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Abstract: Metal additive manufacturing has emerged as a revolutionary technology for
the fabrication of high-complexity components. However, this technique presents unique
challenges related to the structural integrity and final strength of the parts produced due to
inherent defects, such as porosity, cracks, and geometric deviations. These defects signifi-
cantly impact the fatigue life of the material by acting as stress concentrators that accelerate
failure under cyclic loading. On the one hand, this type of model is very complicated in
its approach, since, even with encouraging results, the complexity of the calculation with
these variables makes it difficult to obtain a simple result that allows for a generalized
interpretation. On the other hand, using more familiar methods, it is possible to qualita-
tively guess the behavior that helps obtain results with better applicability, even at limited
levels of precision. This paper presents a simplified finite element method combined with
a statistical approach to model the presence of porosity in metal components produced
by additive manufacturing. The proposed model considers a two-dimensional square
plate subjected to tensile stress, with randomly introduced defects characterized by size,
shape, and orientation. The percentage of porosity that affects each aspect determines
the adjustment of the mechanical properties of finite elements. A series of simulations
were performed to generate multiple models with random defect distributions to esti-
mate maximum stress values. This approach demonstrates that complex models are not
always necessary for a preliminary practical estimate of the effects of new manufacturing
techniques. Furthermore, it demonstrates the potential for the extension of frugal compu-
tational techniques, which aim to minimize computational and experimental costs in the
engineering field. The article discusses future research directions, particularly those related
to potential business applications, including commercial uses. This follows a discussion of
the existing limitations of this study.

Keywords: additive manufacturing; porosity; defects; finite element methods; fatigue life;
frugal computational techniques

1. Introduction
Additive metal manufacturing, also known as metal 3D printing, has emerged as

a revolutionary technology for the manufacturing of highly complex components [1,2].
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Although there is extensive literature on defects in additive metal manufacturing and their
impact on fatigue [1,2], this study introduces a simplified and accessible methodology
for statistically modeling porosity, combining frugal techniques with the finite element
method. The innovative approach presented here addresses a critical gap by providing a
cost-effective solution that reduces computational complexity and associated costs, making
advanced simulation tools accessible to small and medium-sized enterprises. This enables
the broader adoption and practical application of additive manufacturing technologies in
diverse industrial contexts.

However, this technique presents unique challenges related to the structural integrity
and ultimate strength of parts resulting from such printing operations. Often, additive
manufacture of metals causes various defects, pores, cracks, phase segregation, and geo-
metric deviations, due to factors such as rapid solidification, high local temperatures, and
residual stresses in manufacturing [3,4]. These defects compromise structural integrity,
generate stress points, and thus increase the fatigue of the material. Fatigue is a progressive
failure process under cyclical loads, and defects act as initiation and propagation factors of
cracks that accelerate component failure [5].

The significant impact of porosity on fatigue strength has historically led to its identifi-
cation as one of the most common defects in additive metal manufacturing. The effect of
porosity reduces the material’s mechanical resistance, causing propagation cracks’ starting
points under cyclic loads. Porosity, number of defects, size, and shape depend on the mate-
rial and manufacturing technique used. Porosity usually presents a statistical distribution
that is difficult to control, since it is inherent in the printing process [6].

To predict the effect of porosities and defects, earlier works [7–12] have developed
various numerical approaches to model the formation and propagation of defects, as well
as to predict the fatigue life of components manufactured by additive manufacturing.
This method allows for the study of the influence of different pore types and sizes on the
structural response under cyclic load conditions, providing crucial information for the
design and optimization of components. Because the models are complex, they often ignore
the statistical distribution, instead focusing on a defect in the worst possible location. In
addition to these calculations, enhanced learning processes and machine learning are used
together with an experimental database to estimate fatigue life. Therefore, studies in this
field are now focused on developing advanced numerical tools to understand and mitigate
these effects to improve the quality and reliability of components manufactured using this
innovative technology.

Excessive and often unavailable data, along with numerous uncertain assumptions,
complicate models, consume time, require computation, and demand energy for both
experimental data and the developed numerical models. These factors restrict the practical
application of the models in terms of the number of feasible studies. Lately, in the calcula-
tions of quantum structures of a problem analogous to that posed here, many parameters
are unknown, requiring many resources, both in calculation and computational time. Since
this makes experiments difficult to carry out and even economically not always feasible,
approximate methodologies, such as frugal techniques, have increased over the past few
years, particularly after rising energy prices. These techniques reduce the calculation time
and complexity of the experiment, thus minimizing the economic and environmental effects
associated with the energy and environmental cost of the experiments and calculations.
Not only does the error in these estimates not affect the result, but it also reduces the study’s
financial investment.

The development of frugal computational techniques, such as those proposed in
the present study, will enable companies to implement advanced simulation and mod-
eling solutions without incurring high computational or experimental costs. This point
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will be especially relevant for organizations interested in efficiently integrating additive
manufacturing into the supply chain, thus balancing pragmatic innovation and economic
viability [13]. Simplifying the complexity of defect modeling using the proposed tech-
niques will help generate a competitive advantage. This strategic advantage will facilitate
rapid adaptation to changes in market demand and allow for more flexible and custom
production. It will be key in the decision-making of companies in this sector [11].

Therefore, the analysis aims to use well-established methods so that with simple
calculations we can have preliminary results that do not allow qualitative results to decide
whether it is cost-effective to carry out the product or to make more detailed calculations or
studies. Thus, a preliminary result often matters only for the trend and realism presented.
Although the error may be high and its comparison with experimental data or more
elaborate models is only qualitative, this approximate method allows quick and cheap
studies that justify its usefulness. It provides prior decisions before making complex
calculations, experiments, or prototypes. A typical example is the idea of using thin-wall
approximations in a pressure vessel to see if the model is needed or comparing data from a
model of a thick-walled pressure vessel made into elements.

In addition to the technical challenges posed by metal additive manufacturing, it
is crucial to consider the organizational impact that this technology has on enterprises.
Transitioning to metal 3D printing production methods requires reconfiguring deep-rooted
internal processes and adapting project management strategies [14]. These two elements
require sufficient know-how among employees and the implementation of a rigorous
quality control system. It sees additive manufacturing as a sort of new control system and,
therefore, directly affects the operation of the supply chain. This will generate a learning
curve that coexists with change management. Both will need to interact effectively to
ensure that the introduction of this new technology improves efficiency and increases the
quality of the final product [15,16].

From a business perspective, additive metal manufacturing can offer opportunities
for mass customization [6]. This will help companies meet and improve their customers’
specific needs. Therefore, the ability of organizations to manage the risks of manufacturing
defects in this type of process will be a key element. A predictive model that anticipates
and corrects these defects before they become apparent in the final products will undoubt-
edly make a key difference in competitive markets. Implementing frugal computational
techniques, as explained in this paper, can help promote access to advanced simulation
and modeling tools. Small and medium enterprises (SMEs) can compete in fair competi-
tion despite having fewer resources, thus fostering innovation and not relying solely on
available resources.

Using these technologies to produce metal additives poses significant challenges and
opportunities in the business and organizational context. It is essential to understand
and properly manage the risks associated with implementing these technologies and their
production process. The emerging literature on this field highlights the risks of this practice,
and the ability to anticipate and mitigate defects through predictive modeling will help
optimize operational efficiency and reduce costs. Therefore, the quality of the product will
improve substantially and improve market competitiveness [12].

The main objective of this research is to develop and validate a simplified finite element
method (FEM) model for statistical modeling of porosity in metallic components manufac-
tured by additive manufacturing techniques. This research aims to analyze the statistical
distribution of defects in metallic components manufactured by additive manufacturing
(i.e., porosity). Therefore, this article not only contributes to the field of engineering and
materials science but also provides valuable implications for business management and
economics, specifically in sectors where the precision and reliability of products are a
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fundamental element. In the business field, this topic has contributed to a strategic tool that
helps decision-makers reduce production costs and improve operational efficiency without
compromising quality standards [8].

Therefore, the adoption of this approach can be decisive for organizations looking
to lead in the era of advanced manufacturing with the best technologies and minimum
errors. The two key pieces will be the ability to integrate technology effectively into their
business models and the ability to predict and reduce defects. This will open the door for
a larger number of industries to adopt these technologies, promoting diversification and
competitiveness in the global marketplace. The intersection between advanced engineer-
ing and efficient business management will find the best opportunities for growth and
differentiation in an industrialized, digitized, and constantly developing world.

The importance of additive manufacturing extends to several sectors. For example, in
the aerospace industry, it is very important to minimize the carbon footprint, thus achieving
ways for the fossil fuel economy. A major step towards this goal is that of aerodynamic
optimization of the wing surface. In this regard, Karkoulias DG et al. [15] bet on an
experimental procedure with 3D-printed wing models. Specifically, in terms of 3D printing
for aerospace propulsion, there are expected advances in the use of other technologies, such
as artificial intelligence (AI) or the Internet of Things (IoT) [16]. Similarly, in the automotive
industry, there have been significant advances in additive manufacturing techniques to
create deformable parts that absorb energy when impacts occur between vehicles since this
would prevent damage to carried goods or individuals [17]. Another well-known industry
that uses additive manufacturing is the railway industry, whose experimental case studies
have been carried out to evaluate the vibrations induced by railway traffic through a model
using the 3D finite element method [18].

To know what is achievable both in economic terms and in terms of know-how
on the issue, therefore, it is very necessary to analyze the inherent risks and associated
uncertainties to highlight the impact of 3D additive manufacturing on sustainability risk
management and financial impact. However, the previous literature is scarce, leading the
earlier study to imply a long-term perspective [19].

For some years now, many sectors have been implementing additive manufacturing
practices, making it an extremely important field. Therefore, ideally, a system should
be in place to evaluate the technical and economic feasibility, as well as the quality and
risks faced by organizations. There have been attempts to shed some light on this issue
by proposing a framework that establishes the essential steps, thus aiming to achieve a
systematic implementation and validation of PBF-LB/M (powder metal fusion of additive
manufacturing technology with a laser beam) in two structured phases [20]. They seek to
monitor key performance indicators related to the process to ensure reliable product manu-
facturing and a structured system solution for holistic decision-making about technical and
economic feasibility, as well as quality and risk-oriented process management.

This paper aims to apply a simple finite element model for designing an approach
to studying material behavior through a two-dimensional domain that statistically incor-
porates defects without altering the mechanical properties of the relevant elements. This
approach, along with some considerations of the fatigue life of the components involved,
allows a first approximation of an estimate of the variation in the fatigue life of the material.
To answer these issues raised by such an approach, this paper will address the following
research questions:

• Is it possible to obtain a simple method to approximate the behavior of the process
and control the loss of mechanical properties for design?

• How does the size affect the final strength?
• How does the distribution or density affect the final properties?
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• What should be controlled in the process?

2. Background
2.1. Theoretical Framework

The dimensions, location, and configuration of defects in additive manufacturing
depend on the specific material and fabrication process employed. A normal statistical
distribution [9] is widely accepted to govern the size, shape, and direction of these defects.
The fatigue life of the material depends on the aforementioned factors, with the position
of the defect having the greatest influence [21–26]. The most critical defects to study to
determine fatigue life are surface defects. The Kitagawa–Takahashi diagram, which relates
the defect size to the expected maximum stress or fatigue life, is often used to consider the
influence of pores (internal defects). The Murakami approach provides an approximation of
the stress intensity factor based on the size of the pores. Fracture studies typically address
internal gaps or cracks.

Many studies employ both experimental and numerical simulation techniques, using
C-scan technology or direct observation of material sections. Furthermore, predictions
are made using reinforcement learning techniques, such as machine learning or neural
networks, based on the data obtained [27]. To include defects in numerical studies, it is often
necessary to employ complex finite element meshes. However, an investigation confined to
a single crystallographic or microscopic plane is insufficient to account for the statistical
nature of the defect distribution. Consequently, more experiments and increasingly complex
calculations that utilize advanced techniques, such as machine learning, are required. These
methods require a substantial degree of mathematical expertise and resources that may
restrict their applicability.

Due to the presence of pores, a finite element model with a high density of elements is
required to accurately represent their probabilistic variability. Furthermore, many pores can
cause intricate phenomena such as cracks, crack coalescence, and shielding between them.
This makes the results more dependent on the defect configuration than on the precise size
of each pore. This complexity requires the utilization of more intricate calculations or the
compilation of extensive experimental databases.

A novel approach to programming and problem-solving has recently emerged. The
term “Frugal” refers to a set of methods developed by Gutiérrez-Finol et al. [28]. These
methods involve the use of streamlined models that require minimal computational time
and resources, thereby facilitating the democratization of complex system calculations and
reducing the need for extensive resources to achieve satisfactory results. This approach
allows for the deferral of more complex and resource-intensive calculations to instances
where they are indispensable. This study proposes a methodology to adhere to the frugal
concept to approximate the effect of existing pores on fatigue resistance in additive manu-
facturing. Progress in the topic has increased so far by applying complex approaches to
the modeling from experimental databases [21]. Despite growing interest in broadening
the knowledge of such a critical matter in theoretical terms, earlier developments have not
always proven to be useful in studying certain matters concerning the design of a particular
part, as they are expensive or even difficult to carry out. The present study introduces an
approach that, as can be seen from the comparison of experimental and numerical data
with other articles, allows for the approximation of the effect of the presence of defects on
the mechanical properties of the material but keeps it at a low difficulty level and without
need for a long and expensive computation (i.e., according to the frugal approach).
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2.2. Review of the Literature

Metal additive manufacturing has emerged as a revolutionary technology for fabricat-
ing complex components [29]. Figure 1 shows the main earlier works identified in the Web
of Science (WoS) database since 2008. In particular, from 2017 onwards, related literature
has increased to more than 35 publications per year.
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Figure 1. Overview of relevant scientific production focused on the research topic between 2008 and
2024 (as of 8 August 2024). Source: own elaboration based on data collected from WoS.

It is therefore an emerging field in which many questions arise that the literature must
cover. In their research, Ren et al. [30] proposed a strategy focused on transforming the
part model into the combinations of 2D layers subsequently deposited to use different
fabrication methods, particularly those relating to a process planning for metal deposition
of three main modules (spatial decomposition, part cutting, and tool path generation for
each cutting layer). However, not only are such techniques noteworthy, but their further
applications are also extraordinary, such as laser fusion, electron beam fusion, and laser
metal deposition [31]. Furthermore, Saheli et al. [32] suggest additive metal manufacturing
based on inkjet. Today, these techniques are continually being improved. In this regard,
Kimme et al. [33] considered the use of induction melting with pulsed generator powers
for additive manufacturing of metal structures. This is a new technique for this type of
additive manufacturing. Furthermore, Bhat et al. [34] analyzed the issue by summarizing
the results of related studies on metal–ceramic composites made by additive manufacturing.
Despite several manufacturing processes identified in the research, the topic presents
many problems ranging from the economic effects of frugal computational technique in
minimizing computational and experimental cost and thus contributing to efficient 3D
printing activities within the economically viable and competitive metals industry based
on additive manufacturing [35]. Furthermore, the impact of defects on the compressive
mechanical properties in additively manufactured lattice structures has been extensively
analyzed in [27].

Moreover, Yue et al. [36] focus the study on hybrid metal–laser additive manufacturing,
which includes: multi-process hybrid laser additive manufacturing, additive–hybrid man-
ufacturing subtraction, multi-energy hybrid additive manufacturing, and multi-material
hybrid additive manufacturing. This also brings the principles of laser additive manufac-
turing technology into the picture with the concept of hybrid manufacturing. This brings
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together several technological advantages. Some authors, such as Azam F.I et al. [37],
noted that the additive manufacturing revolution has developed rapidly over the past
30 years. The addition of the term “metals” related to previous scientific production, as
shown in Figure 1, clarifies that this is an emerging field with many questions on which
future research should focus.

2.3. Conceptual Framework

The model is a 2D square plate subjected to lateral tension or compression, given by
σ0. The approximate percentage of porosity in the material, defined by parameters that
characterize the porosity size, determines how random defects are introduced into the plate.
Reducing the mechanical properties of an element by the same percentage as the area of
the element affected by the pore represents porosity. A number N of models is created
with randomly distributed pores, and the maximum stress value, σmax, is extracted from
each finite element model. This value is the maximum sigma in the model in any direction
causing the maximum effect. The goal is to calculate the stress concentration factor, K,
which is critical in fatigue life studies and is used, for example, by M. Seifi [38]. This is
done by calculating as follows:

Kmed =

∣∣∣∣σmean
max
σ0

∣∣∣∣ (1)

Kmax =

∣∣∣∣σN
max
σ0

∣∣∣∣ (2)

where σmean
max and σN

max are the median and maximum values of σmax from associated models.
It is therefore necessary to consider, in addition to the nominal value of applied tension on
the sides, σ0, the existence of clusters of defects that cause early failure. Furthermore, K-
related values divide the maximum stress, maximum strain, or fatigue life estimation of the
material. This can be seen as a reasonable approximation for the issue considered. Similarly,
on the one hand, the calculation of Kmed provides an estimation of how defects will be
affected in a generic statistical way. On the other hand, the calculation of Kmax may include
the effect of the existence of clusters. In any case, both are needed for preliminary study.

To study porosity, as shown in Figure 2, a reference model of L × L with regular 2D
square finite elements and an element size of h = L

100 has been used. L is chosen such that
the element size is of the order of the pore size,

√
Ω ≈ h, ensuring no gaps appear. The

plate is subjected to lateral tension σ0 and assumed to be in the elastic regime. The material
selected is Ti-6Al-4V with a Young’s modulus of 113 GPa and a Poisson’s ratio of 0.3, to use
the defect density per mm2 and statistical data (mean and standard deviation) for the size,
shape, and orientation of pores [39]. From these data, a function generates the dimensions
and orientation of the defect, assuming a normal distribution.

Practically, the defect is considered an ellipse where the aspect ratio is given by the
defect’s shape factor (0 < f < 1), so a = f b, where a is the major axis and b is the minor
axis, and the area is that of the pore. The Young’s modulus of each element containing or
affected by a pore is adjusted according to the ratio of the pore area affecting the element
to the element area, reducing its mechanical properties proportionately (simplified to
10 values between 0% (element removal) and 100% of resistance (intact element), as shown
in Figure 3). The pore shape differs from a square, so it can affect multiple elements. The
element is therefore subdivided into smaller sub-elements with known areas, allowing
numerical determination of whether they belong to the defined elliptical area of the pore.
The number of subdivisions for each element is the square of the number of Young’s
modulus divisions; in this case, 10 × 10 regular sub-elements, as seen in Figure 4.
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The study has been carried out using a software suite for finite element analysis (FEA)
and computer-aided engineering, namely Abaqus [40], with linear quadrilateral plane
stress elements to simulate the interior of the material. The von Mises-related stress field
is shown in Figure 5. Because the statistical approach is not based on any real issue, it
made little sense to perform a convergence study. The model must give an approximation
to an unknown result, relying on the parameter variation of an approximation to the real
microstructural behavior.
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In the study, 25 simulations were carried out for each variation of the parameters con-
sidered to obtain a statistical approximation of the existing situation. This is an acceptable
realistic model, which favors simplicity rather than precision. Through calculations on the
model of Figure 5, it is possible to obtain a detailed approximation of the real case. This
demonstrates the importance of frugal techniques, thus making a comprehensive approach
for FEM-related calculations without modest resources at the computational level.

3. Research Methodology
The parameters of the model are L = 20 mm and element size h = L/100, so

h = 0.2 mm. The Table 1 presents the model parameters that have been taken into ac-
count during this research project.

Table 1. Summary of parameters.

Parameters 1 Mean Standard Deviation

Defects ξ (mm2) 10 n/a
Area Ω (µm2) 770 250
Shape factor f 0.7 0.1

Orientation (degree) 0 15
1 Source: own calculation according to Poudel [31].

The pores are defined by diameter Dq, where Dq can take values of 10, 20, 30, 40, 50,
60, 70, and 80 µm. The area Ω of each pore is calculated using the following relationship:

Ω = π

(
Dq

2

)2

A normal distribution relative to the parameters in Table 1 has been used under a first
hypothesis according to Poudel et al. [38].
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The results obtained from this model can be compared with those of Akgun [41].
This modeling approach allows analysis of how different pore sizes affect the mechanical
properties of the material, particularly in terms of stress concentration and fatigue life.

The main advantage is that no micromechanical modeling or special techniques are
employed, only with an approximation for the mechanical properties based on the relative
size between pores and elements, and with a probabilistic approach some insight of the
final mechanical properties and expected problems can be gained. Therefore, it could be
used as a first decision on which additive process and characteristics of the procedure (time,
temperature, etc.) can be used for a specific goal.

4. Results
This section presents the findings of the numerical simulations. Figure 6 illustrates the

maximum stress concentration factor (Kmax) as a function of size defect Ω for the various
pore concentrations ξ under consideration. The total area of the defect for all solid pores
defines the defect concentration parameter. As illustrated in Figure 5, the maximum stress
concentration factor increases with defect concentration, with this effect becoming more
pronounced for a defect concentration of 70 mm2, even at lower area values. Furthermore,
an increase in the size defect only affects Kmax when the defect concentration is 55 mm2.
No significant variation in Kmax with area is observed for other defect concentrations.
This analysis suggests that controlling defect concentration is a more critical factor than
controlling defect size.
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Figure 7 shows the mean stress concentration factor (Kmean) as a function of area size
for each pore concentration considered. It can be seen that as the defect size increases, Kmean

also increases for all defect concentrations. However, there can be no guarantee that with
smaller defect area values, Kmean shows minimal variation. This difference becomes more
pronounced as the defect size area increases. Based on the mean stress concentration factor,
it is more important to control the defect size than the defect concentration, at least for
lower area values. Similarly, the results have compared behaviors by qualitative validating
data for Akgun [41].
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With all this, the enhancement of Kmax and Kmean with rising porosity can be ascribed
to the interplay among pores. In that regard, ref. [33] ascertained that defect interaction
transpires exclusively when the separation between pores is less than their diameter, with
the consequence becoming particularly pronounced when the separation is diminished to
less than half a diameter.

5. Discussion
The results presented in the preceding section indicate a notable finding: Low defect

concentrations, specifically at 11 mm2, exert no significant impact on the maximum or
mean stress concentration factor, regardless of the pore size. This observation remains valid
as long as the pore sizes and concentrations remain within the typical ranges encountered
in the additive manufacturing processes evaluated in this study.

This leads to a significant conclusion regarding the influence of pore characteristics
on material performance: controlling pore concentration is more critical than managing
pore size to maintain structural integrity. The data indicate that, at low pore concentrations,
variations in pore size do not result in significant alterations to the stress concentration
factor. Once the concentration of defects falls below a certain threshold, the effect of
increasing the pore size on the stress concentration becomes inconsequential.

These findings highlight the importance of defect concentration management in man-
ufacturing processes in optimizing the mechanical properties of the materials produced. By
prioritizing the minimization of the number of defects in their dimensions, manufacturers
can improve the overall reliability and performance of components produced through
additive manufacturing techniques.

More research is required to gain a more complete understanding of the implications
of varying pore concentrations and sizes across different materials and manufacturing
processes. This could result in the development of improved defect control strategies,
which in turn would facilitate the advancement of additive manufacturing technologies.

In summary, this article proposes a simple method to obtain an approximation of
the behavior of the process analyzed in the study and to control the loss of mechanical
properties applied in the design. Additionally, this method is used to evaluate how size
affects ultimate strength. Similarly, it has been used to evaluate how the distribution or
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density affects the final properties. Therefore, the parameters that are necessary to control
in order to control the density of defects in the process have been determined.

6. Conclusions
This study presents a simplified statistical model to analyze the effect of porosity

on metallic components produced by additive manufacturing. The developed method
employs finite element simulations to calculate stress concentration factors and evaluate
the influence of defect distribution and size on mechanical behavior.

The methodology, based on a statistical approach and a simplified representation
of defects, ensures sufficient accuracy for this investigation. The proportional adjust-
ment of mechanical properties following the pore area and element size, coupled with
qualitative validation against previous studies, ensures the reliability of the results. The
findings indicate that the porosity concentration exerts a more pronounced influence on
fatigue resistance than the size of individual defects, within the typical manufacturing
ranges evaluated.

This approach is particularly well suited to industrial applications, as it balances
precision and simplicity, thereby reducing the costs associated with computation and ex-
perimentation. The robustness of this approach provides an accessible tool for small and
medium-sized companies, facilitating the design and optimization of additive manufactur-
ing processes without the need for extensive resources.

It is also advised to extend the approach to three-dimensional components and inte-
grate machine learning techniques to enhance the model’s precision and versatility. Future
research should investigate the applicability of this approach to other metallic materials
and loading configurations to enhance their industrial impact.

Regarding specific commercial applications, especially focused on those sectors where
this model could be most impactful, the proposed model offers a practical approach to
incorporating defect tolerance criteria into the design of structural components. By con-
sidering the size and quantity of pores, it is possible to optimize material usage while
maintaining structural integrity. This is particularly advantageous in metal additive manu-
facturing, where controlled porosity can serve as a design parameter to improve resource
efficiency. Such applications provide a robust engineering framework to guide the pro-
duction of components with tailored mechanical properties, balancing performance and
economic considerations.

Finally, the corresponding research questions, which were introduced at the beginning
of this paper, can be answered as follows:

• A simple method has been introduced to approximate process behavior and control
the loss of mechanical properties for 3D-printing-related design.

• An evaluation of how size affects ultimate strength and how distribution or density
affects the final properties regarding final density, which may affect the final properties
in comparison with the defect size, has been completed.

• The control of density and defects and a comparison of the estimated importance of
each one set the properties for controlling the additive manufacturing process.

7. Research Limitations and Future Directions
Primarily, the principal limitation of the proposed model is its reduction of a three-

dimensional phenomenon to a two-dimensional framework. Although this approach is
computationally efficient, it may introduce inaccuracies in capturing the complex interac-
tions of real-world scenarios. It is recommended that future research be directed toward
extending the model to three dimensions to enhance its accuracy, particularly in regions of
stress concentration near boundaries and defects.
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In addition, the model’s application to materials such as ceramics, resins, and com-
posites, and its performance under varied mechanical loading conditions, represents a
valuable avenue for further exploration. Concerning the issue of defects in 3D printing, the
findings could facilitate advances in metal additive manufacturing, particularly in the case
of aluminum and titanium alloys, using technologies such as powder bed fusion and direct
energy deposition.

One advantage of the method described above is modeling regions with different
densities in the final prototype, thus statistically limiting the mean and maximum value
of property loss. However, it should be borne in mind that this affordable method allows
decisions to be made before the expensive experimental phase and even before a complex
and costly calculation phase. In short, the technique is a deciding factor in determining
whether it is worth taking the risk of undertaking the next phase (more expensive than the
previous one).

Finally, the application of machine learning with the aim of error detection and sound-
based analysis in 3D printing could provide new insights into the modeling of defects and
the analysis of failure. In the future, efforts should be made to prioritize the development
of affordable computational strategies to promote the reliability and efficiency of additive
manufacturing processes.
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