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Abstract: This paper presents an analysis of the CVJ (constant velocity joint) of automotive driveshafts
from a point of view concerning the nonuniformity of isometric properties. In the automotive industry,
driveshafts are considered to have constant velocity through its joints: free tripode joints and fixed
ball joints, which has been proved by Mtzner’s indirect method and Orain’s direct method for tripod
joint. Based on vectorial mechanics, the paper proved the quasi-isometry of velocity for polypod joints
such as fixed ball joints. In the meantime, it was computed that the global nonuniformity of constant
velocity joints for modern driveshafts based on the Dudita-Diaconescu homokinetic approach for the
driveshafts. The nonuniformity of the velocity isometry of driveshafts was computed as a function of
the input angular velocity of the driveshaft, angular inclination between the tripod–tulip axis and
the midshaft axis and the angular inclination between the bowl axis and midshaft axis. The main
aim of this article is how to improve the geometric and kinematic approach to add an important
correction when designing the driveshaft dynamics prediction such as: forced torsional vibrations,
forced bending–shearing vibrations, and coupled torsional–bending vibrations for the automotive
driveshaft in the regions of specific resonances such as principal parametric resonance, internal
resonance, combined resonance, and simultaneous resonances. By the way it is added, there are
important corrections for the design of driveshafts, for the torsional dynamic behavior prediction,
and for bending–shearing dynamic behavior of the driveshafts in the early stages of design. The
results presented in the article represent a starting point for future research on dynamic phenomena
in the area mentioned previously.

Keywords: homokinetic transmission; automotive driveshafts; isometry of driveshafts

1. Introduction

The constant velocity joints (CVJs) for automotive driveshafts are special mechanisms
that transmit the load torque by angular rotation from the gear box to the wheels of a
car as can be seen in Figure 1. In the development of the car industry, the concerns are
the capability of this kind of transmission to have isometric properties from a geometric
versus kinematic point of view and from a dynamic torque transmission point of view as
mentioned in literature [1].

For a better understanding, let us look inside the components of such a mechanism by
looking at the Figure 2, which consists of (a) the bowl-balls joint fixed assembled by the car
wheel; (b) the midshaft axis; (c) the tulip–tripode joint that allows for axial plunging of the
tripod in the tulip and the plunging assembled in the gear box.
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Figure 1. An automotive driveshaft. 

 

Figure 2. Driveshaft in general detail. 

Over the last four decades, the kinematics and the torque loads of this transmission 

system was considered isometric due to the introduction of the Rzeppa joint, in the 1970 

by Glenzer, and by using tripod plunging joints in the tulip and fixed ball joints in the 

bowl in the 19890s [2–4]. This way, starting with the last decade of the last century, it was 

considered that bowl–balls joints and the tulip–tripod joints were CVJs (constant velocity 

joints), it means isometric with respect to kinematics and isometric with respect to the 

torque loads. While the last aspect is true (and the practice demonstrates it), the isometry 

from a kinematics point of view is not true, this aspect being known as quasi-isometry 

kinematics for automotive driveshafts [1] (p. 78) and [5]. The literature, especially in Jour-

nals published by MDPI, is very poor on presenting such subjects, not because it is less 

important for the design area and for the automotive industry, but because it involves a 

huge investment in experimental research and most of research is linked to intellectual 

property through the patents held by the biggest corporations in the car industry such as 

Renault, Daimler–Benz, BMW, GMC, Chrysler, and Audi–VW Group. In the literature, an 

active steering control strategy to prevent rollover of a vehicle [6] or a hierarchical syn-

chronization control strategy for the ARIS system to overcome the synchronization errors 

induced by the wheels have been highlighted [7]. As can be seen, none of this research has 

involved the nonuniformity of the geometric and kinematic isometry of automotive 

driveshafts. Tiberiu-Petrescu mentioned in [8] the variation in angular velocity of a dou-

ble-cardan transmission, while in [9], it dealt with the use of a six-sigma methodology for 

the optimization of cardan shaft transmission for light truck driveshafts, because it’s ex-

ploitation was necessary for improving the vibration’s noise harshness. One paper [9] 

mentioned the presence of vibration noise harshness due to the driveshaft, but the authors 

did not research why this phenomenon was present. In one researcher’s master’s thesis 

[10], the author developed a software based on MATLAB’s Simulink to realize the mod-

eling and simulation of vehicle kinematics and dynamics, but the models of vehicle trans-

mission are very simple without touching the special phenomena of vehicle transmission. 

The paper [11] present a design and a stress analysis for an automobile driveshafts made 

of composites material for scientists trying to avoid special phenomena that is not well 

explained by the transmission’s designers. The first researchers who considered special 

phenomena for driveshafts were Mazzei and Scott, who enhanced the nonlinear paramet-

ric dynamic behavior of a universal joints in [12]. What is very strange for this research 
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Figure 2. Driveshaft in general detail.

Over the last four decades, the kinematics and the torque loads of this transmission
system was considered isometric due to the introduction of the Rzeppa joint, in the 1970
by Glenzer, and by using tripod plunging joints in the tulip and fixed ball joints in the
bowl in the 19890s [2–4]. This way, starting with the last decade of the last century, it
was considered that bowl–balls joints and the tulip–tripod joints were CVJs (constant
velocity joints), it means isometric with respect to kinematics and isometric with respect
to the torque loads. While the last aspect is true (and the practice demonstrates it), the
isometry from a kinematics point of view is not true, this aspect being known as quasi-
isometry kinematics for automotive driveshafts [1] (p. 78) and [5]. The literature, especially
in Journals published by MDPI, is very poor on presenting such subjects, not because
it is less important for the design area and for the automotive industry, but because
it involves a huge investment in experimental research and most of research is linked
to intellectual property through the patents held by the biggest corporations in the car
industry such as Renault, Daimler–Benz, BMW, GMC, Chrysler, and Audi–VW Group.
In the literature, an active steering control strategy to prevent rollover of a vehicle [6]
or a hierarchical synchronization control strategy for the ARIS system to overcome the
synchronization errors induced by the wheels have been highlighted [7]. As can be seen,
none of this research has involved the nonuniformity of the geometric and kinematic
isometry of automotive driveshafts. Tiberiu-Petrescu mentioned in [8] the variation in
angular velocity of a double-cardan transmission, while in [9], it dealt with the use of a
six-sigma methodology for the optimization of cardan shaft transmission for light truck
driveshafts, because it’s exploitation was necessary for improving the vibration’s noise
harshness. One paper [9] mentioned the presence of vibration noise harshness due to the
driveshaft, but the authors did not research why this phenomenon was present. In one
researcher’s master’s thesis [10], the author developed a software based on MATLAB’s
Simulink to realize the modeling and simulation of vehicle kinematics and dynamics,
but the models of vehicle transmission are very simple without touching the special
phenomena of vehicle transmission. The paper [11] present a design and a stress analysis
for an automobile driveshafts made of composites material for scientists trying to avoid
special phenomena that is not well explained by the transmission’s designers. The first
researchers who considered special phenomena for driveshafts were Mazzei and Scott,
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who enhanced the nonlinear parametric dynamic behavior of a universal joints in [12].
What is very strange for this research paper is that it contains only two references: of
which one is a self-citation in the same field of dynamic stability of shafts driven through a
universal cardan joint. The experimental evidence on the nonuniformity of CVJ driveshaft
transmissions is presented and high-lighted by Browne and Palazzolo in the paper [13].
But the most important experimental research on the nonuniformity of geometric and
kinematic isometry of CVJ driveshafts was carried out by Steinwede during his PhD
thesis [14] (pp. 68–97); thus, after 45 years, it was finally proven through experimental data
that Dudita and Diaconescu were right, that CVJ driveshafts are quasi-homokinetic, and all
the designed patents and design flow charts used in the automotive industry concerning
CVJ driveshafts must be modified and corrected as already was mentioned in [1] (p. 78). In
addition, Feng, Rakheja, and Shangguan in [15] treated the optimization of the generated
axial force (GAF) of a driveshaft system with an interval of uncertainty without considering
the CVJ’s isometry for the driveshaft, which is no longer isometric, as this aspect was
certified by experiments using the vertex method for the analysis of the upper and lower
bonds (ULBs) variation of parameters. It is clear now that the nonuniformity of geometric
and kinematic isometry of driveshafts represents the starting point of all the research
concerning design, analysis, and dynamic investigation of the behavior of automotive
driveshafts. This paper highlights this nonuniformity from isometry of geometry and
kinematics for CVJ automotive driveshafts.

2. State of the Art

The first to introduce the concept of a CVJ was Metzner, in 1967, who is mentioned
in the literature [4] as the creator of the first indirect method (FIM) for proving constant
velocity for special Hooke joints [1], based on the idea that “the generators of a constant
velocity joint must be mirror images in space” [1] (p. 61). Figure 3 highlight the functioning
through a flow chart of a CVJ automotive driveshaft.
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Presented in detail in Figure 4 is a tripod that consists of three pods equally fixed
inclined, with respect to the midshaft of the automotive driveshaft with the fixed angles,
ψi.

ψi =
2π(i− 1)

3
, i = 1, 2, 3 (1)
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Figure 4. Tulip–tripode joint.

In Figure 5, presented is a schematic representation of an automotive drive shaft in
three Cartesians systems with the coordinates X1,Y1,Z1 attached to the tulip, X2,Y2,Z2
attached to the midshaft, and X3,Y3,Z3 attached to the bowl, having the next rigid move-
ments:

- Rotation with the angle ϕ1 of the tulip with respect to the X1, ϕ1 = 0 . . . n1π;
- Rotation with the angle ϕ2 of the midshaft with respect to the X2, ϕ2 = 0 . . . n1π;
- Rotation with the angle ϕ3 of the bowl with respect to the X3, ϕ3 = 0 . . . n1π;
- Relative rotation of the longitudinal axe of the midshaft (given by the direction of the

axis X2) with respect to the longitudinal direction of the tulip (given by the direction
of the axis X1), with β1 (spatial angle between axis X1 and X2) with respect to the axis
Z1, β1 being the angle between longitudinal direction of the tulip and the longitudinal
direction of the midshaft, β1 = 0◦ . . . 15◦;

- Relative rotation of the longitudinal axis of the bowl (given by the direction of the axis
X3) with respect to the longitudinal direction of the midshaft (given by the direction
of the axis X2), with β2 (spatial angle between axis X2 and X3) with respect to the axis
Y2, β2 being the angle between the longitudinal direction of the midshaft and the
longitudinal direction of the bowl, β1 = 0◦ . . . 47◦.
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Using all these notations, Orain proved, in 1976, using the second direct method [16]
that the polypod joints, the tripod joints, are isometric joints from the kinematic and
dynamic points of view, the kinematic point of view being expressed by the Relations:

tanϕ2 cotϕ1 = 1 (2)

tanϕ2 = tanϕ1 (3)

ϕ2 = ϕ1 (4)

It means the tripode joint that is a tulip–tripod joint is a CVJ, but, in 1975, Dudita
and Diaconescu [5] proved that the tripode joint is quasi-isometric, a fact that was only
recognized by researchers in the field [1] (p. 78) until 2006. At that time, in the nineteen-
seventies, it was considered that a nonuniformity from a kinematic isometry of the tripode
joints of 5–7% was acceptable; now, when an improvement of 1% is a huge gain in the
automotive industry, and is it is no longer acceptable. Thus, the homokinetic transmission
of the driveshafts, it is in fact quasi-homokinetic; therefore, for the early stages of design in
the automotive industry, it is necessary to express and evaluate the kinematic and geometric
isometric nonuniformities of the driveshafts as well as their implications in the dynamic
behavior of the transmission. In addition, the bowl-balls joint has not proven to be a CVJ.

3. Proving the Constant Velocity of the Bowl-Balls Joint

Let us consider a general cross Hooke joint as presented in Figure 6, where the driving
element is S1, having attached to the cartesian system R1(OX1,Y1,Z1), the driven element is
S2, having attach the cartesian system R2(OX2,Y2,Z2); the cross joint is A’OA-B’OB, having
the angle ^AOB = δ, the driving input angle is φ1, the driven output angle is φ2, and
the angle between the longitudinal direction of the input element S1 and the longitudinal
direction of output element S2 is θ.
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We can consider three-unit vectors
→
e n,

→
e v,

→
e w so that we have the Relations:

→
e n ×

→
e v =

→
e z1 (5)

→
e n ×

→
e w =

→
e z2 (6)

that yield to express the unit vectors of
→

OA and
→

OB as:

→
e x1 = cosφ1

→
e n + sinφ1

→
e v, (7)

→
e y2

= − sinφ2
→
e n + cosφ2

→
e w = − sinφ2

→
e n + cosφ2

(
cos θ

→
e v + sin θ

→
e z1

)
. (8)



Computation 2021, 9, 145 6 of 13

Based on Equations (7) and (8) yields:

→
e x1 ·

→
e y2

= cos δ, (9)

− cosφ1 sinφ2 + sinφ1 cosφ2 cos θ = cos δ. (10)

The most common number of balls for a bowl-balls joint is six, so using Equation (10)
for the bowl-balls joint (see Figures 7 and 8), putting ϕ2 = φ1,ϕ3 = φ2,β2 = θ, and ψi = δ,
i = 1, 2, 3, . . . imax for ψi given by Relation:

ψi =
2π(i− 1)

imax
, i = 1, 2, 3, . . . imax (11)

where imax is the numbers of balls of the bowl-balls joint that must be multiples of 3
(condition of homokinetic driveshaft joint), yields the relations:

1. for the bowl-balls joint considering all the balls 1–3–5 like a tripode joint:

- for the first transmitting ball element: Ψ1 = 0◦:

− cosϕ2 sinϕ3 + sinϕ2 cosϕ3 cosβ2 = cos 0, (12)

- for the third transmitting ball element: Ψ3 = 120◦:

− cos(ϕ2 + 2π/3) sin(ϕ3 + 2π/3) + sin(ϕ2 + 2π/3) cos(ϕ3 + 2π/3) cosβ2 = cos 2π/3, (13)

- for the fifth transmitting ball element Ψ5 = 240◦:

− cos(ϕ2 + 4π/3) sin(ϕ3 + 4π/3) + sin(ϕ2 + 4π/3) cos(ϕ3 + 4π/3) cosβ2 = cos 4π/3, (14)

Equations (12)–(14) are identical to those of the tripode joint therefore it is ob-
tained

ϕ2 = ϕ3. (15)

2. for the bowl-balls joint considering all the balls 2-4-6 like a tripode joint:

- for the second transmitting ball element Ψ2 = 60◦:

− cos(ϕ2 + π/3) sin(ϕ3 + π/3) + sin(ϕ2 + π/3) cos(ϕ3 + π/3) cosβ2 = cosπ/3, (16)

- for the fourth transmitting ball element Ψ4 = 180◦:

− cos(ϕ2 + π) sin(ϕ3 + π) + sin(ϕ2 + π) cos(ϕ3 + π) cosβ2 = cosπ, (17)

- for the sixth transmitting ball element Ψ6 = 300◦:

− cos(ϕ2 + 5π/3) sin(ϕ3 + 5π/3) + sin(ϕ2 + 5π/3) cos(ϕ3 + 5π/3) cosβ2 = cos 5π/3 (18)Computation 2021, 9, x FOR PEER REVIEW 7 of 13 
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Equations (16)–(18) lead to the same solution (15); therefore, considering Equation (4)
yields the geometric isometry ϕ1 = ϕ2 = ϕ3 meaning that both joints of the automotive
driveshaft have kinematic isometry. In fact, considering the aspects found by Dudita
and Diaconescu [5], we can consider that from a kinematic point of view, we have a
quasi-isometry of the geometric and kinematic of the automotive driveshafts.

4. Nonuniformity of Geometric vs. Kinematic Isometry of Driveshafts and
Discussions

The relations that express the nonuniformity of the kinematic isometry of driveshafts
can be obtained from the general formulation found by Dudita and Diaconescu [5] for an
input driving shaft with ϕ1 rigid rotation angle and an output driven shaft with ϕ2 rigid
rotation angle are:

ϕ2 = ϕ1 +
r
2l

tanβ tan2 β

2
cos(3ϕ1), (19)

where r is the radius of the joint, l is the length of the driven shaft, and β is the angle
between the longitudinal directions of the two shafts. With the signification of the terms
mentioned before yields:

- for the tulip–tripode joint:

ϕ2 = ϕ1 +
r1

2l
tanβ1 tan2 β1

2
cos(3ϕ1), (20)

- for the bowl-balls joint:

ϕ3 = ϕ2 +
r2

2l
tanβ2 tan2 β2

2
cos(3ϕ2), (21)

where r1 is the tulip radius, r2 is the bowl radius, and l is the length of the midshaft.
After injecting the Relation (20) in (21) yields:

ϕ3 = ϕ1 +
r1
2l tanβ1 tan2 β1

2 cos(3ϕ1) +
r2
2l tanβ2 tan2 β2

2 cos
(

3ϕ1 + 1.5 r1
l tanβ1 tan2 β1

2 cos(3ϕ1)
)

, (22)

And the dependance of the angular speed of the bowl with respect to the angular
speed of the tulip is:

.
ϕ3 =

.
ϕ1 − 1.5

.
ϕ1

r1
l tanβ1 tan2 β1

2 sin(3ϕ1)− 1.5
.
ϕ1

r2
2l tanβ2 tan2 β2

2 sin
(

3ϕ1 + 1.5 r1
l tanβ1 tan2 β1

2 cos(3ϕ1)
)
·

·
(

3− 4.5 r1
l tanβ1 tan2 β1

2 sin(3ϕ1)
)

.
(23)

In Figure 9 presents a flow chart of a quasi-isometric CVJ automotive driveshaft.
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Based on Relation (22), the software in MATLAB was used to compute the geometric
nonuniformity of the geometric isometry for the driveshaft ∆ϕ = ϕ3−ϕ1 = Γ1(ϕ1,β1,β2)
as a function of β1, β2 and ϕ1 as can be seen in Figures 10 and 11.
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Figure 11. Geometrical nonuniformity of isometry for automotive driveshaft for r1/l = 0.11, r2/l =
0.09, β2 = 47◦.

Analyzing these figures, it can be concluded that the geometric nonuniformity of
isometry was in the range ±0.009◦ being maximum when β2 has the maximum value
of 47◦. Comparing these results with the experimental data in the literature [14] (pp.
70–71), it can be remarked that it had close agreement. In addition, Steinwede in [14]
(pp. 88–94) experimentally demonstrated that this geometric nonuniformity of isometry
for a driveshaft is the principal cause of premature pitting on the flanks of the tripod,
on the internal flanks of the tulip, on the balls of the bowl-inner race joint, and on the
internal flanks of the bowl due to the insufficient design for controlling Hertzian contact
with respect to phenomena that involves geometric nonuniformity of isometry involving
the driveshaft. Using Relation (23), a software in MATLAB was developed to compute
the kinematic nonuniformity of isometry for the driveshaft

•
ϕ3/

•
ϕ1 = f(ϕ1,β1,β2) as a

function of β1, β2, and ϕ1 as can be seen in Figures 12 and 13.
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Figure 13. Kinematic nonuniformity of isometry for automotive driveshaft for r1/l = 0.11, r2/l = 0.09,
β2 = 47◦.

Analyzing Figure 12, it can be remarked that the kinematic nonuniformity of the
isometry for the driveshaft, when β2 = 47◦ and β1 is in the range 0–15◦, is in the range
(−0.027, 0), having maximum absolute values for ϕ1= 93◦, 213◦, and 325◦, while the
minimum absolute values were obtained for ϕ1 = 33◦, 151◦, and 271◦. Regarding Figure 13
it can be concluded that that the kinematic nonuniformity of the isometry for the driveshaft,
whenβ1 = 15◦ andβ2 is in the range 0–47◦, was in the field (−0.024, 0.001) having maximum
value for ϕ1 = 76◦, 190◦, and 316◦ while the minimum values were obtained for ϕ1 = 31◦,
169◦, and 258◦.

In Figure 14, the geometric nonuniformity isometry for the driveshaft ∆ϕ = ϕ3−ϕ1 =
g1(β1,β2) as a function of β1 and β2, being variables, and ϕ1 = 243◦. As can be remarked
from Figure 14, the geometric nonuniformity isometry for the driveshaft was maximum for
β2 = 47◦ regardless of the variation in β1 in the range 0–15◦. From the perspective of the
last simulation concerning the geometric nonuniformity isometry for the driveshaft, it can
be concluded a great sensitivity for the maximum angle β2 of the longitudinal direction
of the bowl with respect to the midshaft longitudinal direction. From the design point of
view, this aspect involved a sensitivity to shocks received from the wheel of the driveshafts
even if the value of nonuniformity was very small.

In addition, analyzing Figures 10–13, the harmonic fluctuation of the nonuniformity
from the geometric and kinematic isometry of the automotive driveshaft can be highlighted.
This is a challenge for the driveshaft’s designers because of the difficulty of predicting the
supplementary quantities for the fatigue solicitations. Moreover, the harmonic fluctuation
of the nonuniformity from geometric and kinematic isometry of the automotive driveshaft
induces the nonlinear parametric dynamic behavior of a CVJ as mentioned in [12]. All
this geometric and kinematic nonuniformities from the isometry of automotive driveshafts
must be considered in the design patents for automotive driveshafts such as in [17–20].
These aspects of considering the automotive driveshafts as quasi-isometric (isometry with
nonuniformity) CVJ (homokinetic) transmissions allows for the development of future
research in torsional forced vibrations and the bending–shearing vibrations of automotive
driveshafts. This starting point in the investigation of the geometric and kinematic isometric
nonuniformities of driveshafts opens the door to modeling of the forced torsional dynamic
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behavior of the driveshafts in the region of nonlinear parametric vibrations as already
mentioned in literature [9,12–14] as future research, especially in the regions of:

- primary resonance for excitation frequency,ωn ' Ω1 [21] (p. 196);
- super harmonic resonance for excitation frequency, ωn ' 1

k1
Ω1, k1 positive inte-

ger [21] (p. 211);
- subharmonic resonance for excitation frequency, ωn ' k1Ω1n, k1 positive integer [21]

(p. 214);
- principal parametric resonance for excitation frequency,ωn ' 2Ω1 [21] (p. 425);
- combination resonances for excitation frequencies,ωn ' Ω1 +Ω2,ωn ≈ Ω2−Ω1 [21]

(pp. 202, 430);
- simultaneous resonances for excitation frequencies, ωn ' kΩ1,ωn ≈ 1

k Ω2, with k
positive integer [21] (p. 188);

- internal resonances for k1Ω1 ' k2Ω2, with k1 and k2, positive integers [21] (p. 381).
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5. Conclusions

The paper highlights the geometrical and the kinematic nonuniformities of the isom-
etry for the automotive driveshaft. The geometrical nonuniformities of the isometry for
the automotive driveshaft was in the range ±0.009◦, while the kinematic nonuniformities
of the isometry for the automotive driveshaft was in the range (−0.027, 0.001). This was
not in accordance with the classic design published in literature [1] (p. 78), because the
maximum angles between the tulip axis and the midshaft axis is now in the current car
industry β1 = 15◦, and the maximum angle between the midshaft axis and bowl axis is β2
= 47◦, while in design literature [1] (p. 78), these angles are considered less than 10◦, so it
is mentioned, by Seherr-Thoss [1], that the geometrical nonuniformity for the isometry of
driveshaft is maximum 0.0000675◦, that is, “within the manufacturing tolerances of CVJ”.
This last conclusion is no longer valid, as Steinwede experimentally demonstrated in his
PhD Thesis [14] (pp. 70–71), and, therefore, the Relation (20), mathematical demonstrated
by Dudita and Florescu in [5], is more than ever necessary in the design for automotive
driveshafts and represents a correction needed to be applied to most of the patent’s design
such as in [17–20]. The maximum values of the isometric nonuniformity are obtained
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when β2 has a maximum value of 47◦; therefore, this paper highlights the sensitivity of
the driveshaft to the excitations received from the wheel. As can be seen from all the
aspects of this paper, automotive driveshafts do not have perfect geometric and kine-
matic isometry, even if the tulip–tripode joint and bowl-balls joint represent, in view of
technological developments over the last four decades, the most advanced homokinetic
transmissions. The prediction of geometric and kinematic isometry nonuniformity of the
driveshaft represent a powerful tool for designers because it allows for prediction in the
early design stages of the automotive driveshaft, the prediction of resonances such as super
harmonic resonance, subharmonic resonance, principal parametric resonance, combination
resonances, simultaneous resonances and internal resonances. Also, this aspect allows the
investigation of stability in these specific resonances ranges for the nonlinear parametric
dynamic behavior of the automotive driveshaft. These phenomena have of a huge impor-
tance when establishing the dynamic behavior of the automotive transmission from the
gearbox to the wheel. Finally, it can be concluded that this paper introduces an important
correction for the design of automotive driveshafts, for the torsional dynamic behavior
prediction, and for bending–shearing dynamic behavior prediction of the driveshafts in the
early stages of design. The results presented in the article is a starting point for the future
research of dynamic phenomena in the area mentioned previously.
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