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Abstract: Space-time prism (STP) is a comprehensive and powerful model for computing accessibility
to urban opportunities. Despite other types of accessibility measures, STP models capture spatial
and temporal dimensions in a unified framework. Classical STPs assume that travel time in street
networks is a deterministic and fixed variable. However, this assumption is in contradiction with the
uncertain nature of travel time taking place due to fluctuations and traffic congestion. In addition,
travel time in street networks mostly follows non-normal probability distributions which are not
modeled in the structure of classical STPs. Neglecting travel time uncertainty and disregarding
different types of probability distributions cause unrealistic accessibility values in STP-based metrics.
In this way, this paper proposes a spatiotemporal accessibility model by extending classical STPs to
non-normal stochastic urban networks and blending this modified STP with the attractiveness of
urban opportunities. The elaborated model was applied on the city of Isfahan to assess the accessibility
of its traffic analysis zones (TAZs) to Kowsar discount retail markets. A significant difference was
found between the results of accessibility values in normally and non-normally distributed networks.
In addition, the results show that the northern TAZs had larger accessibility level compared to the
southern ones.

Keywords: space-time prism; accessibility analysis; time geography; transportation planning;
urban planning

1. Introduction

Accessibility is a key concept in urban planning, transportation geography, and other related
fields. This notion is a multi-dimensional construct, including individual, temporal, network, and
land-use components [1,2]. There are different interpretations for accessibility from the opportunity
attractiveness [3] to the connectivity level of different locations [4] to the ease of a place to be reached
by different individuals in a certain geographical area [5]. However, after the paradigm shift from
mobility to accessibility and by emerging sustainable transportation theories, this term is often defined
as the easiness of participating in different activities [6–9].

Accessibility has been broadly applied to a lot of applications, such as: modeling land-use and
transportation interactions [10], evaluating transportation network performance [11], appraising social
equity and segregation [12–15], analyzing activity-travel pattern [16,17], analyzing coverage of health
care services [18,19], etc.

Over the years, different models have been developed to quantify accessibility. There are numerous
ways for classification of these models. Malekzadeh [20] summarized accessibility measures in five
levels, namely, distance-based, cumulative-based, gravity-based, utility-based, and space-time models.
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Cascetta et al. [5] classified accessibility metrics into three categories. The first category distinguishes
opportunity-based from the utility-based measures. The second category classifies models in behavioral
and non-behavioral branches. Ultimately, at the third category, level of data aggregation is applied
for categorizing accessibility measures (e.g. individual-based disaggregate vs. place-based aggregate
models). Other ways of classifying accessibility metrics can be found in [21–23].

Distance-related measures are generally calculated by enumerating opportunities or points of
interest located in a given distance from a certain origin [20]. Different approaches have been proposed
for calculating the distance between an origin and a destination: Euclidian distance, topological
distance, network travel time distance, and dynamic single/multi-modal network travel times [2].
Although distance-related measures are easy to use and relatively simple for data gathering, these
forms of accessibility only include the distance parameter and ignore the other accessibility components.
For example, travelers’ behavior and differences between distributed opportunities in an area are
disregarded. Furthermore, distance-related models are not able to capture the interactions between
land-use and transportation systems.

Cumulative-based measures, also named contour-based or isochrone metrics, are elaborated based
on the notion of encountering the number of opportunities available within a fixed and pre-defined
travel cost (e.g., time). There are three main branches of cumulative-based measures: 1) fixed
opportunity models measuring the overall cost of reaching a fixed number of activities, 2) fixed
impedance models counting all opportunities within a certain time or cost, and 3) fixed population
models calculating the ratio of average number of accessible opportunities to the population within a
fixed travel time [24,25]. Similar to distance-related measures, cumulative-based models are simple to
apply to various travel modes, but these measures have several drawbacks. The first is that cumulative
models assume that the system throughput is equal to the performance of the whole system, and the
throughput represents the benefit obtained by an individual as well [26,27]. Another shortcoming
is the sensitivity of cumulative-based measures to the determined geographic areas. For instance,
if time or distance slightly varies, the number of reachable activities may increase significantly [25].
In addition, these measures neglect the effects of persons’ preferences on the value of accessibility [9].

Gravity-based measures, first introduced by the groundbreaking work of Hansen [3], moved the
previous models forward by considering the assumption that all available opportunities obtained from
distance- and cumulative-based measures are not equally accessible. In this type of measures, available
activities are weighted based on some variables such as: Attractiveness and travel expenses [28,29].
There are three main variants of the gravity-based models which encounter competition effect and
spatial constraints in supply and/or demand areas. The first is origin-constrained approach established
on the basis of calculating the demand likelihood of destination j and dividing the supply values
reachable from origin i [30–32]. The second is destination-constrained approach developed on the
foundation of dividing the total supply at an origin by the overall number of demand in origin zones
to incorporate the demand potential in the measure (see: [24,33]). The third is double-constrained
approach elaborated according to a balancing factor which ensures that flows from an origin to a
destination be equal to the specific number of opportunities in the origin [2,28,34]. Albeit gravity-based
measures are able to incorporate land-use and network components of accessibility in practice, there
are several major criticisms on these models. The first is that the results of gravity-based measures
are highly related to the impedance function, particularly when the decay functions are empirically
specified for evaluation purposes [1,28]. The second is that gravity models presume that the calculated
accessibility of a zone is identical for all residents of that zone, while it is obvious that the level of
accessibility strongly depends on the physical and personal traits [35]. However, distance-, cumulative-
and gravity-based measures are aggregate in nature and are unable to describe the intricacy of an
individual’s preferences and the space-time restrictions [36,37]. Moreover, these traditional metrics are
not suitable for modeling accessibility in multi-purpose and multi-stop trips [38].

Utility-based measures proposed by Ben-Akiva and Lerman [39] are developed based on the
random utility theory in which the probability of choosing a certain alternative by an individual
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depends on the utility of all alternatives [40]. The underlying assumption of measuring utility-based
accessibility is that people get benefits when they reach an available place during a particular travel
time [5]. As individuals perceive the benefits of activities differently, the log-sum approach can be
applied to calculate the expected maximum utility, on the basis of a considered choice set. This type of
accessibility is capable of incorporating both individual characteristics and competition effect into the
model’s structure. In utility-based models, the utility function is related to the activity attractiveness
and duration of activity participation directly and travel time indirectly [38,41].

Space-time measures created by Hägerstraand [42] and then operationalized by Lenntorp [43]
attempt to capture the spatiotemporal facets and the constraints imposed on a person by transportation
and activity systems [44]. These constraints are: (1) Capability constraints which encompass physical
and psychological requirements to engage in an activity, (2) coupling constraints which enfold
spatiotemporal requirements that make participation in different activities with other people possible,
and (3) authority constraints which include laws that limit an individual’s access to opportunities [20,37].
Space-time measures were constituted around the central concept of space-time prism in which if the
origin and destination, available time for moving, and the maximum moving speeds from origin to
destination are given, the space-time prism will delimit all reachable locations and will determine the
remaining available time to spend at each opportunity [45–49]. There are two types of space-time prisms:
Punctiform prism which works based on the Euclidian distance of between origin, opportunities,
and destination [9,47], and network-based prism that is compatible with the topology of the road
networks [14] (See Appendix A for complementary information about network-based space-time
prisms).

Space-time measures are appropriate models to explain the accessibility at the individual
level [9,20]. Reviewing the way of constructing basic forms of space-time prisms shows that in
the basic forms of prisms, it is presumed that travel times are deterministic and do not have any
variation. Therefore, average travel time or free-flow travel times are considered as the representative
of the network costs (e.g. [41,50–52]). This presumption is in contradiction with the fact that travel
times in the road networks are highly stochastic because of interruptions and fluctuations [53,54]. In
this way, several studies have been conducted in the field of geographic information science to put
uncertainty in the structure of space-time prisms. For instance, Kuijpers et al. [55] studied uncertainty
of anchor points in a space-time prism and developed algorithms for computing network-based
space-time prisms on the basis of probabilistic anchor regions. Kobayashi et al. [56] applied uncertainty
concept to elaborate methods for assessing the error propagation in space-time prisms. Liao et al. [57]
developed a model on the basis of super-networks which incorporates time uncertainty and space-time
prism for activity-travel scheduling. Chen et al. [58] used the notion of reliable space-time prism
to put the travel time uncertainty in the traditional space-time prisms as people in their decisions
adopt risk-taking behavior when they are faced with travel time uncertainty and treat it in the form of
reliability [59,60]. In these works, it was assumed that travel times obey normal distribution, while in
real conditions travel times follow non-normal distribution types, such as exponential and log-normal
distributions [57,58,61]. Regarding non-normal and complex distributions, travel time of a network
cannot be analytically obtained [62] and using simulation techniques (i.e., Monte Carlo Simulation)
becomes inevitable.

In short, considering pros and cons of the above-mentioned measures and due to the importance of
developing person-based metrics [63,64] and comprehensiveness of space-time prism-based accessibility
models [9], this paper aims to develop a spatiotemporal accessibility model for tackling the question
of how accessibility to urban opportunities could be calculated in uncertain networks? However,
responding to this question entails addressing the precedent question of how space-time prisms could
be constructed in stochastic networks with non-normal travel time distributions? This way, Section 2
outlines model development. Section 3 offers numerical computation and discussion, including model
implementation in the study area and comparison of the method with other existing ones. Lastly, the
conclusions and future works are given in Section 4.
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2. Model Development

Let G = (E, V, Ψ) be a directed graph that contains a set of edges E, a set of vertices V, and a
set of movements Ψ . Each edge ei j ∈ E has a tail vertex i and a head vertex j that are in V. Travel
time of each edge is a random variable denoted by Ci j with mean ti j and standard deviation σi j.
Successors and predecessors of i are S(i) =

{
j : ei j ∈ E

}
and P(i) = {w : ewi ∈ E}, respectively. Ψ is the

set of possible movements between vertices, for example, Ψi jk is a movement from ei j to e jk. In other
words, movement Ψi jk shows that there is a feasible edge rooted in i between vertex j and vertex k.
In this regard, the model of non-normal reliable network-based space-time prism can be formally
presented in the following sub-sections. Table 1 lists the notations for the parameters and variables.

Table 1. Parameters used in model development.

Symbol Definition

r Index of trip origin, r ∈ V
s Index of trip destination, s ∈ V
tr Departure time from origin (r)
ts Arrival time to destination (s)
b Travel time budget (b = ts − tr)
Q Set of individuals or set of population groups
q Index of an individual or a population group
α On-time arrival probability depicting risk-taking behavior of a traveler
αq On-time arrival probability of individual or population group q ∈ Q
ta
i The earliest arrival time to vertex i ∈ V

tb
i The latest departure time from vertex i ∈ V

xi x co-ordinate of vertex i ∈ V
yi y co-ordinate of vertex i ∈ V

K Set of all intermediate opportunities or points of interest k
Z Set of traffic analysis zones (TAZs) in a geographic area

z, ź Indices of TAZs
CI Set of confidence interval including αn
Pz Population of TAZ z ∈ Z
Ṕαq

z Portion of population group q in TAZ z conducting their trip at confidence interval αq

Ok
Attractiveness of opportunity k ∈ K. Area could represent attractiveness of an
opportunity [65–69].

Omax Maximum attractiveness of opportunities, max
k∈K

(Ok)

B(k) A binary variable with value of 1 if activity k be in space-time prism, and 0 otherwise.

Li j Set of paths start from vertex i ∈ V and end to vertex j ∈ V
Lw,i j Set of paths from vertex w ∈ V to vertex j ∈ V passing through edge ei j

u Index of a path in L or Lw,i j

li j
u Path u ∈ Li j from vertex i ∈ V to vertex j ∈ V

lw,i j
u Path u ∈ Lw,i j from vertex w ∈ V to vertex j ∈ V passing through edge ei j

li j
NDM

Non-dominated path from vertex i ∈ V to vertex j ∈ V

lr,i j
NDM

Non-dominated path from vertex w ∈ V to vertex j ∈ V passing through edge ei j

F−1
li j
u

(α) Value of inverse cumulative density function of li j
u at confidence interval α

2.1. Non-Normal Reliable Network-Based Space-Time Prism Model

Considering origin, destination, departure time, arrival time, and on-time arrival probability,
non-normal reliable potential path area (NNRPPA) can be represented by Equation (1). NNRPPA is a
set of edges that travel time of the non-dominated (shortest) path from origin to destination going
through, smaller or equal to b.

NNRPPA(α, r, s) =
⋃{

ei j ∈ E|∃lrs
u

: ei j ∈ lrs
NDM, F−1

lrs
NDM

(α) ≤ b
}

(1)
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To construct non-normal reliable space-time prism (NNRNTP), edges in NNRPPA should be labeled
by the earliest departure and the latest arrival times. Hence, for each ei j ∈ NNRPPA(α) Equation (2) is
used for marking vertices and computing spatial extent of each edge.

{(
xi, yi, ta

i = tr + F−1
lri
NDM

(α)

)
,
(
x j, y j, ta

j = tr + F−1
lrj
NDM

(α)

)
,
(
xi, yi, tb

i = ts − F−1
lisNDM

(α)

)
,
(
x j, y j, tb

j = ts − F−1
l js
NDM

(α)

)}
(2)

2.2. Solution Algorithm

Finding non-dominated paths is required for solving Equation (1) and Equation (2). Here, lrs
u

dominates lrs
v when F−1

lrs
u
(α) < F−1

lrs
v
(α). Due to non-linearity of F−1

lrs
u
(α), the optimum principle of Bellman

is violated in uncertain urban networks and unlike the classical network-based prisms, additive
methods like Dijkstra algorithm cannot be applied for constructing NNRPPA [70]. Furthermore, as the
probability distribution of edges may be non-normal, the distribution of an uncertain path could not be
obtained analytically, and using computational methods and simulation techniques is inevitable [71].
Given a confidence interval, Monte Carlo simulation (MCS) is a powerful and acceptable method
for computing inverse value of cumulative density function (CDF) of a path comprised of edges
with non-normal distributions [62,72]. The main procedure of MCS for calculating this value is as
follows [73]:

Step 1: Adopt a large number (i.e., N = 1000 or 10000).
Step 2: Determine the confidence interval (α).
Step 3: Generate N random samples from the probability distribution of each edge in the path.
Step 4: Sum up values generated in Step 3.
Step 5: Sort values obtained in Step 4.
Step 6: Select element α×N from the matrix achieved in Step 5. This element is inverse value of CDF
of the path at confidence interval α.

As an example, consider a path that consists of five edges with uniform distribution and parameters
given in Table 2. Using MCS, travel time of the path would be 55.773 at confidence interval 80%.
Table 3 depicts the process and the results of MCS for the indicated example.

Table 2. Distribution parameters.

Edge First Parameter Second Parameter

U1 5 7
U2 10 11
U3 15 13
U4 18 20
U5 4 6

Table 3. Result of Monte Carlo Simulation for the given example (The highlighted cell is travel time of
the path at confidence interval 80%).

Random Samples Taken from Distributions in Table 2
Summation Sorting

U1 U2 U3 U4 U5

6.284 10.620 13.847 19.058 5.049 54.860 52.477
5.442 10.600 13.378 19.659 5.945 55.026 53.748
6.674 10.172 14.192 19.717 5.420 56.177 54.257
6.942 10.090 13.023 19.578 4.623 54.257 54.860
6.692 10.255 14.820 18.635 4.582 54.986 54.986
6.011 10.858 14.358 18.904 5.700 55.833 55.026
5.557 10.911 13.977 19.504 5.823 55.773 55.569
6.493 10.699 14.878 18.219 5.278 55.569 55.773
5.473 10.725 13.548 18.219 4.510 52.477 55.833
6.914 10.229 13.886 18.539 4.177 53.748 56.177
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Having a method for calculating the travel time of non-normally distributed paths, two steps are
proposed for constructing NNRNTP.

Step 1: In this step, all reliable shortest paths spanning from the origin to the other vertices
satisfying the budget constraint are calculated. First, edges emanating from the origin are identified,
and their travel time is calculated by MCS. Second, feasible ones regarding time budget constraint are
stored in scan eligible (SE) and path (L) sets. Third, elements in SE are selected one by one and new
paths are constructed according to the allowed movements. Fourth, for each new constructed path,
dominance condition is performed on paths with the same ending vertices in SE and L. If the new
path is a non-dominated path, all dominated paths in SE and L will be removed, and this path will be
added to SE and L. This procedure continues until SE = ∅. The result of this step is called non-normal
reliable forward cone (NNRFC), which is executed through Algorithm 1.

Algorithm 1. Inspired from [58]

Inputs: r, b, and α
Outputs: NNRFC
Step 1. Initialization
Set NNRFC = ∅
For each edge ei j in E:

Create forward path lrj
u = ∅

End for
For each link erj emanating from r

Create forward path lrj
R = erj

Calculate F−1
lrj
R

(α) for the constructed path

Set SE = SE∪
{
lrj
R

}
Set Lrj

R = Lrj
R ∪

{
lrj
R

}
End for
Step 2. Path selection
If SE = ∅

Stop
Else

Select lrj
R at the top of SE and set SE−

{
lrj
R

}
End if
Step 3. Path extension
For each allowed movement in Ψ jk ∈ Ψ from j in lrj

R
Create new path lr, jk

R = lrj
R ⊕ e jk

Calculate F−1
lr, jk
R

(α) by MCS

If F−1
lr, jk
R

(α) ≤ b

If lrjk
R < FC

Set SE = SE∪
{
lr, jk
R

}
Set Lrj

R = Lrj
R ∪

{
lr, jk
R

}
Else

Check dominance condition for lr, jk
R

If lks
R is non-dominated path

Set SE = SE∪
{
lr, jk
R

}
Set Lrj

R = Lrj
R ∪

{
lr, jk
R

}
Remove dominated paths in SE and Lrj

R
End if

End if
End if

End for
Set NNRFC = Lrj

R
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Step 2: In this step, all reliable paths from the vertices of the network to the destination with travel
time smaller or equal to b are determined and connected to the paths generated in the first step. The
output of this step is non-normal reliable backward cone (NNRBC) integrated with NNRFC. This
procedure is implemented through Algorithm 2, which is a combination of Algorithm 1 in reverse with
integration operator in path extension.

Algorithm 2. Backward cone calculator.

Inputs: s, b, α, and NNRFC
Outputs: NNRBC
Step 1. Initialization
Set NNRBC = ∅
For each link ei j in E:

Create lisu := ∅
End for
For each link eis emerging into s

If Lri
R , ∅

For each lri
R ∈ NNRFC

Integrate lri
R with eis, lr,is

R = lri
R ⊕ eis

Calculate F−1
lr,is
R

(α) by MCS

End for
If min(F−1

lr,is
R

(α)) ≤ b

Set SE := SE∪
{
lisR

}
Set Lis

R := Lis
R ∪

{
lisR

}
End if

End if
End for
Step 2. Path selection
If SE = ∅

Stop
Else

Select lisR at the top of SE and set SE−
{
lisR

}
End if
Step 3. Path extension
For each allowed movement in Ψki ∈ Ψ create lks

R = eki ⊕ lisR
If lri

R = lrk
R ⊕ eki ∈ NNRFC , ∅

For each lri
R ∈ NNRFC

Integrate lri
R with lks

R , lrs
R = lri

R ∪ lks
R = lrk

R ⊕ eki ⊕ lisR
Calculate F−1

lr,is
R

(α) by MCS

End for
If min(F−1

lrs
R
(α)) ≤ b

If lks
R < Ls

R
Set SE = SE∪

{
lks
R

}
Set Lis

R = Lis
R ∪

{
lks
R

}
Else

Check dominance condition for lks
R

If lks
R is non-dominated path

Set SE = SE∪
{
lks
R

}
Set Lis

R = Lis
R ∪

{
lks
R

}
Remove dominated paths in SE and Lis

R
End if

End if
End if

End if
End for
Set NNRBC = Lis

R
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2.3. Accessibility Model

Having a method for constructing NNRPPA and NNRNTP, feasible locations an individual could
attend are identified given on-time probability, time budget, origin, and destination. As combining
magnitude or attractiveness of opportunities with reachable places can model accessibility [68,74],
reliable space-time accessibility measure is defined through Equation (3), where Aqrs

k (α) is the
accessibility of a person or population group q conducting a trip with origin r and destination s
to opportunity k located in graph G at confidence interval αq. In doing so, accessibility of a person
or a population group to a set of opportunities denoted by Aqrs

(
αq

)
could be represented through

Equation (4).

Aqrs
k

(
αq

)
= Ok × B(k); Ok =

Ok
Omax

; q ∈ Q (3)

Aqrs
(
αq

)
=

∑
k∈G

Ok × B(k); Ok =
Ok

Omax
; q ∈ Q (4)

Considering [75], Equation (5) is applied for aggregating the accessibility of population groups to
a set of opportunities in TAZ level, where Azź is the accessibility of people going from TAZ z to TAZ ź.
It should be noted that people with origin z and destination ź are categorized into different groups on
the basis of confidence interval. This way, q shows population groups.

Azź =
∑
k∈K

∑
q∈Q

(
Ṕ
αq
z × Pz ×Aqzź

k

(
αq

))
; Pz =

∑
q∈Q

(
Ṕ
αq
z × Pz

)
. (5)

3. Numerical Computation and Discussion

Access to high quality and healthy foods is crucial for city residents, particularly for low- and
middle-income families. [68,76]. In this way, the municipality of Isfahan constructed 12 Kowsar
discount retail markets to supply the needs of people in the city of Isfahan, Iran. In doing so, assessing
the accessibility of TAZs of Isfahan was taken into account to test the applicability of the model in a
real-world problem. Figure 1 depicts the study area along with distribution of the markets.Computation 2019, 7, x FOR PEER REVIEW 10 of 16 
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Briefly, inputs of the model are: (1) A trip chain showing the travel origin and destination (location
of the fixed activities), (2) time budget, (3) on-time arrival probability for conducting the selected trip
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chain, (4) travel time of edges in the study area, and (5) area of the intermediate opportunities along
with their locations. These items were set as below:

• Trip chain Home→ Kowsar market→ Home was defined due to the portion of home-based trips
among the other trips (about 90% of all trips).

• Modeling period was considered the time window between 5:00 p.m. and 8:00 p.m., including the
afternoon peak hour.

• Time budget was set to 60 minutes, following previous studies [36].
• Area of markets was considered as the indicator of opportunity attractiveness (Table 4).
• On-time arrival probability was defined 99% for simulating extreme conditions, which gives

minimum value or lower bound of accessibility.
• Travel time distributions were set to normal, exponential, and log-normal distributions as travel

time uncertainty in urban street networks is commonly defined by pre-allocated distributions [62].
Normal distribution was selected to provide a ground for comparing the results of the non-normal
model with the conventional outputs. Additionally, log-normal distribution was taken into
account because this distribution could model travel time in a more realistic manner [77].

Table 4. Attractiveness of Kowsar markets (standardized values).

Opportunity_ID 1 2 3 4 5 6 7 8 9 10 11 12

Attractiveness 0.37 0.09 0.18 1 0.33 0.02 0.54 0.65 0.26 0.28 0.20 0.48

To construct NNRNTP, normal reliable NTP (NRNTP), and measure accessibility of TAZs to Kowsar
markets, algorithms given in the previous section were implemented using MATLAB programming
language. Results were visualized by ESRI ArcGIS, the main analytical software in transportation
(GIS-T) and urban planning. Figure 2 illustrates the accessibility level of each market and the
accessibility of TAZs.Computation 2019, 7, x FOR PEER REVIEW 11 of 16 
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Figure 2. Accessibility of markets and traffic analysis zones (TAZs) (normalized values). (a) Accessibility
with normal reliable space-time prism (NRNTP). (b) Accessibility with exponential non-normal reliable
space-time prism (NNRNTP). (c) Accessibility with log-normal NNRNTP.

A t-test was performed on the outputs to test the difference between accessibility of TAZs in
normally and non-normally distributed networks. Generally, null and alternative hypothesizes of this
test are equality and inequality of means between two groups, respectively. T-test checks whether the
null or the alternative hypothesis could be rejected at a certain confidence interval. In addition, this
test is used when the number of samples is more than 30. Thus, hypothesizes of this test for analyzing
accessibility in the study area are elaborated as below:
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• Null hypothesis (H0): There is no statistically meaningful difference between the average of TAZ
accessibility values in normally and non-normally distributed networks.

• Alternative hypothesis (H1): There is a statistically meaningful difference between the average of
TAZ accessibility values in normally and non-normally distributed networks.

The results of this test confirmed the difference between accessibility level of TAZs in normally
and non-normally distributed networks (Table 5).

Table 5. t-test for analyzing the difference between the accessibility of TAZs generated by the models.

t-test in 95% of Confidence Interval for Accessibility Value of TAZs

Distribution type Accessibility with exponential NNRNTP Accessibility with log-normal NNRNTP

t value Sig. (2-tailed) t value Sig. (2-tailed)

Accessibility with NRNTP 8.354 0.000 6.254 0.000
Accessibility with log-normal

NNRNTP −7.938 0.000 - -

Moreover, to examine the difference between NNRNTP and NRNTP, size of constructed space-time
prisms for each TAZ was recorded and compared using a t-test. Prism size is the area of space-time
polygons calculated by Equation (2) for each edge in the potential path area. Table 6 presents the
results of the t-test. It shows a meaningful difference between the size of NNRNTPs and NRNTP.

Table 6. t-test for analyzing the difference between the size of NNRNTP and NRNTP.

t-test in 95% of confidence interval

Size of NNRNTP with exponential
distribution

Size of NNRNTP with log-normal
distribution

t value Sig. (2-tailed) t value Sig. (2-tailed)

Size of NRNTP 3.233 0.003 7.085 0.000

Moreover, it could be observed that northern TAZs had larger access to the markets than the
southern ones. In addition, comparing accessibility values achieved by NNRNTPs with the income of
people living in TAZs portrayed that low-income TAZs had larger values than the others (Figure 3).
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4. Summary and Conclusion

In this study, a model was developed for quantifying accessibility to urban opportunities. This
model incorporates network-based space-time prisms that could be implemented on stochastic
networks with non-normal travel time distributions.

Firstly, a computational method was introduced for calculating reliable space-time prisms under
the aforementioned conditions. Secondly, an accessibility measure was elaborated by combining the
proposed space-time prism with the magnitude of urban opportunities. Finally, the accessibility model
was applied in a study area under the extreme condition illustrating the lower bound of accessibility
level regarding normal, exponential, and log-normal distributions.

Results demonstrated the applicability of the proposed model and statistical meaningfulness of
difference between outputs of normal and non-normal methods. Results also illustrated the distribution
of accessibility throughout the city of Isfahan where northern TAZs had larger access to the markets in
comparison with southern ones.

For future studies, application of the introduced model in other cases for analyzing different
urban phenomena is recommended. Another extension to this research is considering the correlation
between link travel times in urban networks and modeling this effect in the structure of space-time
prisms and accessibility metrics.

Author Contributions: Conceptualization, A.S. and M.M. and H.H; Methodology, A.S.; Programming of the
algorithms, A.S.; Supervision, M.M. and H.H.; Writing – original draft, A.S.; Writing – review & editing, A.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Classical Network-Based Space-Time Prisms

Equations for constructing conventional space-time prisms are presented below, where PPA is
potential path area, trx

RN is time of the shortest path from origin r to x, txs
RN is time of the shortest path

from x to destination s, b is time budget, FC is the set of places reachable from origin at t, BC is the set
of places that can access destination during t, and NTP is network-based space-time prism.

PPA =
{
x
∣∣∣trx

RN + txs
RN ≤ b

}
(A1)

FC(t) =
{
x
∣∣∣trx

RN ≤ t− tr, t ≤ ts
}

(A2)

BC(t) =
{
x
∣∣∣txs

RN ≤ ts − t, t ≥ tr
}

(A3)

NTP(t) = FC(t)∩ BC(t) (A4)
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