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Abstract: Blind Source Separation (BSS) is a significant field of study in signal processing,
with many applications in various fields such as audio processing, speech recognition,
biomedical signal analysis, image processing and communication systems. Traditional
methods, such as Independent Component Analysis (ICA), often rely on statistical indepen-
dence assumptions, which may limit their performance in systems with significant temporal
dynamics. This paper introduces an extension of the dynamic mode decomposition (DMD)
approach by using time-delayed coordinates to implement BSS. Time-delay embedding
enhances the capability of the method to handle complex, nonstationary signals by in-
corporating their temporal dependencies. We validate the approach through numerical
experiments and applications, including audio signal separation, image separation and
EEG artifact removal. The results demonstrate that modification achieves superior per-
formance compared to conventional techniques, particularly in scenarios where sources
exhibit dynamic coupling or non-stationary behavior.

Keywords: blind source separation; BSS; dynamic mode decomposition; DMD;
time-delayed DMD; hankel DMD; higher order DMD

1. Introduction
Although machine learning and neural networks dominate many aspects of data

science and signal processing, deterministic, interpretable signal processing tools are
still of great interest. One such method is Blind Source Separation (BSS), introduced
around 1984 within the framework of neural modeling [1,2].

It is a computational method that extracts individual source signals from mixed
observations without any knowledge of the sources or the mixing process. The ability
to disentangle mixed signals into their underlying components is critical for enhancing
the quality of data analysis, facilitating feature extraction, and enabling downstream
applications such as pattern recognition and anomaly detection. When unintentionally
mixed signals are present due to environmental conditions or undesirable signals, BSS
is one of the best approaches for separating the signals. The BSS approach has attracted
significant attention due to its applicability in a wide range of fields including signal and
image processing [3,4], communication technologies [5], biomedical data analysis [6,7],
neural networks [8], human brain activity [9], audio signal recovery [10], cocktail party
problem, and telecommunications [11–13]. BSS has potential for application in fields such
as industrial applications, for signal separation in radar systems [14] and synthetic aperture
radar (SAR) image processing [15]; in astronomy and astrophysics, for gravitational-wave
signals analysis [16] and research into the earth’s magnetic field [17].
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Some of the traditional methods for solving BSS problem are:

• Independent Component Analysis (ICA)[18], which relies on statistical indepen-
dence between sources. One of the most popular algorithms for performing ICA
is FastICA [19].

• Principal Component Analysis (PCA) [20], which uses correlation between signals to
reduce the dimensionality of the problem.

• Non-negative Matrix Factorization (NMF) [21], which is useful in analyzing signals
such as audio and images when the data is nonnegative.

They are widely used in a broad range of possible applications, but suffer from
limitations related to assumptions of independence or linearity of sources, as well as
weaknesses in dynamic and nonlinear systems. Some of the disadvantages of these methods
are: ICA may prove invalid in many practical cases, especially when the sources have
dynamic dependencies or noise is present, NMF requires only non-negative values or values
with specific constraints, PCA does not guarantee a physical or statistical interpretation of
the sources.

Besides, the traditional methods do not effectively deal with signals whose compo-
nents have significant temporal dependencies. These limitations motivate the investigation
of new methods that can handle complex dependencies and exploit the dynamic infor-
mation in the signals. Recently, new approaches have emerged to further enhance the
capabilities of BSS. One such method is Convolutional Independent Component Analysis
(Conv-ICA) [22], which extends traditional ICA by incorporating convolutional structures,
enabling the separation of sources with temporal dependencies. Dynamic Mode Decompo-
sition (DMD)-based BSS [23] is another advanced technique, which leverages the temporal
coherence of signals to identify and separate components in dynamical systems. Ad-
ditionally, Non-Negative Tensor Factorization (NTF) [24] has been employed to handle
multi-dimensional datasets by exploiting non-negativity constraints, making it highly effec-
tive for applications in hyperspectral imaging, video analysis, and neuroscience. Another
representative of BSS methods is the second-order blind identification (SOBI) algorithm [25],
which exploits the temporal coherence of the source signals to obtain its unique set of advan-
tages. However, recent advances in machine learning have led to the development of more
sophisticated and versatile models [26–28]. These methods represent a shift toward more
flexible, scalable, and application-specific implementations of BSS, addressing limitations
of traditional techniques.

Moreover, to extract reliable and meaningful components from the data, pre- and post-
processing techniques are also essential [29]. For example, the most common preprocessing
steps for ICA algorithms are centering and whitening. The centering step aims to center
signals by subtracting the mean values from signal data. Given an observed vector signal
denoted by x, centered observed vector x̄ can be obtained by x̄ = x− µ, where µ is the mean
value, see [30]. The whitening step aims to transform the signal data into uncorrelated
components and rescale them by unit variance [31]. It is known that for a whitened x̂ vector,
the associated covariance matrix is equal to the identity matrix, i.e., E{x̂x̂T} = I.

One way to perform a whitening transformation is to use the eigenvalue decomposi-
tion of the covariance matrix E{xxT} = VDVT , where V is a matrix of eigenvectors and D is
the diagonal matrix of eigenvalues of the covariance matrix. The observed vector can be
whitened by the following transformation [19]: x̂ = VD−1/2VTx can whiten the observed
vector, where D−1/2 = diag{d−1/2

i }. After the transformation, x̂ = VD−1/2VT As = Âs
holds, which leads to E{x̂x̂T} = ÂE{ssT}ÂT = ÂÂT = I, see also [32].

In this paper, we investigate the application of the dynamic mode decomposition (DMD)
approach [33] to solve the BSS problem. DMD is a relatively new method developed for the
analysis of dynamical systems. It extracts the dynamic modes of the system, which represent



Computation 2025, 13, 31 3 of 25

the fundamental frequency and spatial characteristics of the signals. This makes it a
powerful tool for the analysis of time series and nonlinear systems represented in linear
form. The application of standard forms of the DMD approach to demixing ergodic time
series and Fourier series is presented in [23,34,35] and the demixing of chaotic signals and
images is discussed in [36]. n the remainder of this section, the frameworks of the BSS and
DMD methods will be briefly described.

1.1. The BSS Framework

The BSS problem consists of extracting unobserved sources, denoted in vector notation
as sk ∈ Rp, assuming zero mean and stationary from observations or measurements
xk ∈ Rm, which can be written:

xk = Qsk (1)

where Q : Rp → Rm is an unknown mapping and k denotes the sample index, which can
denote time for example.

Let us assume, we are given n observed samples x1, . . . , xn corresponding to uniformly
spaced time instances t1, . . . , tn, i.e.,

xi = x(ti) = [x1(ti), . . . , xm(ti)]
T and si = s(ti) = [s1(ti), . . . , sp(ti)]

T

for i = 1, . . . , n. If the mapping A is restricted to a simple matrix, then the model (1) can
also be written in matrix form as:

X = QS, (2)

where X = [x1, . . . , xn] and S = [s1, . . . , sn]. This is the noiseless case of BSS model for
instantaneous linear mixtures .

The main idea of BSS is to recover the original signals S from the observed mixtures X.
If the matrix Q is invertible, then usually the condition m ≥ p is required. Determining
Q or its inverse W, directly leads to source separation, i.e., provides estimated sources
such that:

Ŝ = WX. (3)

In this case, the sources are evaluated up to a permutation and scale.
If the number of sources p is greater than the number of observations m, the mixing

is called underdetermined and is not reversible. In this case, even if the mixing matrix is
completely known, there is an infinity of solutions and additional constraints required to
restore the essential uniqueness of the source inputs.

A problem characterized by a model like (2) would certainly be ill-posed if additional
assumptions were not made about the characteristics of the system. These hypotheses can
be divided into two groups, depending on whether they are related to the mixing matrix or
the sources. The basic BSS methods rely on the following:

• The number of observations is greater than the number of sources (m ≥ p) and the
mixing matrix Q is of full column rank.

• Each row-vector of S is a stationary stochastic process with zero mean.
• The unknown sources are statistically independent (at each instant t, the components

of S(t) are mutually statistically independent).

Equation (2) reveals that the matrix X is a linear combination of rows of the latent
matrix S.
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1.2. The DMD Framework

First, we give a description of the standard DMD algorithm. Let us consider a sequen-
tial data set

D = {x1, x2, . . . , xn}, (4)

where each xk ∈ Rm. Assume that the data are uniformly distributed in time and the
collection time varies from t1 to tn. The main assumption of the method is that there exists
a linear (unknown) operator A connecting xk to the subsequent xk+1:

xk+1 = Axk (5)

for k = 1, . . . , n − 1. The eigenvalues of A contain information about the growth or
decay rates and the frequencies of oscillations, which, when combined, represent the time
evolution of the dynamical system. The DMD method uses the arrangement of the data set
D into following two matrices:

X = [x1, . . . , xn−1] and Y = [x2, . . . , xn], (6)

and the dependence (5) has an equivalent matrix form

Y = AX. (7)

Then the dynamic mode decomposition of data matrix D is given by the eigendecom-
position of A. DMD finds the best-fit solution A that minimizes the least-squares distance
in the Frobenius norm

arg min
A

∥Y − AX∥F,

where ∥.∥F is the Frobenius norm. The solution A to this optimization problem is given by

A = YX†, (8)

where X† is a Moore-Penrose pseudo-inverse of X. Having a spectral decomposition of
A, we can reconstruct data matrix D. Let ϕi and λi denote the i-th pair of eigenvectors
and eigenvalues of A, respectively, for i = 1, . . . , m. Therefore, the following expression is
valid [37]:

D = ΦBV(λ), (9)

where Φ is the eigenvector matrix (with columns ϕi) and V(λ) = (vij) is a Vandermonde

matrix such that vij = λ
j−1
i for i = 1, . . . , m and j = 2, . . . , n. In Equation (9) B is a diagonal

matrix B = diag{bi}, with diagonal elements, the components of the initial amplitude
vector b = Φ†x1.

There are many conceptually equivalent but mathematically different definitions of
DMD. A more general definition of the described method is presented by Tu et al. in [38],
where the data is collected as a set of snapshot pairs

{(xj, yj)}n−1
j=1 (10)

instead of sequential time series. In (10), the vectors xj, yj ∈ Rm are spaced a fixed time
interval apart. Then the two sets of data corresponding to (6) are:

X = [x1, . . . , xn−1] and Y = [y1, . . . , yn−1], (11)
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The dynamic mode decomposition of the data pair (X, Y) is given by the eigendecom-
position of the best fit linear operator A such that

Y = AX. (12)

The eigenvectors and eigenvalues of the matrix A are the DMD modes and eigenvalues.
Note that the formulation (6) and (7) is a special case of (11) and (12), with yk = xk+1 for
k = 1, . . . , n − 1. The DMD approach described is known as exact DMD.

Reduced Order DMD Operator

In practice, the matrix A can be very high dimensional, and calculating its eigende-
composition can be very expensive. The main goal of DMD is to compute the leading
eigendecomposition of A without explicitly representing or manipulating A. For this
purpose, a low-rank approximation matrix A is constructed and its eigendecomposition is
calculated to obtain the DMD modes and eigenvalues.

Usually, the projection matrix of A is performed onto the subspace spanned by the
columns of X. Let the reduced singular value decomposition of X be:

X = UrΣrV∗
r ,

where Ur ∈ Rm×r, Σr ∈ Rm×r, Vr ∈ Rn×r and r = rank(X). We can derive the projection
operator as

Ã = U∗
r AUr = U∗

r YVrΣ−1
r , (13)

such that its eigenvalues are also the eigenvalues of A. Therefore, from the spectral
decomposition of Ã

ÃW = WΛ, (14)

where Λ = diag{λj}r
j=1 is the matrix of eigenvalues and W is the matrix of eigenvectors

of Ã, we determine the leading eigendecomposition of A. The matrix of DMD modes is
computed by the formula

Φr = YVrΣ−1
r W. (15)

The columns of matrix Φr ∈ Rm×r are often called exact DMD modes, because Tu et al. [38]
prove that these are exact eigenvectors of matrix A. In this case we extract r leading
eigenvectors of A. This approach is known as SVD based DMD.

1.3. BSS in Context of DMD

Dynamic Mode Decomposition can provide a framework for realizing Blind Source
Separation by leveraging the decomposition of a dynamic system into modes and temporal
dynamics. In the context of BSS, the observed data matrix X(t) is modeled as X(t) = QS(t),
where Q is the mixing matrix and S(t) contains the independent source signals. When Q is
square (m = p, i.e., the number of observed signals is equal to the number of sources), DMD
can directly approximate Q by the DMD mode matrix Φ and S(t) can be reconstructed
using the Vandermonde structure of the DMD eigenvalues. In overdetermined cases
(m > p), Φ still captures the dominant dynamics, but disentangling Q and S(t) requires
careful dimensionality reduction or augmentation. Conversely, in underdetermined cases
(m < p), DMD alone cannot resolve the sources and additional constraints or methods,
such as time delay embedding, are needed. The success of DMD-based BSS also depends
on the statistical independence of S(t) and the full rank of Q. Deviations from these
assumptions can challenge the separation, but can often be mitigated by augmenting the
data or regularizing the decomposition. Overall, DMD offers a powerful and interpretable
approach to BSS, adaptable to different system configurations.
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Some studies dedicated to the idea of applying the DMD method to solve the BSS
problem are the following: Hirsh et al. in [39] consider the case that all modes sj are
intrinsic mode functions (IMF) with interwave frequency modulation; Prasadan et al.
in [23] investigate the case of uncorrelated latent time series with lag one that have nonzero
autocorrelation, and in [35] an extension to time series uncorrelated at higher lag times is
introduced, see also [36].

It should be noted that all of these applications of the DMD method to implement BSS
use the exact DMD approach described in Section 1.2. While in [23] a lag one time series is
used (i.e., the scheme described in (6)–(9)), in [35,36] the idea of a higher order lag times
is considered, corresponding to that described in (10)–(12). This in turn implies that the
computed mixing matrix Φ, in (9), is a square matrix, i.e., the approach is applicable only
in cases where the number of observable signals is equal to the number of sources, m = p.

In this study, we will extend the idea of applying DMD to BSS implementation by
using the svd-based DMD approach described in (13)–(15), so that the method is applicable
to the overdetermined case as well. Furthermore, we will generalize this concept to use
time-delay coordinates to expand the application range of the proposed scheme. In the
next section, we will describe the idea of using time delays in the DMD approach, and after
that in Section 3, we will present the TD-DMD implementation scheme for BSS.

2. Time-Delayed DMD
Time-Delayed DMD (TD-DMD) is an extension of standard DMD that incorporates

time delays in the data to capture more complex dynamic information. This approach
overcomes several shortcomings of the standard DMD method by extending its capabilities
to handle long-term temporal behavior, nonlinear dynamics, nonuniformly sampled data,
high-dimensional datasets, and noisy data. This makes it a more versatile and robust
technique for dynamic mode decomposition in various applications. The approach is based
on the Takens embedding theorem [40], which provides a rigorous framework for analyzing
the information content of measurements of a nonlinear dynamical system. The scheme
of delay-embedded DMD consists of the following: given the data sequence D in (4), we
arrange s time-shifted copies of the data to form an augmented input matrix. The following
Hankel matrix is formed:

Daug =


x1 x2 . . . xm−s+1

x2 x3 . . . xm−s+2

. . . . . . . . . . . .
xs xs+1 . . . xm

, (16)

where s is the delay embedding dimension. The augmented data matrix Daug is then used

instead of D and processed by the core DMD algorithm.
This increases the dimensionality of space and provides additional information about

time dependencies. Applying DMD to this extended matrix allows the extraction of modes
that are better adapted to complex temporal structures.

2.1. Hankel DMD

The DMD approach described in the previous paragraph is applied to augmented
data matrices:

Xaug =


x1 . . . xm−s

x2 . . . xm−s+1
... . . .

...
xs . . . xm−1

 and Yaug =


x2 . . . xm−s+1

x3 . . . xm−s+2
... . . .

...
xs+1 . . . xm

. (17)
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We use matrices Xaug, Yaug ∈ R(m.s)×(n−s) in place of X and Y, giving eigenvalues Φaug

and modes Λaug. The first m rows of Φaug correspond to the current-state DMD modes used
to reconstruct initial data D. In this case, the DMD operator is expressed as A = YaugX†

aug,
according to (8). The reduced-order DMD operator Ã can be calculated by a formula of the
form (13), and then the DMD mode matrix by a formula of the form (15). The first m rows
of Φaug correspond to the DMD modes of the current state used to reconstruct the initial
data D.

Among the reasons to compute DMD on these delay coordinates is that if the state
measurements are low-dimensional, it may be necessary to increase the rank of the Xaug

matrix by using delay coordinates. In general, adding more rows only results in additional
singular values of Xaug, hence we may increase the number of delay coordinates s until the
system reaches full rank numerically.

2.2. Higher Order DMD

Here we consider the idea of a higher-order extension of the standard DMD that is
capable of providing highly accurate results in cases where the performance of the classical
DMD deteriorates or even fails. The goal is to mix the classical DMD with the Taken delay
embedding theorem [40], leading to the higher-order Koopman conjecture, which uses
time-lagged snapshots, such as

xk+s = A1xk + A2xk+1 . . . + Asxk+s−1, (18)

for k = 1, . . . , m − s.
Let us note that s ≥ 1 is adjustable and for s = 1 this assumption coincides exactly

with the standard Koopman assumption presented in Equation (5). The resulting mapping
is given by

AXaug = Yaug, (19)

where Xaug and Yaug are defined in (17), and A is a block companion matrix:

A =



0 I 0 . . . 0
0 0 I . . . 0
...

...
. . . . . .

...

0 0 0
. . . I

A1 A2 A3 . . . As


. (20)

with Ai ∈ Rn×n, 0 is the n × n zero matrix and I is the n × n unit matrix. Using the
augmented data matrices Xaug and Yaug and the higher-order Koopman operator A, we
can implement the basic DMD algorithm and extract spectral information from temporally
broadband or spatially sparse data sequences. The higher-order extension adds more
robustness and flexibility to the standard algorithm and allows analysis of systems for
which temporal resolution is substituted for spatial resolution.

The described higher-order DMD scheme was introduced by Le Clainche and Vega
in [41,42]. However, the algorithm presented there does not exploit the special form of the
generalized Koopman matrix A in (20).

What follows is to introduce a more cost-effective way to compute the operator A,
as well as an explicit formula for computing the corresponding reduced DMD operator Ã.
For more details, we refer to [43].
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2.2.1. Cost Effective Calculation of Higher-Order DMD Operator

Let us represent the operator A ∈ Rs.n×s.n in the following equivalent block matrix form:

A =

[
0 I

A1 A2:s

]
, (21)

where 0 ∈ R(s−1)n×n is the zero matrix, I ∈ R(s−1)n×(s−1)n is the identity matrix, A1 ∈ Rn×n

and A2:s ∈ Rn×(s−1)n is the block matrix A2:s = [A2| . . . |As].
Let us now use the following representation for the extended matrices Xaug and Yaug

defined in (17):

Xaug =


X1

X2
...

Xs

 and Yaug =


X2

X3
...

Xs+1

, (22)

where Xi ∈ Rn×(m−s) has the form

Xi = [xi|xi+1 . . . |xm−s+i−1] (23)

for i = 1, . . . , s + 1.
From (22) and (23) the equivalent representations follow

Xaug =

[
X1

X2;s

]
and Yaug =

[
X2;s

Xs+1

]
, (24)

where double indexing is used for a matrix of the form:

Xp;q =


Xp
...

Xq

.

From (19) the equivalent representations follow:

AXaug = Yaug ⇔
[

0 I
A1 A2:s

]
Xaug =

[
X2;s

Xs+1

]
. (25)

On the other hand, matrix A is expressed in the following way

A = YaugX†
aug, (26)

where X†
aug is the Moore-Penrose pseudoinverse of Xaug. From the above two equations it

follows that

A =

[
0 I

A1 A2:s

]
=

[
X2;s

Xs+1

]
X†

aug. (27)

To calculate the block matrix A it is sufficient to calculate the last row of matrices:

A1:s = [A1|A2| . . . |As] = Xs+1X†
aug, (28)

which is n × s.n matrix.
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2.2.2. Reduced Order Aproximation of Higher-Order DMD Operator

We consider the reduced SVD of Xaug ∈ Rs.n×(m−s):

Xaug = UXΣXV∗
X (29)

where UX ∈ Rs.n×r, VX ∈ Rm−s×r, ΣX ∈ Rr×r. Let us represent matrix UX in the
form of (22)

UX =


U1

U2
...

Us

, (30)

with sub-matrices Ui ∈ Rn×r for i = 1, . . . , s.
Hence, the reduced order DMD operator

Ã = U∗
XAUX (31)

has the following expression:

Ã = [U∗
1;s−1 | U∗

s ]

[
0 I

A1 A2:s

][
U1

U2;s

]
, (32)

where 0 ∈ R(s−1)n×n is the zero matrix, I ∈ R(s−1)n×(s−1)n is the identity matrix. Double
indexing is used for block sub-matrices Up;q of the form:

Up;q =


Up

...
Uq

.

We obtain the following representation from (32), using (28) and (29):

Ã = U∗
1;s−1U2;s + U∗

s Xs+1VxΣ−1
X , (33)

which is an r × r matrix. Hence, matrix Ã in (33) is the reduced-order approximation of A,
which is much more cost-effective than the standard HODMD formula.

For some recent results on the subject, we recommend [44–53].

3. BSS by Time-Delayed DMD
In this section, we first describe the concept of applying time-delayed DMD for BSS

and then summarize the approach as an algorithm. As mentioned, the TD-DMD approach
extends the standard DMD approach by expanding the snapshot matrix with time-delayed
copies of the data, effectively increasing its rank and capturing richer temporal dynamics.
This is particularly beneficial in Blind Source Separation (BSS) scenarios where the source
matrix S(t) may not have full rank due to correlated sources, limited temporal diversity,
or insufficient data samples. By introducing time delays, TD-DMD overcomes these limita-
tions, improves the separation of independent modes, and improves the reconstruction of
both the mixing matrix A and the source signals S(t). This makes TD-DMD a more robust
and flexible approach to BSS in complex or constrained data scenarios.

TD-DMD would be particularly beneficial for BSS in the following situations:

• When the sources have different frequency characteristics that can be dynamically
separated.
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• The system has a pronounced linear behavior.
• Mixed observations contain temporal or spatial information.

Using the content presented in the previous sections, we introduce here the BSS
algorithm based on Time-delayed DMD.

We note that data centering is a key preprocessing step in BSS to satisfy statistical
assumptions, simplify the mixing model, and improve numerical stability. In the context of
TD-DMD for BSS, centering ensures that the method focuses on separating the dynamic
modes of the sources rather than static, mean-offset modes. It simplifies the mixing model,
removes redundant modes, and improves numerical stability during time-delay embedding
and decomposition. Therefore, before applying Algorithm 1, it is helpful to centralize the
observed signal X = [x1, x2, . . . , xn] so that it is a matrix with zero mean. For this purpose,
we estimate the columnwise mean of X and subtract it to form a centered data matrix X̄:

µ =
1
n

n

∑
i=1

xi (34)

so that
X̄ = X − µ1n, (35)

where 1n = [1, 1, . . . , 1]. Matrix X̄ is provided as input to Algorithm 1.

Algorithm 1 BSS using Time-delayed DMD

Input: Data matrix X, delay embedding parameter s
and rank reduction parameter r.

Output: Mixing matrix Φ and sources Ŝ

1: Procedure BSS by TD-DMD(X, s, r)
2: Xaug, Yaug and Xs+1 (Define as in (22) and (23))
3: [UX , ΣX , VX ] = SVD(Xaug, r) (Reduced, r-rank, SVD of Xaug)
4: U1, U2;s, U1;s−1, Us (Define matrices as in (30))

5: Ã = U∗
1;s−1U2;s + U∗

s Xs+1VXΣ−1
X (Reduced DMD operator)

6: [W, Λ] = EIG(Ã) (Eigen-decomposition of Ã)

7: Φ̃ = YaugVXΣ−1
X W (DMD modes matrix)

8: Φ = Φ̃(1 : m, :) (Estimated mixing matrix)

9: Ŝ = Φ†X (Latent sources S)
10: End Procedure

Some Essential Remarks

1. The presented algorithm allows implementation of the higher lag times approach,
described in (10)–(12). It is sufficient, at Step 2, to construct matrices Xaug and Yaug

from matrix Daug in (16), through a predetermined time-shift.
2. The algorithm is also applicable to overdetermined cases (m > p). In Step 3, the pa-

rameter r is set to be equal to p (the number of sources), then the estimated mixing
matrix Φ is of dimension m × p.

3. It can be easily verified that in particular, for s = 1, the proposed algorithm reduces to
the standard SVD-based DMD algorithm, described in (13)–(15).

4. In the case of m = p, i.e., when the number of observed signals is equal to the
number of sources, for s = 1 and r = m, the proposed algorithm reduces to the exact
DMD algorithm.
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5. At Step 6 of Algorithm 1, Λ is an r × r diagonal matrix Λ = diag{λi}r
i=1, where λi are

the possibly complex eigenvalues of Ã and they are ordered such that

|λ1| ≥ |λ2| ≥ . . . |λr| > 0. (36)

The columns of the matrix W are the corresponding, ordered, generally non-
orthogonal, eigenvectors of Ã.

We note that the choice of the delay embedding parameter s and rank reduction
parameter r in the described scheme is crucial for obtaining accurate and meaningful results.
Delay Embedding Parameter s impacts the reconstruction of the underlying dynamics and
the accuracy of mode identification. It should be large enough to capture the dominant
temporal correlations in the data but not so large that it introduces noise or redundant
information. It can be determined by empirical study or by analysis of the singular value
spectrum of the Hankel matrix constructed using the time-delayed snapshots.

The rank reduction parameter r defines the number of modes retained after truncating
the singular value decomposition (SVD) of the data. This affects the balance between
capturing significant dynamics and filtering noise. Usually, in practice, modes that represent
95–99 % of the cumulative energy (sum of unit values squared) are maintained. But this
can also be done through other approaches, such as the “elbow" method or by setting a
threshold. We do not go into detail in this regard here; all publications and results relating
to the choice of these parameters in the standard time-delayed DMD method are applicable
here [54–56].

4. Numerical Examples
Here, we will demonstrate the introduced approach Time-Delayed DMD (Algorithm 1)

in order to show its ability to accurately extract mixed non-stationary source signals, audio
signals, images and real EEG data.

In the numerical examples considered here, we compare the results obtained by
Algorithm 1 with those obtained by some standard BSS methods such as: PCA, FastICA,
Conv-ICA and NTF. All numerical experiments and simulations were performed on Win-
dows 7 with MATLAB release R2013a on Acer Aspire 571G laptop with an Intel(R) Core(TM)
i3-2328M CPU @2.2 GHz processor and 4 GB RAM. Algorithm 1 is implemented as a user
function. The PCA method is implemented using a standard pca function. For the Fast-ICA
implementation, we use the fastica function from the FastICA toolbox; for Conv-ICA,
we use the runica from the EEGLAB toolbox; and for NTF, we use the ktensor and the
auxiliary cp_asl functions from the Tensor toolbox of Matlab.

We note that Algorithm 1 uses some of the most computationally expensive functions
to calculate SVD and spectral decomposition of matrices. For this purpose, we used the
standard MATLAB implementation, which uses highly optimized linear algebra routines
for efficient computation. Specifically, we used the MATLAB function svd() with the
parameter ‘econ’ to calculate the economical SVD and the eig() function to calculate a
spectral decomposition of the matrices included in the numerical examples.

4.1. Example 1: Three-Dimensional Oscillatory Signals

We consider a simple three-dimensional example. The true signals s1, s2 and s3 are :

s1(t) = cos(20πt − 5 sin(πt))
s2(t) = cos(60πt + 2 sin(4πt))
s3(t) = cos(90πt + 3 sin(8πt)),

(37)
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for t ∈ [0, 1], and the mixing matrix B is given by

A =

 cos(ϕ1) sin(ϕ2) − sin(ϕ1) cos(ϕ1) cos(ϕ2)

sin(ϕ1) sin(ϕ2) cos(ϕ1) sin(ϕ1) cos(ϕ2)

cos(ϕ2) 0 − sin(ϕ2)

,

with ϕ1 = 0.6 and ϕ2 = 0.7. The generated samples are n = 1024 in the interval [0, 1]. This
model is borrowed from [39], where Spatiotemporal Intrinsic Mode Decomposition (STIMD)
approach is used for solving BSS task. Figure 1 shows the source signals s1, s2 and s3,
and the mixed measured signals x1(t), x2(t) and x3(t).
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Figure 1. Three-dimensional system defined by (37). Row 1: The three true source signals. Row 2: The
observed mixed measurement signals.

We apply the Time-Delayed DMD approach for solving the blind source separation
task. In this case, even with a time-delay index of s = 1, the DMD approach gives excellent
results. The results are shown on Figure 2. For comparison, real source signals are also
depicted. The estimates extracted by TD-DMD are identical to the original signals.
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Figure 2. Estimated source signals by Time-Delay DMD, with s = 1, in blue. The tree true source
signals in red dotted lines.

The resulting reconstruction of the latent signals, using TD-DMD with s = 2, is
identical to that obtained using the STIMD method in [39]. A comparison of estimated
sources extracted from TD-DMD with s = 2 and the standard blind signal separation
algorithms PCA, FastIca, Conv-ICA and NTF is shown in Figure 3.
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Figure 3. Comparison of estimated sources extracted by: Row 1: Time-Delay DMD, with s = 2;
Row 2: PCA method; Row 3: FastICA method; Row 4: Conv-ICA method; Row 5: NTF method.

The reconstructions obtained by PCA are obviously still a mixture of the measured
signals. The results from NTF are also unsatisfactory. The Conv-ICA produces only two
signals. Although the signals are statistically independent, their overlapping harmonics
and phase modulations make it difficult for Conv-ICA to distinguish them in the frequency
domain. The estimated signals by FastICA and TD-DMD, aside from a small amount of
amplitude modulation that is not present in the true signals (they all have amplitude 1), are
almost identical to the original signals.

The evaluation of the efficiency of separating mixed signals is computed using the
correlation coefficient, which is calculated using the formula:

Corr(si, ŝj) =
∑n

t=1 si(t)ŝj(t)√
∑n

t=1 s2
i (t)∑n

t=1 ŝ2
j (t)

, (38)

The results displayed in Figure 3 are also confirmed by the calculated similarity
coefficients presented in Table 1.

Table 1. Correlation coefficients for PCA, FastICA, TD-DMD (with s = 2), Conv-ICA and NTF.

PCA FastICA TD-DMD Conv-ICA NTF

Corr(s1, ŝ1) 0.58045 0.99893 1 - 0.02403
Corr(s2, ŝ2) −0.81851 −0.99914 −1 0.7095 0.4763
Corr(s3, ŝ3) −0.70819 −0.99975 −1 0.9994 −0.0052
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4.2. Example 2: Separating Audio Signals

In this example, we will illustrate that TD-DMD approach can reconstruct mixed audio
signals. We use two audio signals, which are built-in functions in Matlab. The first signal
contains the sound of a bird chirping (‘chirp’), and the second contains a recording of a
group of people laughing (‘laughter’). The two signals have n = 13,000 samples taken at
8.2 kHz, for a duration of 1.65 s each. We mix the signals with matrix

Q =

[
0.7 0.2
0.3 0.5

]
.

The two source signals are shown in Figure 4.
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Figure 4. The two original audio signals.

The observed signals are shown in Figure 5.
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Figure 5. The linear mixed images.
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Figure 6 shows the estimates produced by the PCA, FastICA, Conv-ICA, NTF and
TD-DMD, with s = 2. In this case, TD-DMD gives comparable results when choosing s = 1
and s = 2.
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Figure 6. Separated signals by TD-DMD (with s = 2), PCA, FastICA, Conv-ICA and NTF.

Employing the PCA on observed signals does not work well here because the mix-
ing matrix is not orthogonal. The most unsatisfactory results are obtained from the
NTF method.

To assess the quality of the reconstructed signals, we used the popular metric Signal-
to-noise ratio (SNR), which is calculated using the following formula:

SNR = 10 ∗ log10
∑n

i=1 s2
i

∑n
i=1(si − ŝi)2 , (39)

where si and ŝi are the original and estimated sources, respectively.
The calculated similarity coefficients presented in Table 2 confirm the visualized results.



Computation 2025, 13, 31 16 of 25

Table 2. Signal to noise ratio (SNR) for PCA, FastICA, Conv-ICA, NTF and TD-DMD with s = 1
and s = 2.

PCA FastICA TD-DMD TD-DMD Conv-ICA NTF(s = 1) (s = 2)

SNR(s1, ŝ1) 5.85 −12.37 12.42 −6.66 −10.09 −0.002
SNR(s2, ŝ2) 0.51 −14.68 −3.73 13.04 12.4 20.33

Overdetermined Case

To illustrate the application of Algorithm 1 in the overdetermined case, we will use
the following mixing matrix:

Q =

 0.7 0.2
0.3 0.5
0.6 0.4


The result is three observable signals, shown in Figure 7.
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Figure 7. Three mixed images.

We note that in this case the standard (exact) DMD approach is not applicable. The pro-
posed scheme (Algorithm 1) effectively separates the two signals. Separated signals by
TD-DMD, with s = 2, PCA, FastICA, Conv-ICA and NTF are shown in Figure 8.

In this case, although the reproduced results are similar, s = 1 yields slightly better
results than s = 2. The PCA and NTF methods do not produce satisfactory results. This is
also seen in Table 3.

Table 3. Signal to noise ratio (SNR), in the overdetermined case, for PCA, FastICA, Conv-ICA, NTF
and TD-DMD with s = 1 and s = 2.

PCA FastICA TD-DMD TD-DMD Conv-ICA NTF(s = 1) (s = 2)

SNR(s1, ŝ1) 4.59 −15.78 29.92 −7.85 −10.04 −0.002
SNR(s2, ŝ2) −0.52 −14.66 9.58 −5.88 12.4 20.3
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Figure 8. Separated signals by TD-DMD (with s = 2), PCA, FastICA, Conv-ICA and NTF.

4.3. Example 3: Separation of Mixed Images

In this example, we will use a mixture of two standard images Baboon and Pepper.
Both images are grayscale images with 256 × 256 pixels. The two mixed images, see
Figure 9, are obtained by the mixing matrix

Q =

[
0.6 0.4
0.3 0.5

]

The original images and linear mixed images ar shown in Figure 9.

Original Baboon Original Peppers

Mixed Image 1 Mixed Image 2

Figure 9. Row 1: The original images. Row 2: The linear mixed images.
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The separated source images by TD-DMD and PCA are shown in Figure 10 and
Figure 11, respectively.

Separated by DMD Separated by DMD

Figure 10. Separated images by TD-DMD, with s = 2.

Separated by PCA Separated by PCA

Figure 11. Separated images by PCA.

NTF fails to separate two mixed images, because it assumes that both the source
signals and the mixing coefficients are nonnegative, but the mixing matrix Q does not
preserve strict nonnegativity for all pixel combinations. The ICA and Conv-ICA methods
also fail because the mixing matrix Q is nearly ill-conditioned, making separation difficult.
The visualization of the results from the application of the NTF, ICA and Conv-ICA methods
is omitted, as they are worse than the result of the PCA method, shown in Figure 11.

Table 4 shows: the estimated mixing matrix Φ, the matrix product Φ−1Q and Mean
Square Error of the approximation of Q by Φ, for different values of s.

Table 4. Estimated mixing matrix Φ, the product Φ−1Q and MSE error for TD-DMD with s = 1, 2, 3.

TD-DMD with Φ Φ−1Q MSE

s = 1
[

0.9021 0.6331
0.4316 0.7740

] [
0.6551 0.0275
−0.0164 0.6458

]
0.0595

s = 2
[

0.7071 0.4539
0.3446 0.5533

] [
0.9187 0.0227
−0.0240 0.8340

]
0.0048

s = 3
[

0.5780 0.3742
0.2697 0.4596

] [
1.0995 0.0702
−0.0197 0.9926

]
9.24 × 10−4

The calculated similarity coefficients presented in Table 5 confirm the visualized results.
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Table 5. Signal to noise ratio (SNR) for PCA, FastICA, Conv-ICA, NTF and TD-DMD with s = 1, 2, 3.

Picture PCA FastICA Conv-ICA NTF TD-DMD TD-DMD TD-DMD
(s = 1) (s = 2) (s = 3)

Baboon 0.081 0.15171 −0.1881 0.0001 5.609 6.398 5.76
Peppers 0.131 0.17745 21.349 20.259 5.343 6.000 5.683

Overdetermined Case

We show TD-DMD applied to the case of three observed signals and two source signals.
The mixed images obtained by the overdetermined mixing matrix:

Q =

 0.6 0.4
0.3 0.5
0.5 0.5


Mixed images are shown in Figure 12.

Mixed Image 1 Mixed Image 2 Mixed Image 3

Figure 12. Mixed images in overdetermined case.

The best results from Algorithm 1 are achieved at s = 2. The resulting estimate of the
mixing matrix is

Φ =

 0.5684 0.3571
0.2767 0.4362
0.4695 0.4407

,

and the matrix product Φ−1Q is the following:

Φ−1Q =

[
1.1636 0.0302
−0.0274 1.0367

]
.

Separated images by TD-DMD, with s = 2, are shown in Figure 13.

Separated by DMD Separated by DMD

Figure 13. Separated images by TD-DMD with s = 2.
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The calculated similarity coefficients presented in Table 6 confirm the visualized results.

Table 6. Signal to noise ratio (SNR), in the overdetermined case, for PCA, FastICA, Conv-ICA, NTF
and TD-DMD with s = 1, 2, 3.

Picture PCA FastICA Conv-ICA NTF TD-DMD TD-DMD TD-DMD
(s = 1) (s = 2) (s = 3)

Baboon −0.0598 0.151 −0.1881 0.0001 6.4812 5.2694 3.0961
Peppers 0.130 0.177 21.349 20.259 5.9691 5.4217 3.8431

4.4. Example 4: Analysis of EEG-Data

An electroencephalogram (EEG) is a test to assess electrical activity in the brain
that uses small electrodes attached to the scalp. It is known that the main means of
communication between brain cells, which are always active, even when you are sleeping,
are electrical impulses [57,58]. EEG studies find application in the therapeutic environment
for the diagnosis and treatment of neurological diseases, including multiple sclerosis,
epilepsy, and other mental illnesses [59]. But the EEG signal is often contaminated by
the so called artifacts [60]. These are unwanted signals from sources other than the brain
that alter the original EEG activity and complicate its interpretation [61]. Artifacts are
divided into physiological and non-physiological. Physiological artifacts are: biological
activity of the eye, muscles, heart, breathing, etc. While interference from instruments and
moving electrodes, wires, electromagnetic fields, etc. are classified as non-physiological
artifacts [62]. The main problem when working with EEG data is still the reduction of
artifacts. Various approaches are known to address this problem, one of the methods used
to remove artifacts is Blind Sources Separation (BSS) [63].

In this example we use real EEG data from PhysioNet database [64]. This data set con-
sists of over 1500 one- and two-minute EEG recordings, obtained from 109 volunteers. Sub-
jects performed different motor/imagery tasks while 64-channel EEG were recorded using
the BCI2000 system (http://www.bci2000.org). The EEGs are recorded from 64 electrodes
as per the international 10-10 system. The data are provided in EDF+ format (containing
64 EEG signals, each sampled at 160 samples per second). The file “S001R01.edf” was used
for the experiments here. Figure 14 visualizes the first six signals of the recorded data.

Before applying the DMD approach, we prepare the data by filtering and centering it.
After preprocessing the data, we applied Algorithm 1 with different values of the time-delay
coefficient s. Sometimes it is possible to visually verify which components correspond to
different artifacts.

Figure 15 shows a visualization of the source signals at s = 5. It is already clear
from the graph that the sources are three signals that are repeated, i.e., we have three
pairs of correlating signals. This dependence is preserved for different values of s > 1,
as the correlation between repeated signals increases with increasing s. This leads us to the
conclusion that there are three independent source signals.

To compare the obtained results with those from the ICA method, we use the runica
function from the EEGLAB tools of Matlab. The same preprocessing of the initial data
that was applied in Algorithm 1 is used here. Figure 16 visualizes the separated signals
using the ICA method. Examining the correlation between the three signals obtained
through Algorithm 1 and the signals obtained from the ICA, it is found that there is a high
correlation between them. Moreover, this correlation is greater for larger values of s.

For example, at s = 5 we have the following correlation indices:

Corr(s1, s̄1) = 0.5731, Corr(s3, s̄4) = −0.6449 and Corr(s5, s̄3) = 0.6816

http://www.bci2000.org
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and at s = 20, we get

Corr(s1, s̄3) = −0.7682, Corr(s3, s̄2) = 0.8591 and Corr(s5, s̄6) = −0.7222,

where si denotes the signals computed by TD-DMD and s̄i denotes the signals computed
by ICA.
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Figure 14. First 6 signals of observed EEG data.
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Figure 15. Source signals computed by TD-DMD, with s = 5.
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Figure 16. Source signals computed by Conv-ICA method.

5. Conclusions
The aim of this study was to introduce an extended approach of the DMD method

to implement the BSS task. While DMD is successful for many tasks, its standard form is
limited by its lack of ability to capture complex time dependencies, which are key for BSS.
The presented modification uses the SVD-based DMD scheme by using delay embedding
techniques. Introducing time delays into DMD extends its scope and allows the method to
extract more information about the dynamics of the system. The matrix representations
underlying this technique are provided, highlighting their corresponding computational
frameworks for solving the BSS model. The proposed algorithm extends the possibilities of
the DMD approach to be used in the case of an overdetermined BSS model. Furthermore,
the scheme is applicable to various, predefined, time lag. In particular, the algorithm can be
reduced to a standard (exact) DMD approach with a single time lag. We have demonstrated
the performance of the presented algorithm with various illustrative numerical examples,
including separation of audio signals and images. An experimental comparison with
traditional techniques such as ICA and PCA is presented. Numerical results show that the
introduced algorithm outperforms the standard DMD approach in most cases. It is also
illustrated that it is applicable in some cases where standard approaches such as PCA or
ICA do not yield good results. The numerical results show that the introduced algorithm is
an alternative for solving the BSS and can be used in various fields of application.

Some potential avenues for future development in this line of research are:

• Extension to Nonlinear Dynamics: While our current approach primarily addresses lin-
ear dynamics, we aim to investigate the extension of DMD-based BSS to handle nonlin-
ear systems through methods such as kernel DMD or deep learning-enhanced DMD.

• Real-Time and Online Implementations: Another direction is to develop real-time or
online implementations of DMD-based BSS for applications in robotics, communica-
tions, and biomedical signal processing, where real-time performance is critical.



Computation 2025, 13, 31 23 of 25

• Parallel Implementation: One of the key areas for future research will involve im-
plementing the DMD-based BSS method in a parallel computing environment. This
would allow us to efficiently process larger datasets and reduce computational times,
making the method more suitable for real-time applications.

• Integration with Deep Learning Techniques: Combining DMD approach with machine
learning and deep learning methods is another promising area of research. This could
involve using neural networks to improve the performance and robustness of the
DMD-based BSS in complex or noisy environments.

This work highlights TD-DMD as a powerful tool for combining dynamical systems
analysis and signal processing, paving the way for further advancements in BSS and
dynamic data decomposition.
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47. Mezić, I. On Numerical Approximations of the Koopman Operator. Mathematics 2022, 10, 1180.
48. Nedzhibov, G. Dynamic Mode Decomposition: A new approach for computing the DMD modes and eigenvalues. Ann. Acad.

Rom. Sci. Ser. Math. Appl. 2022, 14, 5–16.
49. Nedzhibov, G. An Improved Approach for Implementing Dynamic Mode Decomposition with Control. Computation 2023, 11, 201.



Computation 2025, 13, 31 25 of 25

50. Nedzhibov, G. Online Dynamic Mode Decomposition: An alternative approach for low rank datasets. Ann. Acad. Rom. Sci. Ser.
Math. Appl. 2023, 15, 229–249.

51. Nedzhibov, G. Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition. Mathematics 2024, 12, 762.
52. Arbabi, H.; Mezic, I. Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman

Operator. SIAM J. Appl. Dyn. Syst. 2017, 16, 2096–2126.
53. Kamb, M.; Kaiser, E.; Brunton, S.L.; Kutz, J.N. Time-delay observables for Koopman: Theory and applications. SIAM J. Appl. Dyn.

Syst. 2020, 19, 886–917.
54. Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems; SIAM:

Philadelphia, PA, USA, 2016; ISBN 978-1-611-97449-2.
55. Wu, Z.; Brunton, S.L.; Revzen, S. Challenges in dynamic mode decomposition. arXiv 2021, arXiv:2109.01710.
56. Yuan, Y.; Zhou, K.; Zhou, W.; Wen, X.; Liu, Y. Flow prediction using dynamic mode decomposition with time-delay embedding

based on local measurement. Phys. Fluids 2021, 33, 095109.
57. Massar, H.; Nsiri, B.; Drissi, T.B. DWT-BSS: Blind Source Separation applied to EEG signals by extracting wavelet transform’s

approximation coefficients. J. Phys. Conf. Ser. 2023, 2550, 012031.
58. EEG (Electroencephalogram). Mayo Clinic. Mayo Foundation for Medical Education and Research. 2022. Available online:

https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875 (accessed on 17 November 2022).
59. Judith, A.M.; Priya, S.B.; Mahendran, R.K. Artifact Removal from EEG signals using Regenerative Multi-Dimensional Singular

Value Decomposition and Independent Component Analysis. Biomed. Signal Process. Control. 2022, 74, 103452.
60. Kachenoura, A.; Albera, L.; Senhadji, L. Séparation aveugle de sources en ingénierie biomédicale. IRBM 2007, 28, 20–34.
61. Mannan, M.M.N.; Kamran, M.A.; Jeong, M.Y. Identification and removal of physiological artifacts from electroencephalogram

signals: A review. IEEE Access 2018, 6, 30630–30652.
62. Rashmi, C.R.; Shantala, C.P.; EEG artifacts detection and removal techniques for braincomputer interface applications: A

systematic review. Int. J. Adv. Technol. Eng. Explor. 2022, 9, 354.
63. Zhou, W.; Chelidze, D. Blind source separation based vibration mode identification. Mech. Syst. Signal Process. 2007, 21, 3072–3087.
64. Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A General-Purpose Brain-Computer Interface

(BCI) System. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875

	Introduction
	The BSS Framework
	The DMD Framework
	BSS in Context of DMD

	Time-Delayed DMD
	Hankel DMD
	Higher Order DMD
	Cost Effective Calculation of Higher-Order DMD Operator
	Reduced Order Aproximation of Higher-Order DMD Operator


	BSS by Time-Delayed DMD
	Numerical Examples
	Example 1: Three-Dimensional Oscillatory Signals
	Example 2: Separating Audio Signals
	Example 3: Separation of Mixed Images
	Example 4: Analysis of EEG-Data

	Conclusions
	References

