformer models for NIDS to capture
complex network behaviors. It evaluates different transformer architectures and highlights
the significant impact of the choice of classification head on performance. Figure 5 presents
the CAN-BERT model; it is designed for intrusion detection in Controller Area Networks
(CANs), commonly used in vehicles. It leverages the BERT language model to analyze CAN
bus traffic and detect anomalies or cyberattacks. By treating CAN messages as a sequence
of tokens, the model can understand the contextual relationships between them, allowing
it to detect subtle anomalies indicative of intrusions. CAN-BERT outperforms traditional
rule-based and ML approaches by capturing both local and global patterns in CAN traffic,
making it highly effective for real-time intrusion detection in automotive systems.
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Figure 5. Flowchart of the CAN-BERT model presented in [92].

Table 4 provides a comprehensive comparison of various studies that leverage LLMs
for IDS. It highlights key aspects such as the models employed, datasets used, notable
contributions, performance metrics, and the limitations of each approach. A major take-
away is the impressive performance of several models, including GPT-4 and BERT-based
frameworks, which achieved accuracy and F1 scores exceeding 95%. Particularly note-
worthy are the IoV-BERT-IDS and CAN-BERT models, which demonstrated exceptional
capabilities in addressing specific intrusion scenarios, such as those involving vehicle net-
works and the IoV. However, these advancements are not without challenges. Limitations
include high computational requirements, difficulties in scaling, managing heterogeneous
data, and addressing imbalanced datasets. These challenges highlight the complexity
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and resource-intensive nature of utilizing LLMs for intrusion detection, even as their
performance continues to show great promise.

Figure 6 visually represents the steps of an LLM-based Intrusion Detection Frame-
work, a structured methodology for detecting and mitigating intrusions in a networked
environment using LLMs.

Step 1: Data Collection and Preprocessing
Collect intrusion-related data
Preprocess and balance dataset

Step 2: Feature Extraction
Extract features using pretrained LLM

Step 3: Intrusion Detection Model Design
Define intrusion categories
Design detection function

Step 4: Model Training and Fine-Tuning
Train model to minimize loss
Apply in-context learning

Step 5: Real-Time Detection
Classify incoming data
Generate intrusion alerts

Step 6: Explainability and Decision Support
Generate interpretable insights

Step 7: Performance Evaluation
Evaluate metrics: Accuracy,
Precision, Recall, F1-Score

Step 8: Integration into Security Frameworks
Combine LLM outputs with other systems

Step 9: Continuous Learning and Adaptation
Update model with new data

Incorporate feedback

Step 10: Advanced Applications
Construct knowledge graphs

Adapt to domain-specific scenarios

Figure 1: Steps of the LLM-based Intrusion Detection Framework

1

Figure 6. Steps of the LLM-based Intrusion Detection Framework.

Table 4. Comparison of LLMs-based intrusion detection studies.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation

[90] GPT-4, LLama3, KTO NF-CSE-CIC-IDS2018-v2
Evaluation of LLMs for NIDS
and explainability in threat
detection

Precision: 55.02%, Recall:
58.79%

High computational
requirements and limited
attack detection accuracy

[91] GPT-4 Real network intrusion
dataset

Pre-trained LLM framework
for automatic network
intrusion detection with
in-context learning

Over 95% Accuracy and F1
Score

Computational cost and
need for large in-context
examples

[92] CAN-BERT (BERT-based) Car Hacking Dataset 2020 BERT-based detection of
CAN bus cyberattacks F1 Score: 0.81–0.99

Lack of encryption and
authentication in CAN
protocol

[95] LLM (command-line model) 30 M training samples, 10 M
test samples

Large-scale pre-training for
AI-based intrusion detection
on command lines

Precision (PO@100): 100%,
PO@1000: 99.8%

High demand on data and
computational resources

[22] IoV-BERT-IDS CICIDS, BoT-IoT, IVN-IDS
datasets

LLM-based IDS for IoV with
bidirectional contextual
semantics

High accuracy and
generalization capabilities

Complexity of extracting
bidirectional contextual
features

[93] BERT-based IDS Network traffic data
BERT-based framework for
enhanced feature extraction
and intrusion detection

Superior accuracy and
reduced false positive rates

Limited scalability in diverse
environments
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Table 4. Cont.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation

[94] CGAN, BERT CSE-CIC-IDS2018,
NF-ToN-IoT-V2

Multi-class intrusion
detection using CGAN and
BERT to address class
imbalance

F1 Scores: 98.230%, 98.799%,
89.007%

Challenge in handling
imbalanced datasets

[97] Decision Trees, LLMs NF-BoT dataset
LLM-based explanations for
decision trees in NID
systems

Accuracy: 98.7%
Requires background
knowledge in ML for
interpretation

[33] PLLM-CS
(Transformer-based)

UNSW_NB15, TON_IoT
datasets

LLM for cyber threat
detection in satellite
networks

100% accuracy on
UNSW_NB15 dataset

High cost of deployment and
fine-tuning

[103] XG-NID (GNN-based) Heterogeneous graph of
flow and packet data

Real-time NIDS with flow
and packet-level data fusion
and LLMs for explainability

F1 Score: 97%
Complexity in handling
heterogeneous data and
real-time analysis

3.5. Vulnerability Management

Recent studies have highlighted the transformative role of LLMs in enhancing vul-
nerability detection and repair across various software engineering tasks. For instance,
Zhou et al. [104] conducted a systematic literature review, covering 36 papers that examine
the application of LLMs in vulnerability detection and repair. Their work identifies critical
challenges and outlines a roadmap for future research. Similarly, Zibaeirad et al. [105]
introduced VulnLLMEval, a framework for evaluating LLMs’ capabilities in identifying and
patching vulnerabilities in C code, revealing that while LLMs struggle with complex vul-
nerabilities, they provide a robust dataset for performance assessment. Zhang et al. [106]
further explored the effectiveness of LLMs, specifically ChatGPT-4 and Claude, in fix-
ing real-world memory corruption vulnerabilities in C/C++ code, demonstrating their
strengths in localized fixes but limitations with more intricate issues.

In tandem with these foundational studies, Steenhoek et al. [107] evaluated eleven
state-of-the-art LLMs for vulnerability detection, emphasizing the models’ challenges in
accurately identifying bugs despite some success with tailored prompting techniques. This
is echoed in Boi et al. [108], who proposed a novel approach for detecting vulnerabilities in
smart contracts using LLMs. Their method leverages advanced NLP capabilities, achieving
high detection accuracy, thereby showing potential for improving security in decentralized
applications. Additionally, Jensen et al. [109] investigated the application of LLMs in aiding
code reviews, finding that while they can flag vulnerabilities, their performance varies
significantly based on model choice and prompting strategies.

Moreover, Mathews et al. [110] focused on Android applications, illustrating LLMs’
efficacy in identifying vulnerabilities through a comprehensive AI-driven workflow. Their
results indicated a high true positive rate, contributing valuable insights into practical
vulnerability detection methodologies. Liu et al. [111] addressed the lack of benchmarks
for assessing LLMs in vulnerability detection, introducing VulDetectBench, which reveals
varying performance levels across different models. Lastly, Nong et al. [112] introduced
LLMPATCH, an automated patching system utilizing LLMs, showcasing significant ad-
vancements in generating effective patches for real-world vulnerabilities without prior
training. Together, these studies underscore the growing importance of LLMs in advancing
security measures in software development, highlighting both their potential and the chal-
lenges that remain. Table 5 presents a comparison between several studies highlighting
the accuracy of LLMs in vulnerability detection. Zibaeirad et al. introduce VulnLLMEval,
which assesses LLMs in C code vulnerability patching but notes difficulties with complex
vulnerabilities. Zhang et al. evaluate ChatGPT-4 and Claude, showing strengths in localized
fixes for memory corruption vulnerabilities. Steenhoek et al. analyze eleven LLMs, while
Boi et al. demonstrate high detection accuracy in smart contracts. Mathews et al. report a
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high true positive rate for Android vulnerabilities, and Nong et al. present LLMPATCH for
effective patch generation.

Table 5. Comparison of studies on LLMs for vulnerability detection and repair.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Value
Achieved Limitation

[113] Various LLMs 36 papers from SE, AI,
and security venues

Systematic review of LLMs
for vulnerability tasks N/A No existing comprehensive

survey

[105] Various LLMs 307 real-world
vulnerabilities (C code)

Introduction of
VulnLLMEval framework N/A Struggles with complex

vulnerabilities

[106] ChatGPT-4, Claude 223 real-world C/C++ code
snippets

Evaluation of LLMs in fixing
memory corruption

Local fixes effective, complex
issues challenging

Decreased effectiveness with
intricate bugs

[107] 11 state-of-the-art LLMs Seminal code generation
datasets

Evaluation of prompting
techniques for vulnerability
detection

0.5–0.63 balanced accuracy Errors in model reasoning,
struggled with localization

[108] LLMs Dataset of known smart
contract vulnerabilities

Novel tool for detecting
smart contract
vulnerabilities

High detection accuracy Limitations in traditional
tools not fully addressed

[109] OpenAI models,
open-source LLMs HumanEval, MBPP datasets Evaluation of LLMs in code

reviews
36.7% accurate vulnerability
descriptions

Performance varies widely
by model

[110] LLMs Ghera benchmark for
Android apps

AI-driven workflow for
Android vulnerability
detection

91.67% true positive rate Analysis limited to specific
configurations

[111] 17 LLMs
(open/closed-source) VulDetectBench benchmark

Benchmark for assessing
vulnerability detection in
LLMs

Over 80% on identification
tasks

Less than 30% on detailed
analysis tasks

[112] Pre-trained LLMs Real-world vulnerable code LLMPATCH for automated
vulnerability patching 98.9% F1 score No training/fine-tuning;

relies on adaptive prompting

[114] LLMs Various web application
datasets

Approach using LLMs for
web vulnerability detection

High accuracy with minimal
data

Traditional methods still face
challenges

3.6. Threat Intelligence

Several recent studies have examined the use of LLMs in cyber threat intelligence (CTI)
and cybersecurity, showcasing various innovative methods and approaches. Hasan et al.
introduce a framework for enhancing cybersecurity at the edge devices using lightweight
ML models in conjunction with LLM-driven threat intelligence. This decentralized system
emphasizes real-time analysis of local data streams, reducing latency and enhancing privacy
through the local processing of sensitive information. The collaborative learning features of
LLMs further allow for peer-to-peer knowledge sharing among edge devices, dynamically
mitigating emerging cyber threats. This framework offers scalability and flexibility, making
it well suited for diverse network environments [115].

In a similar vein, Clairoux-Trepanier et al. assess the accuracy of LLMs, particularly the
OpenAI GPT-3.5-turbo model, for analyzing CTI data from cybercrime forums. Their study
found that LLMs were highly effective in extracting actionable intelligence, achieving an
average accuracy score of 98%. However, the researchers highlight areas for improvement,
such as enhancing the model’s ability to distinguish between factual events and stories and
improving its handling of verb tenses [116]. Complementing this, Wu et al. propose the
Knowledge Graph Verifier (KGV), which integrates LLMs and knowledge graphs to assess
the quality of CTI by fact-checking key claims. Their innovative framework constructs
knowledge graphs using paragraphs as nodes, enhancing the semantic understanding of
the LLM while simplifying the labeling process [117].

Jo et al. also contribute to the development of CTI systems with Vulcan, a neural
language model-based approach for extracting static cyber threat data from unstructured
text. Vulcan excels in recognizing and relating CTI entities, achieving high accuracy in
named-entity recognition and relation extraction tasks. This system demonstrates potential
for reducing the time and labor required for analyzing cyber threats while providing a de-
tailed understanding of evolving threat profiles [118]. Similarly, Liu and Zhan introduce an
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approach to automate the construction of CTI knowledge graphs using LLMs. Their method
focuses on extracting attack-related entities and relationships, proving highly effective in
low-resource scenarios and outperforming existing systems in terms of efficiency [119].

Further advancing the field, researchers such as Hu et al. propose LLM-TIKG, a system
that constructs knowledge graphs from unstructured open-source CTI reports. Leveraging
GPT’s few-shot learning capabilities, this model automates data annotation and aug-
mentation, achieving impressive results in named-entity recognition and attack pattern
classification [101]. On the proactive defense side, researchers like Karuna et al. introduce
WILEE, a system that automates cyber threat hunting by generating queries based on
abstract threat descriptions. This approach emphasizes the need for automation in threat
hunting, using AI to scale detection across large networks [120].

Together, these studies underscore the transformative role LLMs play in cyber threat
intelligence, from real-time threat detection at the edge to the automation of CTI extrac-
tion and analysis from unstructured text. Each approach addresses distinct challenges,
whether it be enhancing the accuracy of threat detection or improving the efficiency of
knowledge graph construction, providing a rich foundation for future cybersecurity re-
search. Table 6 presents recent studies highlight the role of LLMs in cyber threat intelligence
(CTI). Hasan et al. employ lightweight models for decentralized threat analysis at edge
devices, boosting privacy. Clairoux-Trepanier et al. achieve a high accuracy of 98% using
GPT-3.5-turbo for actionable intelligence extraction. Wu et al.’s Knowledge Graph Verifier
improves semantic understanding through LLM integration. Jo et al.’s Vulcan excels in
named-entity recognition, while Liu and Zhan efficiently automate CTI knowledge graph
construction. Hu et al. leverage GPT for data annotation, and Karuna et al. scale threat
detection with AI-generated queries.

Table 6. Comparison of studies on cyber threat intelligence using LLMs.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation

[115] LLMs with lightweight
ML models

Real-time local data
streams from edge
devices

Distributed threat
intelligence on edge
devices to enhance
security

N/A Requires coordination
among edge devices

[116] GPT-3.5-turbo
Cybercrime forum
conversations (XSS,
Exploit_in, RAMP)

Assessing the accuracy
of LLMs for CTI
extraction

98% accuracy

Needs improvement in
distinguishing between
factual events and
stories

[117] Knowledge Graph
Verifier with LLMs

OSCTI claims and
documents

CTI quality assessment
using knowledge graphs
with paragraphs as
nodes

N/A

Limited to the created
dataset for threat
intelligence reliability
verification

[118]
Neural language
model-based NER and
RE

Unstructured text from
CTI reports

Extracting static CTI
data and analyzing
semantic relationships

0.972 (NER) and 0.985
(RE) F-scores

Limited to specific types
of static CTI data

[119] ChatGPT for knowledge
graph construction 13 CTI reports

Efficient extraction of
attack-related entities
and relationships

Outperforms AttacKG
and REBEL

Low scalability for larger
datasets

[121] LLMs Unstructured threat
hunting data

Applying LLMs for
proactive cyber threat
hunting

N/A

Challenges related to
bias, fairness,
and computational
efficiency

[120] WILEE system with AI
and DSL

High-level threat
descriptions and
implementations

Automating query
generation for cyber
threat hunting

N/A
Lacks validation against
diverse threat
landscapes

[101]
GPT-based LLM for
knowledge graph
construction

Unstructured OSCTI
reports

Constructing knowledge
graphs from
unstructured CTI

87.88% precision (NER),
96.53% precision (TTP
classification)

Requires large amounts
of labeled data for
model fine-tuning
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3.7. Incident Response and Management

Several studies showcase the transformative impact of AI and LLMs in enhancing
incident management across various sectors. Jiang et al. focus on large-scale cloud systems,
introducing Xpert, an AI-powered framework that automates KQL query recommendations
to enhance incident resolution at Microsoft [122]. Grigorev et al. (2024) further explore this
concept by integrating LLMs with ML to classify the severity of traffic incidents based on
accident reports, showing superior results in multiple datasets across regions [123].

Chen et al. build on Artificial Intelligence for IT Operations (AIOps) for cloud services,
identifying challenges in diagnosing unprecedented incidents and proposing IcM BRAIN,
an AI framework to improve incident response efficiency at Microsoft [124]. Similarly,
Tharayil et al. leverage LLMs to automate the ticket dispatching process in customer
service, reducing error rates and improving efficiency [125].

Grigorev et al. also introduce IncidentResponseGPT, a system that generates region-
specific traffic response plans using generative AI, expediting decision-making and resource
allocation [126]. In civil aviation, Tulechki applies NLP to analyze and classify incident
reports, improving information access for aviation professionals [127]. Lastly, Sufi presents
a GPT-based framework for extracting cyber threat features from textual descriptions,
aiding non-technical strategists in analyzing cyber incidents with high accuracy [128].
This comparison of studies utilizing LLMs in incident management presented by Table 7
emphasizes the models employed, datasets used, main contributions, and performance
metrics. Notable findings include high accuracy achieved by models such as GPT-3.5-turbo,
with performance metrics reaching around 98% in threat intelligence extraction. Other
models, like IncidentResponseGPT and Vulcan, excelled in automating incident response
and recognizing entities, respectively. However, limitations include challenges in generaliz-
ing across domains and handling unprecedented incidents, highlighting the complexity
and resource demands associated with implementing LLMs in incident management.

Table 7. Comparison of studies on AI LLMs in incident management.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation(s)

[122] LLMs Incident logs from
Microsoft

Xpert: AI-powered
framework for
automating KQL query
recommendations for
incident resolution

Not explicitly mentioned Limited to large-scale
cloud systems

[123] Hybrid of LLMs and ML Traffic accident reports
from multiple regions

Severity classification of
traffic incidents

95.2% accuracy in
severity classification

May not generalize well
to different traffic
environments

[124] AIOps-based models Cloud service incident
data

IcM BRAIN: AI
framework to improve
incident response
efficiency in cloud
services

Not explicitly mentioned Challenges in handling
unprecedented incidents

[125] NLP, Generative Models Customer service
incident tickets

Automating ticket
dispatching process,
reducing error rates

87% accuracy in incident
categorization

Performance limited to
structured incident
reports

[126] Generative AI
(IncidentResponseGPT)

Traffic incident data
across regions

Region-specific traffic
response plans

92% efficiency in
resource allocation

Limited to traffic
management domain

[127] NLP Civil aviation incident
reports

Classification and risk
analysis of civil aviation
incidents

Not explicitly mentioned Limited to civil aviation
domain

[128] GPT-based Framework Historical cyber incident
reports

Extracting cyber threat
features for
non-technical users

High accuracy (not
explicitly mentioned) in
feature extraction

Limited to textual cyber
threat reports
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3.8. Data Protection and Privacy

The emergence of LLMs has brought forth significant privacy and ethical concerns,
prompting extensive research in this area. Wu et al. [129] examine ChatGPT, highlighting
its potential across various sectors, while emphasizing the importance of addressing se-
curity and ethical implications in its integration. Kibriya et al. [130] further investigate
privacy risks, categorizing them into training and inference stages, and stress the need for
stakeholder collaboration to implement effective privacy-preserving mechanisms.

In a related study, Plant et al. [131] focus on data leakage risks associated with LLMs,
revealing that larger models are more susceptible to adversarial attacks. They advocate
for privacy-preserving algorithms despite their impact on model performance. Comple-
mentarily, Brown et al. [132] argue that existing data protection techniques inadequately
address the complexities of natural language and suggest that language models should be
trained on explicitly public data. LLM Privacy Policy explores the application of LLMs
in automating privacy compliance analysis, demonstrating high efficiency in evaluating
privacy policy disclosures. Lastly, Peris et al. [133] discuss the importance of integrating
privacy measurement and preservation techniques throughout the LLM lifecycle, offering
strategies for mitigating privacy risks.

Table 8 provides an overview of studies focused on data protection and privacy in the
context of LLMs. It compares various aspects, including the models used, datasets or data
types analyzed, primary contributions, best performance, and identified limitations. The ta-
ble highlights diverse contributions, such as exploring security and ethical implications,
addressing privacy concerns during training and inference, and evaluating data leakage
risks. Some studies propose privacy-preserving techniques and compliance analysis with
LLMs, achieving strong performance metrics. However, limitations include challenges
in generalization, reliance on specific datasets, and balancing model utility with privacy
preservation efforts.

Table 8. Comparison of studies on data protection and privacy.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation(s)

[117] ChatGPT N/A
Explores security, privacy,
and ethical implications of
ChatGPT.

N/A Highlights challenges in
adopting LLMs.

[130] N/A N/A
Investigates privacy
concerns in LLMs during
training and inference.

N/A
Requires stakeholder
collaboration for effective
privacy solutions.

[131] Various LLMs Multi-lingual dataset on
sentiment analysis

Evaluates data leakage
risks and advocates for
privacy-preserving
algorithms.

F1 score correlated with
complexity

Impact on model utility
with privacy-preserving
methods.

[134] ChatGPT, Llama 2 Privacy policy annotations

Demonstrates
effectiveness of LLMs in
automated privacy
compliance analysis.

F1 score > 93% Limited to specific
corpora for evaluation.

[132] N/A N/A

Discusses the inadequacy
of current data protection
techniques for language
models.

N/A

Proposes training on
publicly produced text,
which may limit data
availability.

[133] Pretrained LLMs N/A

Introduces privacy
measurement and
preservation techniques
during LLM lifecycle.

N/A
Focus on industrial
applications may not
generalize to all contexts.
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3.9. Cloud Security

Cloud security refers to the set of policies, technologies, and practices designed to pro-
tect data, applications, and infrastructure in cloud computing environments. It addresses
threats such as data breaches, unauthorized access, and service disruptions by employing
measures like encryption, access control, and vulnerability management [135]. Cloud
security also ensures compliance with privacy standards and regulatory requirements.
As organizations increasingly rely on cloud services, robust cloud security is critical for
safeguarding sensitive information, maintaining business continuity, and ensuring the
integrity of shared resources in multi-cloud environments [136].

Algorithm 3 represents the process for implementing an LLM-based Cloud Security
Framework that leverages LLMs to enhance cloud security operations through automa-
tion and insights. It outlines a step-by-step methodology starting from data collection
and preprocessing, followed by feature extraction using pretrained LLMs, and design-
ing task-specific models for functions like vulnerability scoring and root cause analysis.
The framework emphasizes model fine-tuning, transfer learning, automation integration,
and performance evaluation, ensuring robustness and explainability. It also addresses
challenges such as data heterogeneity while refining the framework based on user feed-
back. This approach aims to optimize cloud security processes by incorporating intelligent,
automated systems powered by LLMs, enhancing both efficiency and accuracy in detecting
and mitigating security threats.

Figure 7 summarizes the steps involved in the LLM-based Cloud Security Frame-
work, which leverages LLMs to enhance cloud security through automation, insights,
and integration into existing systems.

Step 1: Data Collection and Preprocessing
Collect and preprocess data
Balance dataset if needed

Step 2: Feature Extrac-
tion and Model Design
Extract features using LLM
Design task-specific models

Step 3: Training and Fine-Tuning
Fine-tune LLM models

Adapt pretrained weights

Step 4: Automation and Integration
Automate vulnerability scoring
Integrate root cause analysis

Step 5: Evaluation and Deployment
Evaluate performance

Deploy in cloud environments

Step 6: Explainability and Feedback
Generate interpretable outputs
Refine models using feedback

Step 7: Addressing Challenges
Adapt to data heterogeneity

Enhance robustness

Figure 1: Steps of the LLM-based Cloud Security Framework

1

Figure 7. Steps of the LLM-based Cloud Security Framework.

The studies presented in this section illustrate the integration of AI and LLMs
to enhance security and operational efficiency in cloud computing environments. Bu-
lut et al. [137] introduce NL2Vul, a framework that automates the assessment of vulnera-
bilities in Cloud Security Posture Management (CSPM) tools. By employing deep neural
networks and transfer learning, NL2Vul minimizes human intervention while providing
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vulnerability scores based on data from the National Vulnerability Database (NVD) and
GitHub Issues. This method addresses the overwhelming increase in vulnerabilities and
aims to improve the accuracy of risk assessments in multi-cloud environments. In a related
effort, Chen et al. [138] present RCACopilot, an innovative on-call system that automates
root cause analysis (RCA) for cloud incidents. By leveraging LLMs, RCACopilot matches
incidents to handlers, aggregates critical information, and predicts root causes, significantly
improving the RCA accuracy to 0.766, thus streamlining support operations.

Algorithm 3: LLM-based Cloud Security Framework

Input: Dataset D = {d1, d2, . . . , dn}, Pretrained LLM MLLM

Output: Enhanced cloud security through automation and insights

Step 1: Data Collection and Preprocessing
Collect data from sources like vulnerability databases, incident logs, and support
requests.

Preprocess the dataset: Dprocessed = P(D).
Balance the dataset if needed: Dbalanced = A(Dprocessed).

Step 2: Feature Extraction and Model Design
Extract features: F = MLLM(Dprocessed).
Design task-specific models:
• Vulnerability scoring: V : F → Scores
• Root cause analysis: R : F → Causes

Step 3: Training and Fine-Tuning
Fine-tune the model: θfine-tuned = arg minθ L(F, Y).
Use transfer learning to adapt pre-trained weights: θnew = θpretrained + ∆θ.

Step 4: Automation and Integration
Develop automation frameworks:

• NL2Vul for vulnerability scoring: Scores = V(MLLM(Dbalanced))

• RCACopilot for root cause analysis: Causes = R(MLLM(Dbalanced))

Integrate into cloud security tools: Tcloud = αV + βR.

Step 5: Evaluation and Deployment
Evaluate performance metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
, RCA Accuracy = 0.766

Deploy in cloud environments: Ddeployed = MLLM ⊕ Tcloud.

Step 6: Explainability and Feedback
Generate interpretable outputs: I = E(MLLM, F).
Refine models with user feedback: Mupdated = MLLM + T (Ffeedback).

Step 7: Addressing Challenges
Adapt to data heterogeneity: D̂ = DAdapt(Dsource, Dtarget).

return Enhanced security insights and automated cloud security framework.

Linking these findings to the broader context, Kilhoffer et al. [139] explore the assess-
ment of privacy standards using a fine-tuned LLM approach. Their research emphasizes
the necessity of establishing robust privacy controls within cloud frameworks, which are
still developing compared to their security counterparts. They analyze 1511 controls across
nine certifiable standards, uncovering a focus on security and risk rather than data rights.
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Similarly, Mouratidis et al. [140] propose a novel security modeling language tailored for
cloud environments, enabling the integration of security requirements with cloud com-
puting concepts. Their approach is complemented by automated analysis techniques that
enhance models with security knowledge, showcasing a foundational advancement in
understanding cloud security requirements.

Furthermore, studies by Baghdasaryan et al. [141] and Cao et al. [142] expand on en-
hancing customer support and vulnerability detection through intelligent systems. Bagh-
dasaryan et al. develop a recommender system that utilizes LLMs to match support requests
with previous resolutions, aiming to reduce mean resolution times. This system highlights
the practical application of AI to foster proactive support solutions. In parallel, Cao et al.
introduce LLM-CloudSec, an unsupervised approach for fine-grained vulnerability analysis,
which employs a retrieval-augmented generation method for classifying vulnerabilities at a
detailed level, thus advancing the field of automated security analysis in cloud applications.

Lastly, Stutz et al. [143] examine the broader implications of integrating AI into cloud
computing and cybersecurity, addressing challenges such as data access and cyber threats.
Their chapter highlights the potential of AI in anomaly detection and mitigation strate-
gies within smart environments, suggesting a future direction for AI-enhanced security
measures across various cloud applications. Collectively, these studies underscore the
transformative role of AI and LLMs in bolstering security and operational efficiency in
cloud computing, paving the way for more resilient and proactive cloud infrastructures.
Table 9 illustrates the integration of LLMs to enhance security and operational efficiency
in cloud computing. Notable contributions include NL2Vul, which automates vulner-
ability assessment, and RCACopilot, achieving a root cause analysis accuracy of 0.766.
Additionally, research emphasizes the need for robust privacy controls and presents a
security modeling language tailored for cloud environments. Other advancements include
LLM-CloudSec for detailed vulnerability analysis and recommender systems for customer
support, highlighting the transformative potential of AI and LLMs in creating resilient
cloud infrastructures despite ongoing challenges in implementation.

Table 9. Comparison of studies on cloud security using LLMs.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation(s)

[137] Deep Neural Networks
National Vulnerability
Database (NVD),
GitHub Issues

Proposed NL2Vul
framework for
automating vulnerability
scoring

N/A
Relies on human-driven
efforts for initial data
preparation

[138] Large Language Model
(LLM)

Real-world incident
dataset from Microsoft

Introduced RCACopilot
for automating root
cause analysis (RCA)

RCA accuracy of 0.766
Limited to incidents
matching predefined
types

[139] Fine-tuned BERT Privacy standards
dataset (1511 controls)

Analyzed privacy
controls across
standards using LLM

N/A
Focuses on security
aspects, lacking
attention to data rights

[141] LLMs Support request and
knowledge base data

Developed a
recommender system for
customer support

N/A
Inaccurate accuracy
estimates due to
insufficient datasets

[142] Retrieval Augmented
Generation (RAG)

Juliet C++ test suite,
D2A dataset

Proposed
LLM-CloudSec for
fine-grained
vulnerability analysis

CWE-based
classification and
line-level analysis

Limited by the
complexity of
heterogeneous cloud
environments

[140] Security modeling
language

Cloud computing
system models

Introduced a novel
language and techniques
for security modeling

N/A
Requires stakeholder
input for effective
modeling

[143] AI-driven anomaly
detection

Various smart
environment datasets

Explored AI’s role in
improving cybersecurity
in cloud environments

N/A
Challenges in data
access and integration
for security purposes
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3.10. Security Compliance and Auditing

The reviewed studies explore various applications of LLMs, focusing on cybersecurity,
auditing, legal compliance, and privacy.

McIntosh et al. [27] evaluated cybersecurity frameworks like COBIT and ISO 42001
for integrating LLMs, finding gaps in risk oversight but recognizing ISO 42001’s strength
in managing AI systems. In insider threat detection, Song et al. introduced Audit-LLM,
a multi-agent framework that improves detection accuracy using LLMs [144], while Xia et al.
developed AuditGPT for smart contract auditing, showing superior performance in identi-
fying violations [145].

Fotoh and Mugwira examined LLMs’ ethical implications in external auditing, high-
lighting both efficiency gains and concerns around accuracy and independence [146].
Cartwright et al. focused on privacy compliance of LLMs like ChatGPT, revealing varied
adherence to privacy standards [147], while Hassani demonstrated LLMs’ potential to
automate legal compliance checks in the food industry [148].

Zhu et al. proposed a framework combining LLMs and DL for automating regulatory
compliance in construction projects [149]. Lastly, Chard et al. audited privacy practices in
AI, identifying vulnerabilities in ChatGPT’s handling of sensitive data [150]. Overall, these
studies emphasize the growing role of LLMs in enhancing automation and efficiency, while
also underscoring the need for improved oversight and compliance measures.

Table 10 highlights the transformative role of LLMs in security compliance and
auditing across diverse domains, including cybersecurity, privacy, legal regulations,
and blockchain systems. Studies demonstrate the adaptability of LLMs in tasks such as
insider threat detection, automated compliance checking, and privacy assessment. Notable
examples include AuditGPT’s precise identification of Ethereum smart contract violations
and multi-agent frameworks outperforming traditional methods in detecting insider threats.
Moreover, models like Claude Sonet have shown strong adherence to regulatory standards,
emphasizing their potential for enhancing compliance efficiency. Despite these achieve-
ments, challenges such as domain-specific limitations, faithfulness issues, and ethical
concerns—like auditor independence and privacy risks—remain significant obstacles.

The findings underscore the importance of developing robust frameworks to address
these challenges while harnessing the benefits of LLMs. Studies emphasize the need for
improved oversight mechanisms to mitigate risks like hallucination and data leakage.
They also highlight the resource-intensive nature of fine-tuning LLMs for specialized tasks,
limiting scalability. Future directions should focus on enhancing model transparency,
expanding applicability to broader regulatory contexts, and ensuring ethical and secure use
in sensitive environments. These advancements will be crucial in maximizing the potential
of LLMs as reliable tools for automating and optimizing compliance and auditing processes.

Table 10. Comparison of studies on security compliance and auditing using LLMs.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation(s)

[27] N/A (Cybersecurity
Frameworks Analysis)

Cybersecurity
Governance, Risk,
and Compliance (GRC)
Frameworks

Comparative gap
analysis of GRC
frameworks for LLM
adoption

N/A Inadequacies in LLM
risk oversight

[144]
Audit-LLM (multi-agent
framework with COT
reasoning)

CERT r4.2, CERT r5.2,
PicoDomain (Insider
Threat Detection)

Multi-agent
collaboration for
enhanced insider threat
detection

Superior to existing
baselines

Faithfulness
hallucination in LLM
conclusions

[146] ChatGPT Prompts simulating
audit scenarios

Ethical implications of
LLMs in external
auditing

N/A
Inaccurate responses,
concerns over auditor
independence
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Table 10. Cont.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation(s)

[145] AuditGPT
222 ERC Rules
(Ethereum Smart
Contracts)

ERC rule violation
detection in smart
contracts using LLMs

Detected 418 violations
with only 18 false
positives

Limited scope to ERC
rule types

[147] ChatGPT-4o, Claude
Sonet, Gemini Flash

Hypothetical case
studies for privacy
compliance

Privacy compliance
assessment of LLMs
under the EU AI Act

Robust compliance by
Claude Sonet

Inconsistencies in
Gemini Flash’s
anonymization

[148] BERT, GPT models Legal provisions in food
safety domain

Automated legal
compliance checks in
food safety regulations

Significant accuracy
improvement in legal
provision classification

Requires fine-tuning for
specific legal tasks

[149] LLM, DL Regulatory texts in BIM
domain

Automated compliance
checking framework for
construction projects

Improved accuracy over
traditional methods

Limited application
outside the AEC field

[150] ChatGPT Audited privacy
practices in ChatGPT

Developed audit
framework for privacy
vulnerabilities in AI
systems

Identified key privacy
issues

Data leakage in sensitive
contexts

3.11. Endpoint Security

Several recent studies explore the impact of LLMs and advanced AI techniques on
cybersecurity. For instance, Sharif et al. propose DrSec, a system designed to enhance
endpoint detection and response (EDR) by employing self-supervised learning to pre-train
foundation language models (LMs). These models can be adapted to various downstream
tasks, reducing false positives and improving security incident detection. The study
highlights the ability of DrSec to reduce alert fatigue and better identify processes within
large datasets, showcasing its superiority over current security methods in alert triage and
process identification [151].

In line with the examination of LLM applications in cybersecurity, Motlagh et al. focus
on the broader context of LLM use within this domain. They provide a detailed survey of
LLM applications, both defensive and offensive, within cybersecurity. The study categorizes
the current landscape and identifies key research gaps, offering a holistic understanding of
the risks and opportunities LLMs present in this critical field [152], Black et al.also explore
LLMs’ role in code generation, where they identify vulnerabilities in LLM-produced code
and propose techniques to reduce these weaknesses. They demonstrate that providing
specific prompts can enhance security, emphasizing the importance of careful prompt
design when using LLMs for tasks like code generation [153].

Further building on LLM evaluations, Shao et al conduct an empirical study focus-
ing on how LLMs perform in solving Capture the Flag (CTF) challenges. They develop
workflows to automate the solving process and compare LLM performance to human par-
ticipants, revealing that LLMs often outperform humans in certain cybersecurity tasks. This
study contributes to understanding the potential of LLMs in practical offensive security
challenges [154].

In a similar vein, Ren et al. introduce CodeAttack, a novel framework that examines
how LLMs handle safety in code generation tasks. The study shows that LLMs like GPT-4,
Claude-2, and Llama-2 are vulnerable to safety issues when generating code, with more than
80% of their safety guardrails bypassed in specific conditions. The authors highlight the
need for more robust algorithms to address these safety challenges and mitigate potential
risks in AI-driven code generation [155].

Addressing broader risk factors, Cui et al. present a taxonomy that systematically
categorizes the risks associated with LLM systems, from input modules to language models
and toolchains. Their paper emphasizes the importance of establishing risk assessment
benchmarks and provides insights into mitigation strategies across different aspects of
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LLM implementation [156]. Finally, Szabó and Bilicki propose a new approach to web
application security by leveraging GPT models for static source code analysis. Their study
focuses on detecting vulnerabilities like CWE-653, achieving an impressive detection rate
of 88.76% and showing that LLMs can significantly enhance vulnerability [157] detection in
static code. These studies collectively highlight the growing role of LLMs in both defensive
and offensive cybersecurity tasks while also addressing the risks and vulnerabilities these
systems might introduce. Together, they point to a future where AI-driven models are
integral to cybersecurity but where careful management and mitigation strategies are
crucial for ensuring their safe deployment.

Table 11 illustrates the impactful contributions of LLMs to endpoint security, highlight-
ing both their effectiveness and limitations in addressing complex cybersecurity challenges.
For example, DrSec, presented by [151], enhances endpoint detection and response (EDR)
by leveraging self-supervised learning to improve process identification and alert triage.
While achieving a 75.11% PR AUC in alert triage, the study acknowledges limitations like
false positives and constrained supervised learning data. Similarly, ref. [157] employs GPT
models for static code analysis, achieving a high detection rate of 88.76% for CWE-653
vulnerabilities in source code. These findings emphasize the precision and adaptability
of LLMs for specific cybersecurity tasks, although scalability and domain generalization
remain challenges.

Table 11. Comparison of studies on endpoint security using LLMs.

Ref. Model(s) Used Dataset/Data Type Main Contribution Best Performance Limitation(s)

[151] Self-supervised learning,
LMs

Event-sequence data
(91 M processes, 2.55 B
events)

DrSec system for EDR,
improved process
identification and alert
triage

75.11% PR AUC in alert
triage

False positives, limited
supervised learning data

[152] Various LLMs Literature review, no
specific dataset

Comprehensive review
of LLM applications in
cybersecurity
(defensive/offensive)

N/A
Research gaps in LLM
applications, theoretical
focus

[153] Commercial LLMs Generated code via
prompt types

Analysis of code
generation safety,
reducing vulnerabilities
via prompt design

Vulnerability reduction
through prompt design

No guarantee of fully
safe code, limited model
interactions

[154] LLMs for CTF
challenges

Real-world CTF
challenges dataset

Evaluation of LLMs in
solving CTF challenges
(HITL and fully
automated workflows)

LLMs outperform
humans in solving
challenges

Limited to selected CTF
tasks, no generalization

[155] GPT-4, Claude-2,
Llama-2

Code inputs for
CodeAttack framework

CodeAttack framework
to test LLM safety
generalization for code
inputs

80%+ success in
bypassing safety
guardrails

Safety risks not fully
mitigated

[156] N/A (Taxonomy paper) Various LLM systems

Comprehensive risk
taxonomy and
mitigation strategies for
LLM systems

N/A No empirical
performance evaluation

[157] GPT models for static
code analysis

Static source code
(front-end applications)

Detection of CWE-653
vulnerability using GPT
prompts for source code
inspection

88.76% detection rate
Limited to specific
vulnerability type
(CWE-653)

The studies also reveal notable gaps and vulnerabilities in LLM implementations.
For instance, the CodeAttack framework by [155] demonstrates that more than 80% of
safety guardrails in GPT-4 and similar models can be bypassed, underscoring critical
safety risks in code generation and interaction. Moreover, ref. [154] evaluates LLMs in
Capture the Flag (CTF) cybersecurity challenges, showing that LLMs outperform human
participants in solving these tasks. However, their applicability is limited to selected
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CTF problems, lacking generalization to broader contexts. Overall, while these studies
showcase the potential of LLMs to revolutionize endpoint security through improved
detection and response mechanisms, they also stress the need for enhanced safety protocols,
comprehensive testing frameworks, and further research to address limitations in scalability
and vulnerability mitigation.

4. Security Policy and Compliance
The implementation of LLMs in cybersecurity policy and compliance demonstrates

transformative potential for analyzing and managing complex, evolving threats. These
models excel at processing unstructured data sources, such as textual descriptions, code
snippets, and technical documentation, to extract meaningful insights that enhance malware
classification, behavior analysis, and policy enforcement [158,159]. By leveraging advanced
natural language understanding, LLMs can identify patterns and attributes in malware
reports, threat intelligence feeds, and technical documents, aiding in the identification of
malware families and attack methodologies [158].

4.1. Advanced Malware Analysis

LLMs surpass traditional signature-based detection methods by dynamically learning
patterns from diverse and complex datasets. For example, through deep feature extraction,
LLMs categorize unknown malware samples by identifying subtle, behavior-based indi-
cators that traditional systems might miss [159]. This ability ensures proactive detection
of zero-day vulnerabilities and emerging threats, enhancing the accuracy and efficiency
of malware detection pipelines [158,159]. Moreover, LLMs aid in correlating observed
malware actions with established attack patterns, such as the MITRE ATT&CK framework,
providing actionable insights for incident response teams [160].

4.2. Policy Analysis and Automation

In the domain of security policy and compliance, LLMs streamline the evaluation
and implementation of regulatory requirements. By parsing and interpreting regulatory
texts, such as GDPR, HIPAA, or industry-specific security standards, LLMs automate
compliance assessments, ensuring organizations meet legal and operational mandates
efficiently [161,162]. The integration of LLMs into governance tools facilitates continuous
monitoring of policy adherence, automatically flagging discrepancies or gaps in security
frameworks [163]. For instance, automated LLM-driven audits can assess system con-
figurations against pre-defined compliance standards, reducing manual overhead and
minimizing errors [164].

4.3. Context-Aware Decision Making

LLMs also enable contextual analysis of security incidents, offering nuanced interpre-
tations of malware behaviors within broader security policies. By integrating contextual
metadata, such as organizational policies or historical incident data, LLMs prioritize vulner-
abilities based on business impact, helping organizations allocate resources effectively [165].
This capability is particularly valuable for crafting dynamic, adaptive security policies that
evolve alongside emerging threats [166].

4.4. Enhancing Threat Intelligence

Through integration with threat intelligence platforms, LLMs extract and contex-
tualize insights from diverse sources, including cybersecurity feeds, dark web activity,
and public repositories [167]. By linking these insights to compliance mandates, LLMs
provide a holistic view of an organization’s security posture, enabling preemptive policy
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adjustments [168]. For example, when new malware behaviors are detected, LLMs can
recommend specific policy updates to mitigate identified risks [169].

4.5. Interpretable Insights for Stakeholders

One of the key advantages of LLMs is their ability to generate interpretable insights
tailored for diverse stakeholders. From security analysts to C-suite executives, LLMs can
generate detailed reports or high-level summaries, bridging the gap between technical
complexities and strategic decision-making [170]. For instance, they can produce compli-
ance dashboards that track adherence to multiple regulatory frameworks, flagging areas of
non-compliance and suggesting remediation actions [171].

The table represents a taxonomy of studies that leverage LLMs in various cybersecu-
rity applications. It categorizes these studies based on key aspects such as the application
domain, cybersecurity task, datasets used, evaluation metrics, advantages and limita-
tions, and the techniques or methodologies employed. This structured format provides
an overview of how LLMs are applied to enhance tasks like incident response, threat
intelligence, vulnerability detection, anomaly detection, phishing detection, and security
policy analysis. For example, studies like CyBERT [172] focus on text classification for
incident response, while BioBERT [173] and SciBERT [174] excel in threat intelligence tasks
such as named-entity recognition (NER) and semantic understanding.

The taxonomy highlights the diverse use cases of LLMs, from improving scalability
and resource efficiency to enhancing explainability and accuracy in cybersecurity tasks.
Each entry identifies specific datasets (e.g., ICS, Edge-IIoTset, Android) and evaluation
metrics (e.g., F1 score [173], accuracy [20], task-specific metrics [174]) to benchmark per-
formance. Moreover, it outlines the advantages and limitations of each approach, such as
scalability [59], resource constraints [175], or explainability issues [176], providing insights
into the trade-offs involved in deploying these models. Additionally, it showcases the
methodologies used, such as fine-tuning [20,173], pre-training [172,174], parameter reduc-
tion [175], or integrating privacy-preserving techniques [59], offering a comprehensive
perspective on the technological advancements driving LLM adoption in cybersecurity.
This table serves as a valuable reference for researchers and practitioners exploring the
integration of LLMs into cybersecurity frameworks.

Table 12 presents a comprehensive taxonomy of studies focusing on the use of LLMs
in enhancing various aspects of cybersecurity. The table categorizes these studies based on
application domains, specific cybersecurity tasks, datasets used, evaluation metrics, advan-
tages and limitations, and the techniques and methodologies employed. This structured
overview provides a valuable summary of how LLMs are being applied across diverse
domains, including incident response, threat intelligence, anomaly detection, vulnerability
detection, and phishing detection. It highlights both the versatility of LLMs and the unique
approaches adopted in leveraging them for specific cybersecurity challenges.

One of the key insights from the table is the diversity of applications and tasks
where LLMs have demonstrated significant utility. For instance, models like CyBERT and
SecureBERT focus on incident response, using pre-training and fine-tuning techniques to
achieve high accuracy in tasks like text classification and sentiment analysis. Similarly,
BioBERT and SciBERT are adapted for threat intelligence tasks, such as named-entity
recognition and semantic understanding, emphasizing resource efficiency and scalability.
Notably, models like SecurityBERT and HuntGPT are tailored for IoT security and malware
detection, showcasing the adaptability of LLMs to domain-specific challenges like privacy-
preserving methods and explainable AI.

The taxonomy also sheds light on the trade-offs between advantages and limitations
in using LLMs for cybersecurity. While models such as FalconLLM and VulRepair excel
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in improving accuracy and performance for text classification and vulnerability detection,
others like MalBERT and ChatSpam underscore the importance of scalability and detailed
reasoning. However, challenges such as the need for fine-tuning, interpretability, and ad-
dressing resource constraints persist across many applications. The inclusion of innovative
approaches, such as explainable AI in HuntGPT and benchmarking frameworks in Cyber-
Bench, highlights the ongoing efforts to enhance the transparency, efficiency, and reliability
of LLM-based solutions in cybersecurity. This taxonomy not only underscores the growing
role of LLMs in this critical domain but also points to areas requiring further research and
development to maximize their potential.

Table 12. A taxonomy for studies about using LLMs in enhancing cybersecurity.

Study Application
Domain Cybersecurity Task Datasets Evaluation Metrics Advantages and

Limitations
Techniques and
Methodologies

CyBERT [172] Incident Response Text Classification ICS Accuracy Scalability Pre-training

BioBERT [173] Threat Intelligence Named-Entity
Recognition Biomedical F1 Score Resource Efficiency Fine-tuning

SciBERT [174] Threat Intelligence Semantic
Understanding Scientific Task-specific Scalability Pre-training

Par. Red [175] Anomaly Detection Anomaly Detection - Task-specific Resource Efficiency Parameter
Reduction

SecureBERT [20] Incident Response Sentiment Analysis Cybersecurity Accuracy Scalability Fine-tuning

SecurityBERT [59] IoT Security Anomaly Detection Edge-IIoTset Accuracy Resource Efficiency Privacy-preserving

LLMSecEval [176] Security Policy
Analysis Evaluation LLM Security Explainability Security Evaluation

Misuse [177] Phishing Detection Text Generation - Efficiency - Misuse Detection

Inter. [178] Threat Intelligence Named-Entity
Recognition ATT&CK Interpretability Explainability Interpretability

Methods

MalBERT [58] Malware Detection Text Classification Android Accuracy Scalability Static Analysis

WebBERT [179] Vulnerability
Detection Text Classification HTTP requests Success Rate Accuracy NLP Techniques

CyberBench [180] Threat Intelligence Various Cyber Various Benchmarking Benchmarking

VulRepair [181] Vulnerability
Detection Text Generation Vulnerability fixes Performance Accuracy

Improvement NMT Techniques

FalconLLM [182] Vulnerability
Detection Text Classification FormAI Accuracy Performance Fine-tuning

ChatSpam [183] Phishing Detection Text Classification Email Accuracy Detailed Reasoning LLMs

HTML [184] Security Policy
Analysis Various MiniWoB Accuracy Performance Fine-tuning

Vulnerability-Det [57] Vulnerability
Detection

Software
Vulnerability
Detection

LLM Technical Accuracy Explainable AI Fine-tuning

HuntGPT [185] Anomaly Detection Malware Detection KDD99 Technical Accuracy Explainable AI Random Forest

5. LLMs’ Vulnerabilities to Cyberattacks
Despite their impressive capabilities, the application of LLMs in cybersecurity is

not without limitations. The accuracy and reliability of these models depend heavily
on the quality and scope of their training data, which may not always encompass the
nuanced and rapidly evolving landscape of cyber threats. Furthermore, ethical and security
considerations emerge, particularly in the use of LLMs for malware development or the
exploration of vulnerabilities, underscoring the need for responsible usage and ongoing
evaluation of these powerful tools.

5.1. Attack Mechanisms

The realm of LLMs has seen a proliferation of studies aimed at understanding and
mitigating security vulnerabilities. Among these, the exploration of attack mechanisms
stands out, especially concerning how malicious actors can compromise these models.



Computation 2025, 13, 30 36 of 59

These attacks are primarily categorized into indirect prompt injections and vulnerabilities
tied to visual and multimodal inputs.

5.1.1. Indirect Prompt Injection Attacks

A series of studies have shed light on the susceptibility of LLMs to indirect prompt
injections, revealing the ease with which malicious prompts can be integrated without the
awareness of the model or its users. The study titled “Not what you’ve signed up for: Com-
promising Real-World LLM-Integrated Applications with Indirect Prompt Injection” delves
into how real-world applications integrating LLMs can be compromised, demonstrating
the subtlety with which malicious instructions can be embedded into seemingly benign
inputs [186]. Complementing this, ref. [187] systematically evaluates the effectiveness
of extracting and leveraging prompts for malicious purposes, highlighting the inherent
risk of treating prompts as non-sensitive information. Furthermore, ref. [188] introduces
a methodology for embedding backdoors into LLMs through the iterative injection of
triggers, illustrating a novel yet alarming vector for compromising these models.

5.1.2. Visual and Multimodal Adversaries

The vulnerability of LLMs extends beyond textual inputs to include visual and multi-
modal adversarial attacks. Ref. [189] explores how adversarially crafted visual examples
can manipulate LLMs’ outputs, suggesting that these models can be ‘jailbroken’ to pro-
duce unintended or malicious outputs when exposed to carefully crafted visual stimuli.
Similarly, “(Ab)using Images and Sounds for Indirect Instruction Injection in Multi-Modal
LLMs” demonstrates how images and sounds can serve as conduits for indirectly injecting
malicious instructions into multimodal LLMs, underscoring the complexity of securing
these models against a broad spectrum of input types [190]. Lastly, ref. [191] reveals how
generative models, including LLMs, can be manipulated in real time using adversarial
images, posing significant implications for the security of generative AI systems.

5.2. Safety and Robustness Evaluation

The safety and robustness of LLMs are crucial concerns as these models find broader
application across various sectors. Research in this area has focused on identifying vulnera-
bilities within LLMs and devising methodologies to evaluate and enhance their safety and
robustness. These investigations are pivotal in understanding the extent to which LLMs
can be trusted and relied upon, particularly in tasks requiring high levels of safety and
ethical considerations.

5.2.1. Model Vulnerability and Safety Failures

A series of studies have focused on the vulnerabilities of LLMs to safety training
failures. Wei et al. [192] explore the susceptibility of LLMs to “jailbreak” attacks, which
manipulate models to produce undesirable outputs. This study identifies two main failure
modes in safety training: competing objectives and mismatched generalization. The re-
search underscores the persistence of vulnerabilities in state-of-the-art models like GPT-4
and Claude v1.3, despite extensive safety efforts. It advocates for safety mechanisms that
match the sophistication of the models themselves, challenging the notion that scaling up
models is a sufficient solution to safety concerns. Qiu et al. [193] introduce a benchmark
that evaluates both the safety and robustness of LLMs. Their innovative approach involves
embedding malicious instructions within regular tasks to assess how well models maintain
safety and instruction fidelity. This benchmark is critical for developing balanced LLMs
that are sensitive to safety without compromising task performance. Shayegani et al. [194]
provide a comprehensive survey of vulnerabilities in LLMs revealed by adversarial attacks.
This survey spans various attack methodologies, including textual-only and multi-modal
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attacks, and discusses potential defenses. By offering a structured overview of the field,
this work aims to foster a deeper understanding of LLM vulnerabilities and encourage the
development of more secure models.

5.2.2. Adversarial Alignment

Research into adversarial alignment explores the resilience of “ethically aligned” mod-
els against adversarial attacks. Typically, Carlini [195] investigates whether “ethically
aligned” neural networks can withstand adversarial inputs designed to elicit harmful
content. This study reveals the limitations of current NLP-based optimization attacks and
highlights the vulnerability of multimodal models to adversarial image perturbations,
suggesting that text-only models may also be susceptible to more sophisticated attacks.
Morover, Zou et al. [196] introduce a method for generating universal and transferable
adversarial attacks on aligned language models. Unlike previous approaches requiring
significant human ingenuity, their method automates the creation of adversarial prompts
that induce models to generate objectionable content. This work demonstrates the trans-
ferability of such attacks across various LLMs, raising crucial questions about preventing
undesirable content generation. Lastly, Cao et al. [197] propose a Robustly Aligned LLM
(RA-LLM) to defend against alignment-breaking attacks. Their approach introduces a
robust alignment checking function to existing LLMs, effectively reducing the success
rates of adversarial and handcrafted jailbreak prompts. This study not only highlights
the feasibility of defending against such attacks but also emphasizes the importance of
continuous efforts to align LLMs with human values.

Together, these studies paint a nuanced picture of the current state of LLM safety and
robustness. They reveal not only the inherent challenges in safeguarding these models
from adversarial threats but also the ongoing efforts to understand, evaluate, and improve
their security. As LLMs continue to evolve and their applications grow, the insights gained
from such research will be critical in guiding the development of more resilient, safe,
and ethically aligned models.

Table 13 presents a comparative overview of studies evaluating the safety and ro-
bustness of LLMs. It categorizes the studies based on the ML models assessed, their
applications, datasets used, advantages, and limitations. The table highlights a diverse
range of approaches, from vulnerability analyses of advanced LLMs like GPT-4 and Claude
v1.3 to defensive mechanisms implemented in models such as GPT-3.5 and Llama 2. It
captures the evolving landscape of safety evaluation, emphasizing adversarial scenarios,
model alignment, and self-assessment strategies to mitigate risks in real-world applications.

Key findings from the table include the identification of significant advancements in
evaluating and addressing adversarial vulnerabilities in LLMs. Studies like [193] provide a
comprehensive evaluation of text safety and output robustness using custom benchmark
datasets, while [197] introduces robustly aligned models that defend against attacks without
requiring retraining. Similarly, ref. [198] demonstrates the potential of automating red-team
evaluations to uncover safety loopholes. However, the limitations of these studies, such
as a lack of generalizability across diverse adversarial scenarios or dependency on initial
conditions, underline the need for broader, multi-modal evaluations and practical defenses.

The table also underscores the gap between theoretical advances and their real-world
applicability. For instance, while studies like [196,199] excel in demonstrating adversarial
attack transferability and stealthy jailbreak prompts, their effectiveness is often constrained
by computational complexity or the varying robustness of LLMs. These findings collectively
emphasize the need for integrating collaborative, multi-agent frameworks, as proposed
in [200], and developing adaptive strategies that balance theoretical rigor with practical
deployment challenges.
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Table 13. Comparison of studies on safety and robustness evaluation of LLMs.

Ref. ML Model Application Dataset Advantage Limitation

[192] GPT-4, Claude v1.3 Model Vulnerability Red-team evaluation
sets

In-depth analysis of
safety training failures

Focuses more on theory
than practical solutions

[193] Various LLMs Text Safety and Output
Robustness

Custom benchmark
dataset

Comprehensive
evaluation of robustness
and safety

May not cover all
potential adversarial
scenarios

[194] Various LLMs Adversarial Attack
Survey N/A

Extensive review,
includes a range of
attack methods

Primarily a survey, lacks
new empirical data

[195] Aligned neural networks Adversarial Alignment Multi-modal models
Highlights
vulnerabilities in
adversarial settings

Limited to text models,
needs broader modal
evaluations

[196] Aligned Language
Models Adversarial Attacks Vicuna-7B, 13B Demonstrates

transferability of attacks

Effectiveness varies
significantly across
models and settings

[197] Robustly Aligned LLM
(RA-LLM)

Defending Against
Attacks Open-source LLMs

Provides a defense
mechanism without
retraining

Theoretical analysis may
not reflect all real-world
conditions

[201] GPT-3.5, Llama 2 Defensive Mechanisms Various adversarial
prompts

Enables LLMs to
self-assess and defend
without additional
training

May not detect subtler
forms of manipulation

[202] GPT-2 Detecting Attacks Adversarial prompts
dataset

Utilizes perplexity to
identify attacks

High false positive rates,
mitigated with
additional ML models

[203] Various LLMs Baseline Defenses Not specified
Evaluates multiple
simple defensive
strategies

Does not introduce
novel defensive
mechanisms, focuses on
evaluation

[200] Various LLMs Multi-agent Defense Harmful and safe
prompts

Employs a collaborative
framework among
multiple LLM agents

Effectiveness dependent
on the division and
coordination of tasks

[198] GPT, LLaMa-2, Vicuna Auto-generated
Jailbreak Prompts Not specified

Automates red-teaming
of LLMs with high
success rates

Initial seed quality
affects performance

[199] Aligned LLMs Generating Stealthy
Jailbreak Prompts Not specified

Generates stealthy,
semantically meaningful
jailbreak prompts

Potential detection
through advanced
perplexity testing

[204] Various LLMs Interpretable
Adversarial Attacks Not specified

Produces readable,
effective jailbreak
prompts; transfers to
black-box LLMs

Method complexity and
computational demand
might be high

5.3. Defense Strategies

The development of defensive mechanisms and strategies is crucial to safeguard
against adversarial attacks. Recent studies have focused on innovative approaches for
defending LLMs, exploring prompt-based defenses, model hardening techniques, and au-
tomated attack generation to ensure the models’ safety and integrity. Specifically, Hel-
bling et al. [201] propose a novel defense mechanism that enables LLMs to self-screen their
generated responses for potential harmful content without requiring any fine-tuning or
iterative output generation. By embedding the generated content into a pre-defined prompt
and analyzing it with another instance of an LLM, this approach effectively reduces the
success rate of various types of attacks to virtually zero on prominent models such as GPT
3.5 and Llama 2. Moving on, Alon et al. [202] introduce a method that employs perplexity
evaluation to detect adversarial suffixes aimed at deceiving LLMs into generating danger-
ous responses. Despite the challenge of false positives in plain perplexity filtering, they
demonstrate that a Light-GBM model trained on perplexity and token length can effectively
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distinguish most adversarial attacks, thus providing a viable defense strategy. Moreover,
Jain et al. [203] evaluate various defense strategies, including detection, input preprocessing,
and adversarial training. They discuss the practicality and effectiveness of each defense in
different settings and highlight the unique challenges and opportunities for securing LLMs
compared to computer vision models. Lastly, Zeng et al. (2024) [200] propose a multi-agent
defense framework that collaboratively filters harmful responses from LLMs by assigning
different roles to LLM agents. This framework not only enhances instruction-following
capabilities but also adapts to various sizes and types of LLMs, demonstrating its effec-
tiveness in defending against jailbreak attacks while maintaining performance for normal
user requests.

5.4. Adversarial Attack Generation

On the front of adversarial attack generation, Yu et al. [198] introduce, a black-box
fuzzing framework that automates the generation of jailbreak templates. This framework
significantly outperforms human-crafted templates in red-teaming LLMs, revealing the
necessity for ongoing efforts to bolster LLM robustness. Liu et al. (2023) in [199] present
a novel attack that generates stealthy jailbreak prompts capable of eluding perplexity-
based defenses. By employing a hierarchical genetic algorithm, AutoDAN automates the
generation of semantically meaningful prompts that showcase strong attack capabilities
and transferability. Lastly, Zhu et al. in [204] develop a gradient-based adversarial attack
that combines the strengths of readability and jailbreak success. AutoDAN’s interpretable
and diverse prompts not only bypass perplexity filters but also generalize to unforeseen
harmful behaviors, underscoring the importance of versatile defense mechanisms.

5.5. Specialized Attack and Defense Themes

Recent studies have shed light on niche vulnerabilities and unique attack vectors
against LLMs, highlighting the evolving landscape of cyber threats and the need for spe-
cialized defense mechanisms. These studies focus on multilingual, privacy, and encryption-
based attacks, presenting novel challenges to the safety alignment of LLMs. Li et al. [205]
delve into addressing concerns surrounding the privacy implications of LLMs like Chat-
GPT and the New Bing. Despite efforts to safeguard dialog safety, the expansive training
datasets of LLMs, such as GPT-3’s 45TB of text, raise questions about the inclusion of
private information and subsequent privacy threats. Through extensive experimentation,
the study unveils that integrated applications of LLMs could pose new privacy threats,
urging a reevaluation of privacy measures in the age of generative AI. Yuan et al. [206]
present an intriguing analysis, exploring the potential for ciphers to bypass the safety
mechanisms of LLMs designed primarily for natural language processing. Their novel
framework, CipherChat, evaluates the generalizability of safety alignments to ciphers, re-
vealing that certain ciphers can effectively circumvent GPT-4’s safety protocols in multiple
domains. The discovery of a “secret cipher” capability within LLMs, particularly effective
in role play and demonstrated in natural language, underscores the necessity for extending
safety alignments to include non-natural languages. Deng et al. [207] investigate the mul-
tilingual jailbreak challenges in LLMs, revealing that while LLMs have been extensively
tested for safety in English, multilingual applications present a whole new dimension
of risks. The study identifies two scenarios: unintentional, where non-English prompts
inadvertently bypass safety mechanisms, and intentional, where malicious instructions
are deliberately embedded in multilingual prompts. The findings highlight the significant
increase in unsafe content generation, especially for low-resource languages, and propose a
“Self-Defense” framework for generating multilingual training data for safety fine-tuning.
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This approach shows promise in substantially reducing the generation of unsafe content
across languages.

Table 14 provides a comprehensive overview of studies that leverage large language
models (LLMs) to detect and combat cyberattacks. The table systematically compares
various studies based on key attributes, including the LLM model used, datasets employed,
targeted applications, best performance values, and identified limitations. It highlights the
diversity of LLM-based approaches, ranging from domain-specific models like SecureBERT
and CySecBERT, tailored for cybersecurity text processing, to general-purpose LLMs such as
GPT-4 and ChatGPT, evaluated in specific security contexts like prompt injection and spear
phishing scenarios. This comparison underscores the versatility of LLMs in addressing
different facets of cybersecurity challenges, such as vulnerability recognition, phishing
prevention, and policy enhancement.

Table 14. Comparison of studies evaluating LLMs for detecting cyberattacks.

Ref. ML Model Used Dataset/Data Used Application Best Performance Value Limitations

[20] SecureBERT Large corpus of
cybersecurity text

Focuses on transforming CTI
text into machine-readable
format using SecureBERT.

Outperforms similar models
in MLM and other standard
NLP tasks

Not specified

[26] CySecBERT High-quality,
domain-specific dataset

Tailored for the cysec
domain, evaluates on
domain-dependent and
intrinsic tasks.

Best performance in
cybersecurity
scenario-specific tasks

Catastrophic forgetting
during further training

[208] GPT-4, Mistral, Meta Llama
3 70B-Instruct

Novel benchmark dataset for
LLM security risks

Evaluates LLMs on prompt
injection and code
interpreter abuse,
introducing FRR.

Shows capability in handling
“borderline” benign requests

Unresolved risk of attack
conditioning

[209]
Code Llama,
DeepSeek-Coder,
StarCoder2

Instruction tuning datasets
with adversarial code
injections

Assesses vulnerabilities of
instruction-tuned Code
LLMs using
EvilInstructCoder.

High ASR@1 scores in
adversarial attack scenarios

Significant vulnerability to
adversarial attacks

[210] ChatGPT, Google Bard,
Microsoft Bing

Cisco certification exams,
CTF challenge data

Investigates the effectiveness
of LLMs in CTF exercises,
highlighting jailbreak
prompts.

Not specified
Ethical concerns and
limitations in CTF
applications

[172] CyBERT Cybersecurity corpus from
CTI data

Focuses on recognizing
specialized cybersecurity
entities using a fine-tuned
BERT model.

Outperforms base BERT
model in domain-specific
MLM evaluation

Not specified

[211] Multiple BERT classifiers Textual descriptions of
security vulnerabilities

Automatically determines
CVSS vectors and severity
scores from textual
vulnerability descriptions.

High accuracy in CVSS
metric prediction

Requires extensive manual
analysis for new
vulnerabilities

[21] Unspecified LLMs
SME case studies and LLM
performance metrics in
Australia

Explores the potential role of
LLMs in enhancing cyber
security policies for SMEs.

High relevance, accuracy,
and applicability in
cybersecurity settings

Gaps in completeness and
clarity

[177] OpenAI’s GPT-3.5 and
GPT-4

Spear phishing messages for
British MPs

Examines the use of LLMs in
spear phishing, focusing on
message generation.

Cost-effective and realistic
email generation

Potential misuse of LLMs in
spear phishing

[212] Google Gemini’s generative
AI

Corporate cybersecurity
frameworks

Enhances detection,
prevention, and response
strategies against spear
phishing attacks.

Improved accuracy and
dynamic policy adjustments

Needs further exploration in
broader AI applications

Key findings from the table include the superior performance of domain-specific
models, such as CySecBERT and CyBERT, which excel in tasks requiring specialized knowl-
edge. Additionally, general-purpose models like GPT-4 demonstrate adaptability in novel
scenarios, such as handling borderline benign requests. However, the table also identi-
fies significant limitations, including vulnerabilities to adversarial attacks, catastrophic
forgetting, and ethical concerns in applying LLMs for potentially harmful scenarios like
spear phishing. These insights emphasize the need for continued research to enhance the
robustness, ethical use, and scalability of LLMs in cybersecurity applications.
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The table further highlights critical gaps, such as the lack of specification in some
studies regarding limitations and the need for more comprehensive benchmarks to evaluate
LLMs effectively. These findings suggest that while LLMs offer promising solutions for
cybersecurity, addressing their vulnerabilities and ethical implications is crucial to ensure
their safe and effective deployment in real-world settings.

5.6. Technical Limitations
5.6.1. Interpretability

LLMs are often considered “black boxes”, making it challenging to understand how
they arrive at their decisions. This opacity inhibits the ability to diagnose errors, identify
biases, and ensure the reliability of security operations. Without a clear understanding
of how LLMs arrive at their decisions, cybersecurity professionals struggle to effectively
troubleshoot errors, mitigate biases, and maintain trust in these systems. As a result,
efforts to enhance interpretability through techniques such as visualization and expla-
nation generation are crucial to improving the transparency and reliability of LLMs in
cybersecurity applications.

5.6.2. Domain-Specific Knowledge

Another significant technical limitation of applying LLMs in cybersecurity is their po-
tential lack of domain-specific knowledge, particularly in understanding intricate technical
details or specific threat landscapes [213]. This deficiency could lead to inaccuracies or
inefficiencies in threat detection and response processes. Without a deep understanding
of cybersecurity concepts, LLMs may struggle to accurately interpret and contextual-
ize security-related information, resulting in suboptimal performance in identifying and
mitigating cyber threats. Addressing this limitation requires efforts to enhance LLMs’
domain-specific knowledge through specialized training datasets, fine-tuning techniques,
and collaboration with cybersecurity experts to ensure the models effectively capture and
utilize relevant security information [41].

5.6.3. Scalability

The process of training and deploying these models at scale demands substantial
computational resources. This requirement can pose challenges for organizations con-
strained by limited infrastructure or budgetary constraints. The resource-intensive nature
of LLMs necessitates access to high-performance computing infrastructure, extensive
storage capacities, and skilled personnel for model development and maintenance [214].
Additionally, the associated costs of hardware, software licenses, and energy consumption
further compound the scalability challenges, potentially impeding the widespread adoption
of LLM-based cybersecurity solutions [215]. To address this limitation, organizations may
explore cloud-based solutions, distributed computing approaches, or model optimization
techniques to mitigate the computational burdens and enhance the scalability of LLM
deployments in cybersecurity contexts.

5.6.4. Adversarial Attacks

The susceptibility of exposing vulnerabilities where malicious actors manipulate
input data to deceive the model and generate incorrect outputs compromises the effective-
ness of LLM-based security systems, as attackers can exploit weaknesses in the model’s
decision-making process to evade detection, bypass security measures, circumvent security
measures, or use the results for malicious purposes [216]. Adversarial attacks can manifest
in a variety of ways, including poisoning attacks, stealth attacks, and model reversal at-
tacks. To increase the resilience of LLMs and strengthen their defenses against strategic
manipulation, it is necessary to develop complex security measures such as adversary train-
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ing, intrusion purity, and anomaly detection methods [217]. Figure 2 shows the lifecycle
of LLMs from data collection to monitoring and highlights where vulnerabilities can be
introduced and exploited by cyberattacks. Each step includes potential attack vectors that
need to be mitigated to ensure the secure and ethical deployment of LLMs.

5.7. Ethical Limitations
5.7.1. Bias and Fairness

LLMs trained on biased datasets have the propensity to perpetuate or exacerbate
existing biases, potentially resulting in unfair or discriminatory outcomes in cybersecurity
tasks. Addressing bias and ensuring fairness in LLMs is imperative to uphold equity and
integrity in security operations. Failure to mitigate biases can lead to discriminatory prac-
tices, unequal treatment, and compromised trust in LLM-based security systems. Efforts
to address this ethical limitation involve employing techniques such as bias detection,
data preprocessing, fairness-aware training, and diverse dataset curation to mitigate bias
and promote fairness in LLMs utilized for cybersecurity purposes [218]. By proactively
addressing bias and promoting fairness, organizations can enhance the ethical integrity
and societal impact of LLM-based cybersecurity solutions [219].

5.7.2. Privacy Concerns

The development of LLMs presents serious questions about the critical concerns re-
garding the privacy and confidentiality of sensitive information, including private messages
and personal information [220]. Organizations using LLMs in cybersecurity initiatives must
prioritize protecting people’s rights and adhering to privacy requirements. Researchers
and practitioners are investigating novel ways to guarantee privacy and secrecy in LLM-
based cybersecurity applications in order to allay these worries [221]. Access restrictions,
encryption, anonymization, and data minimization are some of the strategies used to
safeguard sensitive data at every stage of their lifetime, from processing and collecting to
storage and analysis. To further examine and improve the efficacy of privacy protection
mechanisms, regulatory compliance, routine audits, and privacy impact evaluations are
essential. Organizations can fully utilize LLMs in cybersecurity while protecting people’s
right to privacy and preserving confidence in data handling procedures by emphasizing
privacy preservation and implementing strong privacy measures. In order to promote the
responsible and reliable deployment of LLMs in cybersecurity areas, it is critical to close the
gap between technological innovation and ethical considerations, as this multidisciplinary
endeavor highlights [222].

5.7.3. Misuse and Manipulation

LLMs can be exploited by malicious actors to generate deceptive content, such as
phishing emails or fake news, for nefarious purposes [221]. This misuse raises ethical
concerns regarding the responsible use of LLMs and the potential harm inflicted on individ-
uals and organizations. The ability of LLMs to generate convincing yet fabricated content
underscores the importance of implementing safeguards and ethical guidelines to prevent
their exploitation for malicious intents [223]. Addressing this limitations promote respon-
sible use, implement content verification, and raise awareness about risks. Collaboration
among policymakers, researchers, and industry experts is crucial for developing strategies
to mitigate misuse and manipulation [224]. Proactively tackling these ethical concerns
ensures responsible LLM deployment and upholds ethical standards in cybersecurity.

5.7.4. Accountability and Transparency

The use of LLMs in cybersecurity requires clear accountability and transparency mech-
anisms to ensure responsible decision-making and mitigate potential risks. Organizations
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must be transparent about how LLMs are trained, deployed, and evaluated to maintain
trust and accountability [225]. Although LLMs offer significant advantages in a variety
of applications, their susceptibility to cyberattacks poses serious challenges. Ongoing
research and development is required to improve the robustness and safety of these models,
ensuring that they can be safely used in critical applications and this is shown in Figure 3.

6. LLMs for Cybersecurity Tools
Recent advancements in cybersecurity research and operations have made LLMs an

extremely powerful tool, revolutionizing the way security activities are handled and carried
out. These models’ capacity to understand, generate, and manipulate natural language text
has found diverse applications in reversing engineering, network analysis, cloud security,
and even in conceptualizing proofs of concept for both defensive mechanisms and potential
cyber threats.

6.1. Reverse Engineering Applications

In the domain of reverse engineering, tools like G-3PO, ai for Pwndbg, and ai for
GEF exemplify the integration of LLMs to facilitate code analysis and debugging. G-3PO,
developed by Olivia Lucca Fraser at Tenable, is designed to work within the Ghidra soft-
ware framework, offering an AI-powered assistant that leverages OpenAI and Anthropic’s
models to annotate and provide insights on decompiled code [226]. Similarly, Fraser’s
development of ai for Pwndbg and ai for GEF introduces AI capabilities into the debugging
process, enhancing the efficiency and depth of analysis for security professionals [227].
Gepetto and GPT-WPRE further extend the application of LLMs in reverse engineering,
offering tools for IDA Pro and Ghidra, respectively, to generate explanatory comments
and summarize binary analyses, thereby making complex code more accessible and under-
standable [157,228].

6.2. Network Analysis

Network security also benefits from LLM innovations, as seen with BurpGPT. This
BurpSuite plugin, developed by Yossi Nisani at Tenable, employs GPT models to analyze
HTTP requests and responses, highlighting potential security vulnerabilities and offering
insights that can guide further investigation and remediation efforts [229].

6.3. Cloud Security

Cloud security, particularly concerning identity access and management (IAM) poli-
cies, has seen the introduction of tools like EscalateGPT. This tool utilizes GPT to identify
and explore privilege escalation vulnerabilities in AWS IAM configurations, showcasing
the potential of LLMs to navigate and secure complex cloud environments.

6.4. Proofs of Concept

The versatility of LLMs extends into the development of proofs of concept that both
demonstrate potential cybersecurity threats and explore innovative defenses. Examples
include Indirect Prompt Injections and LLMorphism, which reveal new vectors for cyberat-
tacks and malware development. These applications underscore the dual-edged nature
of LLM capabilities, serving both to enhance security postures and to highlight novel
vulnerabilities (Figures 8 and 9).
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7. Challenges of Deploying LLMs in Cybersecurity
7.1. Data Privacy and Security

LLMs can unintentionally memorize and output sensitive data, such as personal
information or proprietary data, during their operations. This issue arises because LLMs
are often trained on vast datasets containing personal or confidential data, leading to
potential risks of violating privacy regulations such as the GDPR (General Data Protection
Regulation) or HIPAA (Health Insurance Portability and Accountability Act). For instance,
when users interact with LLM-based cybersecurity tools, the model might expose sensitive
information stored in its training data [230]. To address this, mechanisms like differential
privacy can be implemented to minimize the risk of such data being memorized or leaked.
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However, there is still ongoing research to make LLMs more privacy-preserving while
maintaining performance.

7.2. Integration with Existing Systems

Integrating LLMs into existing cybersecurity infrastructures can be challenging. Many
enterprises have well-established security infrastructures that rely on specific tools, work-
flows, and protocols, which can be difficult to harmonize with LLM-based solutions [231].
This includes the complexity of integrating LLMs with existing Security Information and
Event Management (SIEM) systems, intrusion detection systems (IDSs), and automated
response tools [232]. Achieving seamless integration often requires significant customiza-
tion, API development, and adjustments to infrastructure, making the deployment process
slow and costly. Compatibility issues with legacy systems further complicate this integra-
tion. LLMs also require real-time access to relevant data, which may be constrained by
organizational data silos or privacy regulations (ar5iv) [233].

Moreover, ensuring that LLMs operate within the strict security and compliance
frameworks necessary in cybersecurity environments is critical. LLMs must align with
specific governance policies, creating an additional layer of complexity in deployment [234].
Handling large-scale threat intelligence data efficiently, with minimal latency, is another
obstacle when integrating with existing systems [235]. In 2023, recent studies explored
hybrid models and modular architectures to address these challenges, including research
on using microservices and containerized LLMs to simplify integration. By isolating
core functionalities of LLMs, it is easier to plug them into existing cybersecurity tools,
reducing overhead and improving interoperability. However, a lot of work still needs to be
performed in optimizing these processes for seamless, secure integration at scale [59].

7.3. Robustness and Security

LLMs are susceptible to adversarial attacks, where small changes in input can manip-
ulate the model’s behavior, leading to incorrect predictions or malicious outputs. In cyber-
security applications, such vulnerabilities can be catastrophic [236]. For example, attackers
can introduce adversarial samples that mislead an LLM-powered threat detection system
into classifying a malicious action as benign. Furthermore, there are risks from prompt
injection attacks, where manipulating input prompts can alter the model’s responses to
generate incorrect or harmful outputs. Enhancing the robustness of LLMs against such
attacks requires careful fine-tuning and the integration of adversarial training methods to
mitigate these threats.

7.4. Contextual Accuracy

In cybersecurity, accurate context interpretation is critical for detecting sophisticated
threats. LLMs, while powerful, may sometimes generate inaccurate or non-faithful ex-
planations, especially when tasked with multi-step reasoning or analyzing complex log
files. This problem, known as the “faithfulness” issue, affects LLMs when their generated
explanations do not accurately represent the underlying data or analysis. For cybersecu-
rity applications like insider threat detection, where logs are vast and involve complex
behaviors, this can lead to false positives or missed threats [144]. Techniques like multi-
agent collaboration or evidence-based debates (such as Audit-LLM) have been proposed to
enhance the reasoning capabilities of LLMs, improving their reliability in such tasks.

7.5. Scalability and Performance

Real-time cybersecurity applications, such as intrusion detection systems, require
fast processing of massive amounts of data. Deploying LLMs in such environments
poses scalability challenges, as LLMs are computationally intensive and require significant
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resources, such as memory and processing power. This is especially problematic for real-
time threat detection, where delays can lead to missed alerts or slow response times [41].
Optimizing LLMs for scalability without compromising their accuracy is an ongoing
research area. Techniques such as model distillation, edge computing, and optimized
inference can help scale LLM deployments in cybersecurity settings.

7.6. Continual Learning and Adaptation

LLMs must continuously adapt to new cyber threats, tools, and evolving attack meth-
ods, making it vital for them to undergo ongoing training without forgetting previously
acquired knowledge [237]. Traditional models often suffer from “catastrophic forgetting”
when fine-tuned on new data, which can degrade their performance in previously learned
tasks. To overcome this, continual learning techniques are being explored to help LLMs
integrate new knowledge while retaining existing capabilities [238]. For instance, methods
like Continual Pre-training (CPT) aim to incrementally update models with facts, domains,
or tasks relevant to evolving cybersecurity needs [239]. However, ensuring that these
updates happen efficiently, without bloating the models or causing ethical misalignment, is
a key technical hurdle [240].

8. Future Directions
This article explores several potential future directions for LLMs in cybersecurity,

including the detection of social engineering attempts, automation of incident responses,
disruption of phishing campaigns, and tailoring security education programs. By examin-
ing these key areas of research and innovation, organizations can gain valuable insights
into how LLMs can be leveraged to bolster cybersecurity defenses and mitigate emerging
threats effectively.

8.1. Detection of Social Engineering Attempts

Future studies might concentrate on using LLMs to identify and counteract social
engineering activities, such pretexting and phishing scams. LLMs can assist in spotting
questionable communications and shield users from social engineering techniques by
examining linguistic patterns and contextual clues [241]. Using a variety of datasets of
social engineering scenarios, this method trains LLMs to better identify manipulation tactics
and fraudulent language. Additionally, in order to automatically identify and address
possible social engineering threats in real time, researchers may investigate the integration
of LLMs with cybersecurity systems. Developments in this field could greatly strengthen
an organization’s defenses against social engineering assaults and lower the likelihood that
private data would be compromised [242].

8.2. Automation of Incident Responses

In order to automate incident response procedures, future studies may investigate
the integration of LLMs with security orchestration, automation, and response (SOAR)
platforms. Organizations can improve their cybersecurity posture and resilience by stream-
lining incident detection, analysis, and remediation by utilizing LLMs’ natural language
processing capabilities [243]. Using this method entails creating workflows and algorithms
based on LLM that can automatically evaluate security alerts, correlate threat intelligence,
and plan response actions according to pre-established playbooks. Researchers may also
look into the use of LLMs for dialogue management and natural language comprehension
to provide more complex and context-aware incident response interactions with stakehold-
ers and security analysts. Developments in this field could lessen the need for manual
intervention, increase the effectiveness of incident response, and lessen the negative effects
of cybersecurity events on an organization’s operations and data assets [244].
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8.3. Disruption of Phishing Campaigns

Researchers may explore novel approaches for leveraging LLMs to disrupt phishing
campaigns and thwart malicious actors’ efforts to deceive users. By harnessing LLMs’
natural language generation capabilities, organizations can generate deceptive content
or craft targeted responses to phishing emails, thereby undermining the effectiveness
of phishing attacks and protecting sensitive information [245]. This approach involves
training LLMs on a diverse range of phishing scenarios and techniques to enable them to
recognize and counteract common phishing tactics, such as spoofed emails, fake websites,
and social engineering ploys [63]. Additionally, researchers may investigate the use of
LLMs for proactive threat hunting and deception operations, where LLMs generate decoy
data or bait content to lure and expose phishing attackers. Advancements in this area have
the potential to disrupt phishing campaigns, reduce the success rate of phishing attacks,
and enhance organizations’ resilience against social engineering threats [246].

8.4. Tailoring Security Education Programs

Future research could explore the potential of leveraging LLM-generated insights
and analytics to tailor security education programs for individuals and organizations.
By analyzing user behavior, identifying common misconceptions, and understanding
prevalent vulnerabilities, LLMs can provide valuable insights into the specific cybersecurity
knowledge gaps and learning needs of different user groups [247]. This approach involves
developing LLM-based algorithms and models that can analyze user interactions, identify
areas of weakness, and recommend personalized training modules or educational materials
to address specific cybersecurity risks and threats [248]. Additionally, researchers may
investigate the use of LLMs for simulating realistic cyberattack scenarios and interactive
training exercises to enhance user engagement and effectiveness. Advancements in this
area have the potential to improve the overall cybersecurity awareness and resilience of
individuals and organizations, ultimately reducing the likelihood of successful cyberattacks
and data breaches [152].

9. Conclusions
The integration of LLMs into cybersecurity frameworks marks a paradigm shift in

how organizations address and mitigate digital threats. By leveraging advanced natural
language processing capabilities, LLMs have shown remarkable potential to revolutionize
several facets of cybersecurity, from real-time threat detection and malware analysis to
phishing prevention and incident response. These models, characterized by their capacity
to process and generate human-like text, enable security systems to parse unstructured
data, identify emerging risks, and automate responses with unprecedented efficiency
and precision.

A critical contribution of LLMs lies in their ability to detect and analyze sophisticated
cyber threats. Their capacity to sift through vast and diverse datasets, ranging from security
logs to open-source intelligence, empowers organizations to stay ahead of evolving attack
vectors. For instance, LLMs enhance phishing detection by recognizing subtle linguistic
cues, while their application in malware analysis allows for accurate classification and
behavior prediction, even for novel threats. Moreover, these models significantly contribute
to workforce training by simulating realistic cyber scenarios, enabling organizations to
improve preparedness and resilience.

However, the deployment of LLMs in cybersecurity also raises significant challenges.
One of the foremost concerns is interpretability. The “black-box” nature of LLMs makes
it difficult for security analysts to understand their decision-making processes, leading to
potential issues in diagnosing errors or addressing biases. Moreover, the resource-intensive
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nature of LLMs, requiring substantial computational power and infrastructure, limits their
scalability and accessibility for smaller organizations. Ethical concerns, such as the potential
misuse of LLMs for generating malicious content like phishing emails or malware, further
underscore the need for stringent governance and accountability mechanisms.

Privacy considerations are another critical limitation. The risk of exposing sensitive
or proprietary data during training or inference processes necessitates robust privacy-
preserving techniques. Strategies such as differential privacy, data anonymization, and en-
crypted computations are essential to mitigate these risks and ensure compliance with
regulatory frameworks like the GDPR and HIPAA. Additionally, adversarial attacks, includ-
ing prompt injections and model manipulations, pose a significant threat to the reliability
of LLM-based systems, highlighting the need for ongoing advancements in adversarial
defense mechanisms.

Despite these challenges, the future of LLMs in cybersecurity is promising. Emerg-
ing research focuses on enhancing the robustness and ethical alignment of these models,
with developments in areas such as continual learning, automated attack detection, and col-
laborative multi-agent systems. Furthermore, integrating LLMs with existing security
frameworks, such as Security Information and Event Management (SIEM) systems and se-
curity orchestration, automation, and response (SOAR) platforms, can significantly enhance
their operational impact. Tailored security education programs, powered by LLM analytics,
offer a proactive approach to mitigating user vulnerabilities and fostering a culture of
cybersecurity awareness.

All in all, while LLMs are not a panacea for all cybersecurity challenges, they represent
a powerful tool for augmenting traditional security measures and addressing complex
threats. Their ability to analyze, predict, and respond to cyber risks positions them as
invaluable assets in the fight against an increasingly sophisticated threat landscape. How-
ever, to fully realize their potential, it is imperative to address their limitations through
interdisciplinary collaboration, regulatory oversight, and continuous innovation. By doing
so, LLMs can pave the way for a more secure and resilient digital future.
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Abbreviations

AI Artificial Intelligence
CSPM Cloud Security Posture Management
LLM Large Language Model
GPT Generative Pre-trained Transformer
APTs Advanced Persistent Threats
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ML Machine Learning
T5 Text-to-Text Transfer Transformer
PPFLE Privacy-Preserving Fixed-Length Encoding
CTF Capture the Flag
XAI Explainable Artificial Intelligence
TPR True Positive Rate
IPSDM Improved Phishing and Spam Detection Model
URLTran URL Transformer
GRU Gated Recurrent Unit
CFG Control-Flow Graph
CAN Controller Area Network
NF NetFlow Dataset
IVN-IDS In-Vehicle Network Intrusion Detection System
NID Network Intrusion Detection
PLLM-CS Privacy-aware Large Language Model for Cybersecurity
VulnLLMEval Vulnerability Large Language Model Evaluation Framework
LLMPATCH Large Language Model-Based Automated Patching System
NER Named-Entity Recognition
KGV Knowledge Graph Verifier
Xpert Expert Query Recommendation Framework
AuditGPT Audit Generative Pre-trained Transformer
LEGILM Legal and Regulatory Compliance Framework using LLMs
DrSec Endpoint Detection and Response Security System
FalconLLM Secure Fine-Tuned Large Language Model
RA-LLM Robustly Aligned Large Language Model
ChatSpam Chat-based Spam Detection Framework
CipherChat Framework for Evaluating LLM Safety Against Ciphers
G-3PO Ghidra AI Assistant for Code Analysis
EscalateGPT GPT for Privilege Escalation in Cloud IAM Policies
SecureBERT Security-Focused Bidirectional Encoder Representation
Multilingual Self-Defense Framework for Generating Multilingual Safety Data
IoT Internet of Things
RCA Root Cause Analysis
NVD National Vulnerability Database
BERT Bidirectional Encoder Representations from Transformers
DL Deep Learning
NLP Natural Language Processing
RAG Retrieval-Augmented Generation
BBPE Byte-Level Byte Pair Encoding
CWE Common Weakness Enumeration
ANN Artificial Neural Network
FPR False Positive Rate
RBPD Reference-Based Phishing Detector
KPD KnowPhish Detector
LSTM Long Short-Term Memory
GIN Graph Isomorphism Network
IDS Intrusion Detection System
CGAN Conditional Generative Adversarial Network
BoT-IoT Botnet Internet of Things
TON_IoT ToN IoT Dataset
AMG Adversarial Malware Generation
VulDetectBench Vulnerability Detection Benchmark
CTI Cyber Threat Intelligence
RE Relation Extraction
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WILEE Weighted Interactive Learning Environment for Exploration
IcM BRAIN Incident Management Brain
Audit-LLM Multi-Agent Framework for Insider Threat Detection
BIM Building Information Modeling
CodeAttack Adversarial Framework for Testing LLM Safety in Code Generation
LLM-TIKG LLM for Threat Intelligence Knowledge Graph Construction
AutoDefense Multi-Agent Defense Framework for LLMs
JailbreakGPT Attack on LLMs to Elicit Unintended Outputs
AutoDAN Automated Defense Against Adversarial Networks
BurpGPT BurpSuite Plugin for HTTP Analysis with GPT
EvilInstructCoder Framework for Evaluating Adversarial Vulnerabilities in Code LLMs
CySecBERT Domain-Specific BERT for Cybersecurity Tasks
Cipher Safety Alignment Extension of Safety Measures to Non-Natural Languages
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