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Abstract: The integration of solar Photovoltaic (PV) systems into the AC grid poses stability
challenges, especially with increasing inverter-based resources. For an efficient operation
of the system, smart grid-forming inverters need to communicate with the Supervisory
Control and Data Acquisition (SCADA) system. However, Internet-of-Things devices that
communicate with SCADA make these systems vulnerable. Though many researchers
proposed Artificial-Intelligence-based detection strategies, identification of the location
of the attack is not considered by these strategies. To overcome this drawback, this paper
proposes a novel Convolution extreme gradient boosting (ConvXGBoost) method for
not only detecting Denial of Service (DoS) and False Data Injection (FDI) attacks but also
identifying the location and component of the system that was compromised. The proposed
model is compared with the existing Convolution Neural Network (CNN) and decision tree
(DT) strategies. Simulation results demonstrate the effectiveness of the proposed method
for both the smart PV and PV fuel cell (PV-FC) systems. For example, the proposed model
is efficient with an accuracy of 99.25% compared to the 97.76% of CNN and 99.12% of DT
during a DoS attack on a smart PV system. Moreover, the proposed method can detect and
identify the attack location faster than other models.

Keywords: smart grid; intrusion detection system (IDS); cyber-physical security; deep
learning; CNN; decision tree

1. Introduction
Microgrids, becoming increasingly popular, employ Distributed Energy Resources

(DERs), such as solar energy, as sources of electric power. The energy harnessed from these
resources is integrated with the conventional/main electric grid through inverters, grid
following or grid forming, to ensure reliability of the grid. These can be used either locally
or in an off-grid electric network or can be used for feeding into a commercial electric
grid [1]. Smart inverters are those that can operate autonomously and have adaptive
features along with plug-and-play functions. These can ride through minor disturbances
to voltage or frequency, directing the distributed system to stay online and respond to
short-term events.

Even though smart inverters are developed to operate in decentralized mode, they
require Internet of Things (IoT) devices to interact with other components of the microgrid
along with the traditional grid. These IoT devices, employed for these systems, effectively
monitor various parameters and transmit and receive information. When these devices
are exposed to the Internet, they pose a potential threat to the smart grids by creating a
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vulnerable point of entry for cyber-intrusions. 5G networks (fifth generation of cellular
networks) can offer suitable services for real-time operations in a microgrid, especially for
smart inverters [2]. Even though the usage of 5G for smart inverters offers a promising
solution to overcome the limitations of conventional grids, the continuous data exchange
between different components of the grid and the control panel makes them vulnerable to
cyberattacks, thereby posing serious threats to the operation of smart grids [3]. Cyberattacks
on the electric grids are directly or indirectly associated with destabilizing the grid. Most of
these can be based on malware, unauthorized access or Denial of Service (DoS) attacks [4].
Cyberattacks on smart inverters can be problematic, as they can alter the function of the
inverter which may lead to undesirable states of the electric grid [5].

Providing security against such cyberattacks for the inverters in the smart grids is the
biggest challenge for the system operators [6]. Even though vulnerable components can
be secured against such attacks, dynamic measures are needed to protect them. This is
possible if and only if the nature/type of the cyberattack is identified correctly. In addition,
the devices that are attacked are also to be identified along with the impact created. Several
techniques have been found in the literature to identify the nature of cyberattacks in smart
grids [7–18].

Artificial Intelligence (AI) can be employed to improve reliability of the smart grids.
Even though different techniques are available, deep learning appears to be the most
effective AI technique for protecting smart grids against cyberattacks. It was found to
be better than conventional techniques like fuzzy logic, genetic algorithms and expert
systems [19]. Employing deep learning techniques can help the system in automatic
identification of the features of cyberattacks, besides detecting cyber intrusions and malware
injections, thereby reducing the probability of cyberattacks on the power systems [20].
Convolutional Neural Networks (CNNs) and decision trees (DTs) are widely used machine
learning models in detecting cyberattacks in smart grids.

CNNs, a classification of deep neural networks, have multiple convolutional, pooling
and fully connected layers and can learn hierarchical representations from raw data. They
perform very well in extracting the features from the data and are able to identify the anoma-
lies in the data. These factors encouraged researchers to develop CNN-based detection
strategies as discussed in Table 1. Though all the works presented in Table 1 on CNN-based
detection strategies demonstrated their efficiency in detecting cyber-intrusions, none of
the papers presented a means to identify the specific location of the attack. Moreover, the
CNNs are prone to overfitting which can lead to biased predictions. On the other hand, DTs
have a tree-like structure, are highly penetrable and so can capture nonlinear relationships
between features and target variables [21,22]. This encouraged researchers to use the DT for
the detection of cyberattacks as shown in Table 2. Though Table 2 presents the instances of
DTs used for intrusion detection, DTs always fail to capture the complex relationships in the
data. Moreover, DTs tend to have high variance, which makes them more sensitive to small
variations in training data. These drawbacks of DTs are addressed by the XGBoost model.
XGBoost, which stands for extreme gradient boosting, is a machine learning algorithm that
is developed based on an ensemble of DT. It is a scalable, distributed gradient-boosted
decision tree (GBDT). It was designed to efficiently train machine learning models. It
is able to solve real-world scale problems using a minimal number of resources [23]. It
employs a regularization technique to address overfitting, is less susceptible to noisy data
and improves performance by reducing the bias and variance. Moreover, XGBoost is highly
scalable and efficient and is capable of handling large datasets with millions of data samples
and features. It also provides feature importance scores, a metric showing the contribution
of each feature, which helps to identify the informative features.
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Table 1. Researchers proposed CNN detection models.

Authors Model Used Attack Tested Major Findings

Osman Boyaci et al. [7] Chebyshev Graph Convolutional
Networks (CGCN).

Data scale attacks and
distribution-based attacks.

For large-scale AC power grids,
CGCN can capture spatial
correlations of power grid

measurements in a better way
than fully connected neural

networks (FNN) and Recurrent
Neural Networks (RNN) and has

a higher detection rate.

Samson Ho et al. [8] Novel Intrusion Detection System
(IDS) based on CNN. DoS, brute force and web attacks.

Higher detection rate and lowest
False Alarm Rates when
compared to hierarchical,

Random Forest and Naive Bayes
models.

Kang-Di Lu et al. [9] Representation-Learning-Based
CNN.

DoS, False Data Injection (FDI),
jamming and hybrid attacks.

RL-CNN is superior to two
compositional

metric-learning-based multilabel
detection methods and two

manifold regularized
discriminative feature

section-based multilabel detection
methods, i.e., KNN-COM,

MLK-COM, MDFS-MLK and
MDFS-CNN in terms of five

performance indices.

Moataz Abdelkhalek et al. [10]
Supervised machine learning

(ML)-based anomaly detection
algorithm.

DoS, remote automated attacks,
unauthorized remote hacking
attacks, scanning, DER Stealth

Modbus attacks.

ANN-based IDS achieve high
detection accuracy of 98.4% and

very low detection latency of 5 ms
with high precision and recall.

Kübra Bitirgen et al. [11]

Particle Swarm Optimization
(PSO)-based convolutional neural

networks—long short-term
memory (CNN-LSTM).

FDI, relay setting change attack,
remote tripping command

injection, short-circuit fault and
line maintenance.

PSO-CNN-LSTM is a more robust
detection method for data
injection, remote tripping
command injection, attack

sub-type (command injection
against a single relay) and relay

setting change attacks.

Jiaying Mao et al. [12] Unified CNN-LSTM. DoS, FDI attacks.

CNN-LSTM successfully classifies
cyberattacks of different targets

and modes in inverter-based
cyber-physical systems.

Basim Ahmad Alabsi et al. [13] Dual Convolutional Neural
Network (CNN-CNN).

DoS, DDoS, reconnaissance and
information theft attacks.

Combination of two CNNs can
effectively detect IoT attacks in

IoT networks.

Guangdou Zhang et al. [14] Deep Capsule Convolution
Neural Network (DC-CNN).

DoS, FDI, replay attacks,
time-delay attacks and deception

attacks.

Significantly higher performance
than other methods.

With the above background, this paper proposes the ConvXGBoost method which
combines the capabilities of a CNN and the XGBoost algorithm. The proposed approach
not only can detect the cyber-intrusion but also identify the specific location or the com-
ponent under attack, thereby helping to effectively mitigate cyberattacks. This proposed
methodology has the feature selection capability of the CNN model and the robustness
and interpretability of the XGBoost model. A similar method was used in biometric identi-
fication and authentication [24] application. This method, when tested for breast cancer
and Parkinson’s datasets, was found to be accurate in comparison to traditional families of
machine learning [25]. However, the proposed ConvXGBoost method has not been used in
the case of the smart PV inverter. This fact demonstrates the novelty of this paper.

This proposed method is developed in Python 3.11 and evaluated in comparison with
traditional CNN and DT models. Moreover, these developed models are imported into the
MATLAB/Simulink environment and evaluated to see how fast these models can detect
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cyber-intrusions in the simulation environment. The proposed model is developed and
tested on the DoS and FDI attacks of the grid-connected smart solar PV inverter system.
The DoS attack is relevantly easy to implement and is difficult to trace. This attack poses an
immediate threat when implemented, and a slight delay caused by this attack can disrupt
the entire connected system [26].

Table 2. DT detection models proposed by researchers.

Authors Model Used Attack Tested Major Findings

Seyedeh Mahsan
Taghavinejad et al. [15] Hybrid DT. DoS, Probe, R26, U2R attacks.

The combination of multiple
decision trees has a good effect on

improving the performance of
intrusion detection systems in an

IoT-Based SG.

Rachidi zhour et al. [16]

Hybrid algorithm that combines
the Random Forest, DT and

Multilayer Perceptron
algorithms.

DDoS-HOIC attack, DoS-Slow
Loris attacks, FTP-Brute Force,

DoS-SlowHTTPTest attacks,
DDoS-LOIC-HTTP attacks,
SSH-Brute Force, DoS-Hulk

attacks, DoS-GoldenEye attacks,
Bot, Infiltration,

DDoS-LOIC-UDP attack, Brute
Force-Web, Brute Force-XSS,

SQL Injection.

The hybrid algorithm
demonstrated high performance,

surpassing Naive Bayes and
Multilayer Perceptron (MLP)
algorithms. It achieved high

accuracy, high true positive rate
and the lowest false negative rate
for the NSL KDD, UNSW-NB15

and CIC-IDS-2017 datasets.

Avula Venkata Srinadh
Reddy et al. [17] DT using genetic algorithm. Probe attack and DoS attack.

The tree managing method is the
most ideal for the working of the
IDS access street and is executed
in the hereditary calculation of

avoidance.

Muhammad Refansa Akbar et al. [18] Binary Decision Tree. -

The proposed system effectively
determines the intrusions on
Unmanned Aerial Vehicles

(UAVs) with average accuracy
and precision of 91.6%.

Answer Shees et al. [27] DT FDI attack.

The Extra Trees, Random Forest
and XGBoost models

demonstrated superior
performance compared to those

reported in the existing literature.

MD Jainul Abudin et al. [28] Hybrid DT FDI attack.
The decision tree combined with
logistic regression significantly

enhanced the performance.

In summary, this proposed work makes the following significant contributions to the
field of smart PV systems:

(1) The introduction of a novel ConvXGBoost method for the smart PV inverter system
that can not only detect but also identify the location of the attack.

(2) The proposed model is extensively evaluated along with the traditional CNN and
DT models on DoS and FDI attack data to prove the effectiveness of combining the
models to enhance prediction accuracy.

(3) Furthermore, the developed models are evaluated to effectively see how fast the
models were able to detect and identify the location of the attacks.

These contributions pave the way for future research in developing AI models that
combine the capabilities of different models to enhance the ability to detect, identify and
mitigate more efficiently.

This paper is organized as follows: Section 2 discusses the problem statement that
explains the motivation to develop the proposed model to detect and identify cyberattacks
in solar PV systems. Section 3 presents the mathematical modeling of cyberattacks. In
Section 4, the proposed model is presented with the necessary mathematical equations.
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Section 5 presents the existing methods developed for comparison, and Section 6 presents
the implementation of the models. Section 7 presents the results of the proposed model in
comparison with the developed existing models, and finally, Section 8 presents conclusions.

2. Problem Statement
Over the recent past, electric grids have become increasingly smart with the advent of

the latest digital technologies and advanced communication protocols, thereby improving
the efficiency and performance of all four facets of electric power systems, namely gen-
eration, transmission, distribution and consumption of electricity. This functionality is
facilitated by the interconnection of IoT devices, allowing for seamless communications
and data exchange between different parts of the system. One of the important chal-
lenges with smart grids is the effective and efficient transmission of bulk data without
any altercations [29]. 5G communication offers the fastest communication with the least
latency, among the available networks. These features may address the challenges of smart
grids [30]. Integrating the Advanced Metering Infrastructure (AMI) and Distributed Energy
Resources (DERs) with the Internet and providing 5G technology communications (referred
to as IoT with 5G) may offer a stable and secure smart grid [31]. Even though the cost of
infrastructure and operational costs are higher for 5G communications, the advantages of
increased network capacity, low latency and faster data transmission can offset the higher
costs [32].

Nevertheless, with the integration of IoT devices and the advent of the 5G network,
the smart PV inverter system is still prone to cyber-intrusions due to the vulnerabilities of
the integrated system. As seen in the smart PV inverter system of Figure 1, the attacker
can interfere with the control signals sent from SCADA and interrupt the operation of the
respective controllers. The attacker can jam these control signals, thereby inducing a delay
in the system. These delays cause disruptions in the system depending on its withstand-
ing capabilities. Moreover, the attacker can induce false data into these signals that can
manipulate the system parameters leading to operation failures due to the disruptions in
the normal operation. To evidently show the impact of these cyber-intrusions, a smart
solar PV system is developed in the MATLAB/Simulink environment, and the attacks
are implemented.

The developed system is a grid-connected 140 kW smart solar PV system that operates
irrespective of grid connection or disconnection mode as shown in Figure 1. The major
electric circuits in this proposed system are the PV generation system, battery system
and inverter control system. The PV system is coupled to a boost converter with control
circuitry for operating PV at the maximum power point (MPP). The battery is connected to
a buck-boost converter which is controlled by the proportional integral (PI)-based battery
control circuitry which helps to maintain the DC bus voltage VBUS at the reference voltage
Vre f _DC of 400 V.

The inverter system consists of a six-pulse three-bridge inverter with control circuitry
designed based on the synchronous generator (SG) dynamic operating characteristics as
shown in Figure 2. This Virtual SG (VSG)-based control circuitry will help to operate the
inverter control system similar to the traditional SG, thereby maintaining the system inertia.
The control circuitry of the proposed VSG-inverter system can be represented using the
following equations:

Pm = Pre f + k1

(
fre f − f

)
(1)
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Equation (1) represents the f − p control loop, where Pm is the calculated mechanical
power, Pre f is the reference active power, fre f is the reference frequency, f is the measured
frequency, and k1 is the gain value.

V = Vre f + k2

(
Qre f − Q

)
(2)

Equation (2) represents the Q − V control loop, where V is the calculated voltage, Qre f

is the reference reactive power, Vre f is the reference voltage, Q is the measured reactive
power, and k2 is the gain value.

Pm
.
θre f

− Pe
.
θre f

= J
..
θ + D(

.
θ −

.
θre f ) (3)

Equation (3) represents the rotor function loop, where θ is the reference angle, J is the
virtual inertia, and D is the damping coefficient. This control loop is designed based on the
rotor dynamics of the SG, i.e., based on the swing equation.
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Further, double loop control circuitry is implemented to generate the reference signals
for the Pulse Width Modulation (PWM) generator to control the switches of the inverter.
The mathematical modeling of this control loop can be represented as

V f
d = V∗

d + (id − i∗sd)

(
kp1 +

ki1
s

)
− ωLi∗sq (4)

V f
q = V∗

q +
(

iq − i∗sq

)(
kp2 +

ki2
s

)
+ ωLi∗sd (5)

id = i∗d +
(

Vre f
d − V∗

d

)(
kp3 +

ki3
s

)
− ωCV∗

q (6)

iq = i∗q +
(

Vre f
q − V∗

q

)(
kp4 +

ki4
s

)
+ ωCV∗

d (7)

where V f
d & V f

q are the final reference signal sent to the PWM generator. V∗
d , V∗

q , i∗d , i∗q
are the measured voltages and currents after the filter inductor L, and i∗sd, i∗sq are the

measured currents after the filter capacitor C. Vre f
d , Vre f

q are the reference signals generated
based on the rotor dynamics. kp1, kp2, kp3, kp4 are the respective proportional gains, and
ki1, ki2, ki3, ki4 are the respective integral gains.

Under normal operation, the smart PV inverter feeds the load with the power produced
from the solar PV panels and, if required, from the BES depending on the load requirement
and to maintain stability as shown in Figure 3.
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Figure 3. System under normal operating conditions.

Under these operating conditions, the control signals from the SCADA to the respective
controllers are reached without any time delay. In this system, it is assumed that the attacker
launched a DoS attack on the control signals for a duration of 1 s at time step 2 s as shown
in Figure 4a. The intensity of the attack influences the extent of the time delay (elaborated
in Section 3), and the disruption of the system is dependent on its ability to withstand the
delay. As shown in Figure 4a, when the attack is introduced on the system, it is clearly seen
how the DoS attack was able to disrupt the entire system and cause a catastrophic disaster.
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In Figure 4b, the FDI attack on the Vre f set point of the inverter also shows how this attack
can manipulate the system parameters that lead to the disrupted behavior.
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These results show why there is a need for effective detection of cyber-intrusions and
the mitigation of these intrusions to maintain the system’s stability. There is a need for
identification of the location of these attacks for effectively mitigating either by isolating
the affected system or by providing a means to generate the lost control signal. All these
facts serve as a strong motivation for the proposed research.

3. Mathematical Modeling of Attacks
The smart PV system is continuously monitored and controlled by SCADA through

the 5G communication lines.

3.1. DoS/DDoS Attack Modeling

The DoS/DDoS attack on this 5G network can be considered in a way that, when this
attack happens on the smart PV system, there will be a loss of signal sent from SCADA to
the controllers in the smart PV system. This introduces a delay in the control signal, and
the duration of the delay depends on the total number of samples lost during the attack.
Let {xi}N

i=0 be the control signal sent from SCADA at time i, N be the total number of
samples and No be the total number of samples lost during the DoS/DDoS attack on the
5G network, then the original and delayed control signal can be represented as

xoriginal(t) = x(t) = {xi}N
i=0 (8)

xdelay(t) = x(t − N0) = {xi}N−N0
i=−N0

(9)

In other words, this can be interpreted as

xdelay(t + N0) = xoriginal(t) (10)

where, to get the same sample from the original control signal xoriginal , we should add N0

sample time to the current timestep of xdelay.
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The attack sequence can be explained as follows: (a) First, the smart PV system
operates normally by communicating with the SCADA system through 5G communication
lines as shown in Equation (11a). (b) Then, the attacker launches the DoS/DDoS attack
on the system starting at sample time of t1 ≥ 0 lasting up to t2, where t2 = t1 + N0 ≤ N,
N0 is the variable delay that depends on the severity of the attack. During this period,
the signal samples are completely lost as shown in Equation (11b). (c) After the attack is
cleared, the signal retains the t1 + 1 signal sample as in the post-attack period, as shown in
Equation (11c), since the DoS/DDoS attack does not alter the signal integrity. Based on this
attack sequence, the composite control signal reaches the smart PV system, and xPV can be
expressed as

xPV(t) =


xoriginal(t) i f 0 ≤ t < t1, pre attack (11a)

0 i f t1 < t ≤ t2 , attack (11b)

xdelay(t) i f t2 < t ≤ N, post attack (11c)

3.2. FDI Attack Modeling

In an FDI attack, the attacker can induce false data into the system that can manipulate
the system operations. The attacker can solely control the duration of the attack and the
distribution of the false data as long as the attack is detected and mitigated. For the smart
PV system, the attacker can change the reference points of the respective controllers. For
instance, in the case of the inverter, the FDI attack is implemented on the reference values
Vre f , Pre f and Qre f as shown in Equations (12)–(14), where the function G represents the
Gaussian distribution of the false data induced with mean η and variance σ.

V̂re f attack
= Vre f + ∆Vre f ; ∆Vre f ∼ G(η,σ) (12)

P̂re f attack
= Pre f + ∆Pre f ; ∆Pre f ∼ G(η,σ) (13)

Q̂re f attack
= Qre f + ∆Qre f ; ∆Qre f ∼ G(η,σ) (14)

4. Proposed ConvXGBoost Method
ConvXGBoost is a deep learning model that combines the performance of CNN and

XGBoost models for better prediction of classes [25]. The ConvXGBoost uses the automatic
feature learning capability of the CNN model and the better class prediction capability
of the XGBoost. In this section, the mathematical modeling and the architecture of the
proposed model are presented.

4.1. Mathematical Representation

In the proposed model, the feature map layer of the traditional CNN model is extracted
and given as input to the XGBoost model. From the understanding of the mathematical
representation of the CNN presented in [25], the mathematical explanation behind the
1D-CNN architecture proposed for this model can be derived as

For the input data, I, of size 1 × H,

I = {x(p)|1 ≤ p ≤ H} (15)

where I is the input data of size 1 × 18, a 1D array with 18 different parameters of the smart
PV system that includes {inverter voltage (d, q-axis), inverter current (d, q-axis), PV voltage,
PV current, irradiance, temperature, battery voltage, battery current, DC bus voltage, DC
bus current, measured frequency, reference frequency, measured active power, reference
active power, measured reactive power, reference reactive power}, and x(p) is the value of
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the parameter at the given index p of the input data. The hk filters or kernels k produce a
feature map y from the given input I by sliding the filter k through the input by a stride Sk

and with zero padding values. Then, the discrete convolution is represented as

(
I
⊗

k
)

v
=

hk

∑
u=−hk

Ku Iv+u (16)

In each of the convolution layers, indexed by l, a convolution operation and an additive
bias will be applied to the input for the feature mapping indexed by f ∈ {1, 2, .. f (l)}. Thus,
the output, y(l)i , of the lth layer of the ith feature map can be derived from the output of the

previous layer, y(l−1)
i , by

y(l)i = ∅
(

B(l)
i +

f (l−1)

∑
j=1

K(l)
j ∗ y(l−1)

j

)
(17)

where ∅ is the Rectified Linear Unit (ReLU) activation function, B(l)
i is the bias added at

the lth layer, and K(l)
j is the filter. Therefore, the elements of the output of the layer, l, for

the feature map, i, y(l)i at position p can be given as

(
y(l)i

)
p
= ∅

((
B(l)

i

)
p
+

f (l−1)
∑

j=1

(
K(l)

j
⊗

y(l−1)
j

)
p

)

= ∅

(B(l)
i

)
p
+

f (l−1)
∑

j=1

hl
k

∑
u=−hl

k

(
k(l)j

)
p

(
y(l−1)

j

)
v+u

 (18)

A max-pooling layer that further modifies the output by replacing the output with
the maximum value within a rectangular neighborhood is used. Let M(.) be the pooling
function that is applied on the y(l)j by passing it through a pooling process of stride SM and
a pooling window of size hM; then, the output of the max-pooling function will be

M
(

y(l)i

)
p
= max

(
y(l)i

)
p

(19)

where the max function is applied to the max-pooling window of the given size. In
general, the pooling operation is performed by placing windows of the given size at non-
overlapping positions in each feature map and keeping the maximum value per window,
thereby subsampling the feature maps. The output from this pooling layer is stretched to a
single-column vector and given as an input to the XGBoost model.

The XGBoost of [23] is a powerful end-to-end tree boosting algorithm developed
for regression and classification problems based on gradient boosting. In general, a tree
ensemble uses K additive functions of classification and regression trees (CARTs) to predict
the output Y, for the given input, X.

Ŷi =
K

∑
j=1

f j(Xi), f j ∈ G (20)

where Xi represents the training set from the CNN, and the Yi is the class label of the
respective input. f j is the leaf score of the jth tree, and G represents the set of all K scores
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of all the CARTs. The main objective is to learn the j trees by minimizing the following
regularized objective function:

L(φ) = ∑
i

l
(
Yi, Ŷi

)
+ ∑

j
Ω
(

f j
)

where, Ω( f ) = γT + 1
2 λ||ω||2

(21)

Here, l is the differentiable convex loss function, which measures the difference
between the target label Yi and the predicted class label Ŷi. The second term, Ω, avoids
overfitting by penalizing the complexity of the model. γ, λ are the hyperparameters that
control the regularization degree, T is the number of leaves in the tree, and ω is the weight
of each leaf. Gradient boosting is effective in regression and classification. XGBoost uses
the loss function and implements second-order Taylor expansion, eliminating the constant
terms to optimize the objective function. For the ith instance and ith iteration, the simplified
objective function can be given as

L(t) ≃
n

∑
i=1

[
l
(
Yi, Ŷi

)
+ gi ft(Xi) +

1
2

hi f 2
t (Xi)

]
+Ω( f ) (22)

where gi = ∂l
(

Y(t−1)
i ,Yi

)
/∂Ŷ(t−1)

i represents the first-order and hi = ∂2l
(

Y(t−1)
i ,Yi

)
/∂
(

Ŷ(t−1)
i

)2

represents the second-order gradient statistics on the loss function. The constant term
l
(
Yi, Ŷi

)
can be removed to further simplify the equation as

L(t) ≃
n

∑
i=1

[
gi ft(Xi) +

1
2

hi f 2
t (Xi)

]
+Ω( f ) (23)

For a fixed tree structure q(X), the optimal weight ω∗
j of each leaf j where Ij =

{i|q(Xi) = j}, representing the instance set of leaf j, can be computed as

ω∗
j = −∑i∈Ij

gi/∑i∈Ij
hi + λ′ (24)

And the corresponding optimal value can be calculated by

∼
L
(t)

= −1
2

T

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

+ γT (25)

The above equation is used as a scoring function to evaluate the quality of the tree
structure. But, in practice, an iterative greedy algorithm that starts from a single leaf and
progressively appends branches to the tree is used. IL, IR are the instance sets of left and
right nodes after the split. By letting I = IL ∪ IR, the loss reduction after the split is

Lsplit = −1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ (26)

4.2. Model Architecture

The proposed model architecture is shown in Figure 5. The model has five phases:
(1) dataset collection phase, (2) data preprocessing phase, (3) convolution layer phase,
(4) XGBoost phase and (5) testing phase. The process in each phase is described below:
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4.2.1. Dataset Collection Phase

The smart PV system, as shown in Figure 1, is first modeled, and the DoS and FDI
attacks are simulated on the developed model for different attack scenarios. The DoS
attack is implemented on the communication line that sends the control signal to respective
controllers to maintain stable operation, and the FDI attack is implemented on the reference
set points of the respective controllers. In total, 650,000 datapoints for each of the DoS attack
and the FDI attack were collected by simulating the attacks on different components, out of
which, 150,000 datapoints are during normal operation, 100,000 datapoints are for each of
the attacks on the PV (Pvattack), battery (Battattack), inverter (Invattack), PV and battery
(PVBattattack) and all the components (Allattack). Each time, the model is simulated for
5 s, and the attack is created for a period of 1 s from time 2 s to 3 s. Moreover, the data are
downsampled by a factor of 10 during the collection process. In the same way, to evaluate
the scalability of the proposed model, the proposed PV system is further expanded by
adding a fuel cell (FC) system onto the DC bus (PV-FC system), as shown in Figure 6. The
FC system is coupled with a DC/DC converter with control circuitry that helps to maintain
the output voltage of this at the reference bus voltage Vre f _DC. It is important to note that
the FC system has a capacity of 5 kW and a DC bus voltage of 400 V. Also, the ratings and
parameters of the PV system and battery energy storage system are the same as the system
in Figure 1. Along with the 18 different parameters of the smart PV system as mentioned in
Section 4.1, three more parameters, reference FC power, FC voltage and FC current, were
collected by simulating a DoS and FDI attack. In total, 650,000 datapoints were collected for
each of the DoS and FDI attacks on the PV (Pvattack), battery (Battattack), FC (FCattack),
inverter (Invattack) and all components (Allattack).

4.2.2. Data Preprocessing Phase

In this phase, the data collected are first normalized between [−1,1]. Normalization of
data is a crucial step in the implementation of ML models. Different features have different
scales, without normalization, the features with higher scales may dominate the lower-scale
features, thereby avoiding biased learning. Once the data are normalized, they are then
reshaped into a 1D vector for feeding into the CNN model. The data are split into 70% for
training and 30% for evaluating the model.

4.2.3. Convolution Layer Phase

In this phase, a CNN model is trained by reshaped training data for automatic feature
extraction. Once trained, the featuring mapping layer of the CNN is used as an input to the
XGBoost model. The sequence of CNN layers is as follows: Conv1D (32,3), Conv1D (32,3),
Max Pooling (2), Dropout 0.2, Conv1D (64,3), Conv1D (64,3), Max Pooling (2), Dropout
0.3, Conv1D (128,3), Conv1D (128,3), Max Pooling (2), Dropout 0.4, Flatten, Dense, Output
layer (SoftMax).
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The activation function is “ReLU”, and hyperparameters are set to the following
values: batch size = 64, optimizer = RMSprop, learning rate = 0.001, decay rate = 1 × 10−6

and epochs = 150.

4.2.4. XGBoost Phase

In this phase, the features extracted from the CNN model are used as input to the
XGBoost model to train it for predicting the class labels. The hyperparameters of the
XGBoost are set to the following values: estimators = 300, learning rate = 0.1 and max
depth = 10.

4.2.5. Testing Phase

Once the model is trained with the training dataset, the model is then evaluated on
the test dataset on the following parameters: precision, sensitivity, specificity, accuracy and
F1-score, as described below:

• Precision: This evaluation metric measures the accuracy of positive predictions made
by the model. It can be calculated by

Precision =
True Positives

True Positives + False Positives
(27)

• Here, True Positives (TP) are the cases where the model predicts a positive outcome
for the positive class, and False Positives (FP) are the cases where the model predicts a
positive outcome for a negative class.

• Sensitivity/Recall: It is the measure of the actual positive proportion predicted by the
model. This metric shows the sensitivity of the model and can be calculated by

Sensitivity = TP/(TP + False Negatives) (28)

• Here, False Negatives (FN) are the cases where the model predicts a negative outcome
for a positive class.
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• Specificity: This metric measures the accuracy of the negative predictions made by
the model. This metric shows how specific the model is in identifying the negative
outcomes and can be calculated by

Speci f icity =
True Negatives

True Negatives + FP
(29)

• Here, True Negatives (TN) are the cases where the model predicts a negative outcome
for a negative class.

• Accuracy: Accuracy measures the total correctness of the model, and this can be
calculated by

Accuracy =
TP + TN

Total Predictions
(30)

• F1-Score: This particular metric provides the harmonic mean of precision and sensitiv-
ity/recall. It is particularly useful in case of class imbalances and can be calculated
by

F1 − Score = 2 × Precision × Recall
Precision + Recall

(31)

• To aggregate the calculated performance metrics for all the classes, two methods,
macro-average and micro-average, are used. In the macro-average, the performance
metrics of each class are computed and averaged across all the classes. For instance, in
the macro-average, the precision for N classes can be computed as

PrecisionMacro =
1
N

N

∑
i=1

Precisioni (32)

• In the micro-average, the contributions of all the classes are aggregated before com-
puting the respective performance metric. Computation of precision using the micro-
average for N classes can be performed as

PrecisionMicro =
TP1 + TP2 + . . . + TPN

TP1 + FP1 + TP2 + FP2 + . . . + TPN + FPN
(33)

Moreover, the proposed model and the other developed models are further evalu-
ated on the proposed smart PV system by introducing the attacks at different timesteps
and by evaluating how fast the models are able to detect and identify the attack for
effective mitigation.

5. Existing Methods
The proposed model is compared with two state-of-the-art studies to show the ef-

fectiveness of the performance in detecting and identifying the components of the solar
PV system under the DoS and FDI attacks. The selected state-of-the-art models are imple-
mented and tested using the same dataset. The proposed model is a combination of the
capabilities of CNN and DT models. So, for the comparative study, the state-of-the-art
CNN model and the DT model are selected to analyze the performances of the models.

5.1. CNN Model

The structure of the CNN model [8,9,12–14] selected for comparative study is similar
to that of the one developed for the proposed model. Moreover, the hyperparameters
are also the same for both models. In short, the same CNN model used for the feature
extraction in the proposed methodology is used for the comparative study, as the objective
of the proposed methodology is to show the effectiveness when the models are combined.
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5.2. DT Model

The DT model was proposed by researchers in detecting cyber-intrusions [15–18].
All the hyperparameters for this model are set to default values and trained using the
training dataset. In general, the default values allow the DT to grow until it perfectly fits
the training dataset.

6. Implementation of the Proposed Conventional Methods Through
Simulation Platforms

In this work, all the training and testing were conducted using Python 3.11.7 in the
Jupyter Notebook (version 6.5.4) under the open-source Anaconda Navigator (version 2.5.2)
and by using MATLAB R2024a on 11th Gen Intel® Core™ i7-11700K CPU @ 3.60 GHz,
Memory: 32.0 GiB, GPU: NVIDIA GeForce RTX 3060 Ti 8 GiB OS: Windows 11Pro.

The proposed methodology is implemented in two different environments, as shown
in Figure 7. The proposed systems, as shown in Figures 1 and 6, are modeled in the
MATLAB/Simulink environment to generate the required data for training the ML models.
The details are collected over normal operations and during the attack at multiple locations
as described in the previous section. Moreover, the collected data are pre-processed and
then exported to the Python environment where the proposed ConvXGBoost method
and the conventional CNN and DT models are structured and trained. These models are
trained in the Python environment and then evaluated on the test dataset by generating the
confusion matrix and by the performance metrics such as precision, sensitivity, specificity,
accuracy and F1-score. The confusion matrix and the respective results are demonstrated
in the next section.
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Furthermore, the trained ML models, i.e., the proposed ConvXGBoost model, conven-
tional CNN and DT models are imported into the MATLAB/Simulink environment for
further evaluation of their performance in the aspect of how fast the models can detect and
identify the attack in the simulation environment.

7. Results and Discussion
As discussed earlier in Sections 4 and 6, the proposed model, along with the compar-

ative models, is evaluated extensively on two different systems, a smart PV system and
smart PV-FC system, under two different attack scenarios in each system. The results are
provided below.
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7.1. Proposed Smart PV System

Section 7.1 provides the results and discussion on the performance of the proposed
models along with the conventional CNN and DT models during the DoS attack and FDI
attack on the proposed smart PV system.

7.1.1. Analysis of the Confusion Matrix and Performance Metrics for Smart PV System

Figure 8 shows the confusion matrix of the proposed model and the comparative
models during the DoS attack. The confusion matrix presents how the model performed
on each of the classes and how well the model can predict the classes. It is evident from the
confusion matrix that the proposed model was able to detect and identify the DoS attack
with fewer misclassifications than the CNN and DT models.
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Figure 8a presents the confusion matrix of the CNN model. The CNN model was able
to predict most of the classes perfectly, but there was a significant amount of datapoints
that were misclassified by the model. In particular, the model predicted most of the attack
datapoints as normal and as Allattack. Moreover, it misclassified a significant number of
datapoints as an attack on different components. Based on these values from the confusion
matrix, the performance metrics are calculated and presented in Table 3. From Table 3, it is
seen that the accuracy of the model is 97.72%, whereas the macro-average of precision is
found to be 97.95%, sensitivity/recall is 97.63%, specificity is 99.53%, and F1-score is 97.76%.

Figure 8b presents the confusion matrix of the DT model. It is observed that the
DT model performed better than the CNN model with few misclassified datapoints. The
accuracy of this model is calculated to be 99.12% as shown in Table 3. Macro-average values
of precision, sensitivity/recall, specificity and F1-score are found to be 99.10%, 99.05%,
99.82% and 99.08%, respectively.

The confusion matrix of the proposed ConvXGBoost model is presented in Figure 8c.
From this confusion matrix, it is seen that the proposed method can classify almost every
datapoint perfectly, and there are only a few misclassified datapoints compared to the other
two models. The performance accuracy of this proposed model is found to be 99.25%.
From Table 3, the macro-average of the performance metrics is seen as precision—99.23%,
sensitivity/recall—99.18%, specificity—99.85% and the F1-score—99.21%.

Figure 9 shows the confusion matrix of the proposed model and the comparative
models during the FDI attack, and Table 4 presents the respective performance metrics
during this attack. It is observed that the FDI attack on the system was relatively easy
to detect and identify. However, it is evident from these results that the proposed model
was able to detect and identify the FDI attack almost perfectly, whereas the CNN and DT
models had notable misclassifications when compared with the proposed model.
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Table 3. Performance metrics of proposed ConvXGBoost model along with CNN and DT models
during DoS attack on proposed smart PV system.

Performance
Metrics

Classes

Macro-Average Micro-Average
Normal PV Attack Battery Attack Inverter

Attack
PV and

Battery Attack All Attack

CNN

Precision 0.9599 0.9981 0.988 1 0.9918 0.939 0.9795 0.9772

Sensitivity/Recall 0.9879 0.9669 0.969 0.9752 0.9675 0.9911 0.9763 0.9772

Specificity 0.9876 0.9997 0.9979 1 0.9985 0.9982 0.9953 0.9954

Accuracy 0.9772 0.9772 0.9772 0.9772 0.9772 0.9772 0.9772 0.9772

F1-Score 0.9737 0.9823 0.9784 0.9874 0.9795 0.9643 0.9776 0.9772

DT

Precision 0.9935 0.9999 0.9772 0.9997 0.9763 0.9996 0.9910 0.9912

Sensitivity/Recall 0.9999 0.9998 0.9714 0.9997 0.9727 0.9995 0.9905 0.9912

Specificity 0.9980 1 0.9959 0.9999 0.9957 0.9999 0.9982 0.9982

Accuracy 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912 0.9912

F1-Score 0.9967 0.9998 0.9743 0.9997 0.9745 0.9996 0.9908 0.9912

ConvXGBoost

Precision 0.9940 0.9999 0.9808 0.9998 0.9794 0.9998 0.9923 0.9925

Sensitivity/Recall 0.9999 0.9998 0.9756 0.9998 0.9764 1 0.9918 0.9925

Specificity 0.9982 1 0.9966 1 0.9963 1 0.9985 0.9985

Accuracy 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925

F1-Score 0.9970 0.9999 0.978 0.9998 0.9779 0.9999 0.9921 0.9925

Figure 9a presents the confusion matrix of the CNN model. The CNN model was
able to predict most of the classes perfectly, but there were a few datapoints that were
misclassified by the model. In particular, the model predicted most of the attack datapoints
as Battattack. Based on these values from the confusion matrix, the performance metrics
are calculated and presented in Table 4. From Table 4, it is seen that the accuracy of the
model is 99.99%. Moreover, the macro-average of precision and sensitivity/recall is 99.99%,
specificity is 100%, and F1-score is 99.99%.
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Figure 9b presents the confusion matrix of the DT model. It is observed that the
DT model performed perfectly with few misclassified datapoints. The accuracy of this
model is calculated to be 100% as shown in Table 4. For Battattack, the values of precision,
sensitivity/recall and F1-score are all found to be 99.9%. The macro-averages of all the
other metrics are calculated to be 100%.
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Table 4. Performance metrics of proposed ConvXGBoost model along with CNN and DT models
during FDI attack on proposed smart PV system.

Performance
Metrics

Classes

Macro-Average Micro-Average
Normal PV Attack Battery Attack Inverter

Attack
PV and

Battery Attack All Attack

CNN

Precision 1 1 0.9995 1 1 1 0.9999 0.9999

Sensitivity/Recall 1 0.9999 0.9999 0.9998 0.9999 0.9998 0.9999 0.9999

Specificity 1 1 0.9999 1 1 1 1 1

Accuracy 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

F1-Score 1 1 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999

DT

Precision 1 0.9999 1 1 0.9999 1 1 1

Sensitivity/Recall 1 0.9999 0.9999 1 1 1 1 1

Specificity 1 1 1 1 1 1 1 1

Accuracy 1 1 1 1 1 1 1 1

F1-Score 1 0.9999 1 1 1 1 1 1

ConvXGBoost

Precision 0.9999 1 1 1 1 1 1 1

Sensitivity/Recall 1 0.9999 1 1 1 1 1 1

Specificity 1 1 1 1 1 1 1 1

Accuracy 1 1 1 1 1 1 1 1

F1-Score 1 1 1 1 1 1 1 1

The confusion matrix of the proposed ConvXGBoost model is presented in Figure 9c.
From this confusion matrix, it is seen that the proposed method can classify almost every
datapoint perfectly. The performance accuracy of this proposed model is found to be 100%.
From Table 4, the macro-averages of the performance metrics precision, sensitivity/recall,
specificity and the F1-score are all 100%.

These performance metrics under both the DoS and FDI attack scenarios clearly
indicate that the proposed model outperformed both the CNN and DT models during the
FDI attack. The proposed model integrates the strengths of these two models, resulting in
improved performance over state-of-the-art models in both attack detection and component
identification of the proposed system.

7.1.2. Additional Evaluation in Terms of Operational Speeds for Smart PV System

Since the models are tested on the simulation environment and evaluated on how fast
they can predict the attack, a window length of 5 ms is used to predict the final output.
The performance of these models is presented in Table 5, showing the time taken for
each model to detect and identify the cyberattack and presenting the instances where the
models misclassified certain attacks. As seen from Table 5, the ConvXGBoost model was
able to detect and identify the attacks better and quicker than the CNN and DT models.
Though in some instances, the CNN was able to detect and identify the attack a bit quicker
than the proposed model, it misclassified the attack location for certain instances. Due to
these factors, though the CNN model was able to detect the attack ~10 ms faster than the
proposed ConvXGBoost method in some instances, overall, the proposed method proved
to be more efficient in detecting and identifying the location of the cyber-intrusions.
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Table 5. Performance of proposed ConvXGBoost model along with CNN and DT models in terms of
operational speeds during DoS attack on proposed smart PV system.

Pvattack Battattack Invattack PVBattattack Allattack

Tr
ue

C
la

ss

Pvattack

DT (57.7 ms),
CNN (54.4 ms)
ConvXGBoost

(54.17 ms)

Battattack

DT (129.07 ms),
CNN (121.7 ms)
ConvXGBoost

(122.4 ms)

DT, CNN,
ConvXGBoost
(misclassified)

Invattack

DT (104.34 ms),
CNN (60.1 ms)
ConvXGBoost

(70.35 ms)

PVBattattack
DT, CNN,

ConvXGBoost
(misclassified)

CNN,
ConvXGBoost
(misclassified)

DT (305.7 ms),
CNN (305.3 ms)
ConvXGBoost

(360.62 ms)

DT
(misclassified)

Allattack
DT, CNN,

ConvXGBoost
(misclassified)

DT, CNN
(misclassified)

DT, CNN,
ConvXGBoost
(misclassified)

DT, CNN
(misclassified)

DT (305.7 ms),
CNN (305.3 ms)
ConvXGBoost

(360.62 ms)

Predicted Class

Under the FDI attack, all the models performed extremely well in terms of operational
speed. The proposed model, along with the conventional CNN and DT models, was able
to detect and identify the FDI attacks on different components of the proposed system
immediately with a window length of 5 ms.

These metrics evidently prove the efficacy and effectiveness of the proposed ConvXG-
Boost methodology that can enhance the performance by combining the capabilities of the
CNN and XGBoost in not just detecting but also identifying cyber-intrusions in a smart
solar PV inverter.

7.2. Smart PV-FC System (With FC Connected to the DC Bus)

Section 7.2 provides the results and discussion on the performance of the proposed
models along with the conventional CNN and DT models during the DoS attack and FDI
attack on the smart PV-FC system, as shown in Figure 6.

7.2.1. Analysis of the Confusion Matrix and Performance Metrics for Smart PV-FC System

The confusion matrix of the proposed model and the comparative models during the
DoS attack are presented in Figure 10.

Figure 10a presents the confusion matrix of the CNN model. The CNN model was able
to predict most of the classes perfectly, but there was a significant amount of datapoints
that were misclassified by the model. In particular, the model predicted most of the attack
datapoints as Pvattack and Battattack. From these confusion matrices, the performance
metrics are calculated and presented in Table 6. From Table 6, the accuracy of the CNN
model is calculated to be 98.65%, whereas the macro-averages of precision, sensitivity/recall
and F1-score are found to be 98.85%, and specificity is 99.73%.

Figure 10b presents the confusion matrix of the DT model. From this, it is clearly
observed that the DT model performed better than the CNN model with most of its
misclassified datapoints as Pvattack. The accuracy of this DT model for a DoS attack
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is calculated to be 99.09%, as shown in Table 6. The macro-average values of precision,
sensitivity/recall and F1-score are found to be 99.09%, and specificity is 99.82%.
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The confusion matrix for the proposed ConvXGBoost model is shown in Figure 10c.
This matrix indicates that the proposed method is able to classify nearly all datapoints
accurately, with only a few misclassifications compared to the other two models. The
performance accuracy of this proposed model is found to be 99.28%. From Table 6, the
macro-average of the performance metrics is seen as precision—99.28%, sensitivity/recall—
99.28%, specificity—99.86% and the F1-score—99.28%. These performance metrics clearly
indicate that the proposed model outperformed both the CNN and DT models under the
DoS attack.

Table 6. Performance metrics of the proposed ConvXGBoost model along with CNN and DT models
during DoS attack on smart PV-FC system.

Performance
Metrics

Classes

Macro-Average Micro-Average
Normal PV Attack Battery Attack Inverter

Attack
PV and

Battery Attack All Attack

CNN

Precision 0.9648 0.9867 0.9905 0.9995 0.9892 1 0.9885 0.9865

Sensitivity/Recall 0.9916 0.9659 0.9813 1 0.9781 0.9995 0.9861 0.9865

Specificity 0.9892 0.9977 0.9983 0.9999 0.9980 1 0.9972 0.9973

Accuracy 0.9865 0.9865 0.9865 0.9865 0.9865 0.9865 0.9865 0.9865

F1-Score 0.9780 0.9762 0.9859 0.9997 0.9836 0.9998 0.9872 0.9865

DT

Precision 0.9625 0.9999 0.9999 0.9997 0.9999 0.9999 0.9936 0.9909

Sensitivity/Recall 0.9999 0.9588 0.9958 1 0.9865 0.9996 0.9901 0.9909

Specificity 0.9883 1 1 0.9999 1 1 0.9980 0.9982

Accuracy 0.9909 0.9909 0.9909 0.9909 0.9909 0.9909 0.9909 0.9909

F1-Score 0.9808 0.9789 0.9978 0.9998 0.9931 0.9998 0.9917 0.9909

ConvXGBoost

Precision 0.9812 0.9933 0.9998 1 0.9888 1 0.9938 0.9928

Sensitivity/Recall 0.9900 0.9899 0.9979 0.9999 0.9808 1 0.9931 0.9928

Specificity 0.9943 0.9988 1 1 0.9980 1 0.9985 0.9986

Accuracy 0.9928 0.9928 0.9928 0.9928 0.9928 0.9928 0.9928 0.9928

F1-Score 0.9856 0.9916 0.9988 1 0.9848 1 0.9935 0.9928

Figure 11 shows the confusion matrix of the proposed model and the comparative
models during the FDI attack, and Table 7 presents the respective performance metrics
during this attack. Similar to the other system, it is observed that the FDI attack on
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the system was relatively easy to detect and identify. However, the proposed model
outperforms the CNN and DT models and is able to detect and identify FDI attacks
perfectly. Meanwhile, the CNN and DT models have notable misclassifications when
compared with the proposed model.
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Table 7. Performance metrics of proposed ConvXGBoost model along with CNN and DT models
during FDI attack on smart PV-FC system.

Performance
Metrics

Classes

Macro-Average Micro-Average
Normal PV Attack Battery Attack Inverter

Attack
PV and

Battery Attack All Attack

CNN

Precision 1 1 1 0.9966 0.9991 0.9920 0.9979 0.9981

Sensitivity/Recall 1 0.9994 0.9998 0.9920 1 0.9965 0.9979 0.9981

Specificity 1 1 1 0.9994 0.9998 0.9985 0.9996 0.9996

Accuracy 0.9981 0.9981 0.9981 0.9981 0.9981 0.9981 0.9981 0.9981

F1-Score 1 0.9997 0.9999 0.9943 0.9995 0.9942 0.9979 0.9981

DT

Precision 1 1 1 0.9999 1 0.9929 0.9988 0.9989

Sensitivity/Recall 1 1 1 0.9929 1 1 0.9988 0.9989

Specificity 1 1 1 1 1 0.9987 0.9998 0.9998

Accuracy 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989

F1-Score 1 1 1 0.9964 1 0.9964 0.9988 0.9989

ConvXGBoost

Precision 0.9998 1 1 0.9995 1 0.9998 0.9999 0.9998

Sensitivity/Recall 1 0.9999 0.9999 0.9996 1 0.9996 0.9998 0.9998

Specificity 0.9999 1 1 0.9999 1 1 1 1

Accuracy 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

F1-Score 0.9999 1 1 0.9996 1 0.9997 0.9998 0.9998

Figure 11a presents the confusion matrix of the CNN model. The CNN model was
able to predict most of the classes perfectly, but there were a few datapoints that were
misclassified by the model. In particular, the model predicted some of the FCattack
datapoints as Allattack. Based on these values from the confusion matrix, the performance
metrics are calculated and presented in Table 7. From Table 7, the accuracy of the CNN
model is calculated to be 99.81%.

Figure 11b presents the confusion matrix of the DT model. In the case of the DT model,
it is observed that the DT model performed perfectly with a few of the FCattack datapoints
misclassified as Allattack datapoints. The accuracy of this model for the FDI attack is
calculated to be 99.89%, as shown in Table 7.
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The confusion matrix of the proposed ConvXGBoost model is presented in Figure 11c.
From this confusion matrix, it is seen that the proposed method can classify almost every
datapoint perfectly. The performance accuracy of this proposed model is found to be 99.98%.
Though the FDI attack is relatively easy to detect and identify, the performance metrics
clearly indicate that the proposed model outperformed both the CNN and DT models.

The proposed model combines the capabilities of these two models and thereby
performs better than the state-of-the-art models in not only detecting the attack but also in
identifying the components under attack of the proposed system.

7.2.2. Additional Evaluation in Terms of Operational Speeds for Smart PV-FC System

The performance of the proposed ConvXGBoost model along with the CNN and DT
models during the DoS attack and FDI attack on the smart PV-FC system are presented
in Table 8. This table shows the time taken for each model to detect and identify the
cyberattack and also presents the instances where the models misclassified certain attacks.
During the DoS attack, it is evident from this table that the ConvXGBoost model was
able to detect and identify the attacks better and quicker than the CNN and DT models.
Moreover, the DT misclassified the Pvattack as Battattack and the Invattack as Allattack.
Though the CNN was able to detect and identify the attack, the proposed model is quicker,
especially during the PV attack where the CNN model takes about 69.5 ms while the
proposed ConvXGBoost model only takes 5 ms.

During the FDI attack on the system, all the models performed very well and were
able to detect and identify the attacks almost immediately, except for the FCattack where
the DT model took around 5.6 ms and the CNN took around 36.63 ms to detect and identify
the attack. Also, for the Allattack, the CNN and the proposed model took 29.24 ms.

Overall, these metrics evidently prove the efficacy and effectiveness of the proposed
ConvXGBoost methodology that can enhance the performance by combining the capa-
bilities of the CNN and the XGBoost in not just detecting but also identifying the cyber-
intrusions in a smart solar PV-FC inverter system.

Table 8. Performance of proposed ConvXGBoost model along with CNN and DT models in terms of
operational speeds during DoS attack and FDI attack on smart PV-FC system.

Pvattack Battattack FCattack Invattack Allattack

Tr
ue

C
la

ss

Pvattack

DT (FDI: 5 ms)
CNN (DoS: 69.5 ms,

FDI: 5 ms)
ConvXGBoost (DoS:

5 ms, FDI: 5 ms)

DT
(DoS: misclassified)

Battattack

DT (DoS: 5 ms, FDI:
5 ms),

CNN (DoS: 5 ms, FDI:
5 ms) ConvXGBoost

(DoS: 5 ms, FDI: 5 ms)

FCattack CNN
(DoS: misclassified)

DT (DoS: 5 ms, FDI:
5.6 ms),

CNN (FDI: 36.63 ms)
ConvXGBoost (DoS:

5 ms, FDI: 5 ms)

Invattack

DT (FDI: 5 ms)
CNN (DoS: 5 ms, FDI:

5 ms)
ConvXGBoost

(DoS: 5 ms, FDI: 5 ms)

DT
(DoS: misclassified)

Allattack

DT (DoS: 5 ms, FDI:
5 ms),

CNN (DoS: 5 ms, FDI:
29.24 ms)

ConvXGBoost
(DoS: 5 ms, FDI:

29.24 ms)

Predicted Class
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8. Conclusions and Future Work
In this work, a novel ConvXGBoost method that combines the feature extraction

capabilities of the CNN and the robust classification feature of the XGBoost method for the
detection and identification of cyberattacks on a smart solar PV inverter system is proposed.
The conclusions that can be drawn from this work are as follows:

(1) The performance metrics presented show how well the proposed method was able
to detect and identify the attacks and how it can improve the predictions of the
conventional CNN models by combining them with the XGBoost model.

(2) The proposed model has an accuracy of 99.25% when compared with the 97.72% of
the traditional CNN and 99.12% of traditional DT models during the DoS attack on
a smart PV system and an accuracy of 99.28% when compared to the 98.65% of the
traditional CNN and 99.09% of the traditional DT during the DoS attack on a smart
PV-FC system to prove its supremacy.

(3) The proposed model along with the other comparative models, when tested under the
FDI attack on a smart PV system, was found to have an accuracy of almost 100%, and
for the smart PV-FC system, the accuracy for the proposed model was 99.98% while
the traditional CNN model had 99.81%, and the traditional DT model had 99.89%.

(4) Moreover, further evaluation of these models on how fast they are able to detect the
attack and identify the location of the attack in the smart PV and smart PV-FC inverter
systems demonstrates that the proposed model is able to detect and identify the attack
faster than the other models.

The future work of this research can go into several directions. There is a growing
need for a detection and identification mechanism with the emerging smart grids. The
future work will be focused on the development of advanced techniques for the mitigation
of cyber-intrusion. The proposed model helps to detect and identify the component that
is comprised that can help in the effective mitigation of the cyber-intrusion by correcting
the affected signals of the respective controller using advanced control techniques or by
removing the affected component to minimize the effect on the connected system.

The proposed model should be further validated using real-time data, and its efficacy
in addressing uncertainties should be optimized for enhanced performance. The smart PV
inverter system experimental testbed will be developed in the future for the generation of
data and to test the proposed strategy by inducing cyber-intrusions. The computational
costs in the implementation of this proposed work along with the hardware requirement
for the experimental testbed will be explored.

Detailed analysis of 5G communications for the smart PV inverters needs to be ex-
plored. 5G-enabled IoT devices have been explored that will be integrated with the smart
PV system experimental testbed for evaluating the real-time attack scenarios on these
networks for effective data generation.

Through ongoing research and enhancements in the aforementioned areas, the pro-
posed ConvXGBoost method can present a robust solution for addressing the cybersecurity
challenges faced by smart PV systems.
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