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Abstract: It is shown how the Correlated Traits Correlated Methods Minus One (CTC(M − 1))
Multitrait-Multimethod model for cross-classified data can be modified and applied to divergent
thinking (DT)-task responses scored for miscellaneous aspects of creative quality by several raters.
In contrast to previous Confirmatory Factor Analysis approaches to analyzing DT-tasks, this model
explicitly takes the cross-classified data structure resulting from the employment of raters into account
and decomposes the true score variance into target-specific, DT-task object-specific, rater-specific,
and rater–target interaction-specific components. This enables the computation of meaningful mea-
surement error-free relative variance-parameters such as trait-consistency, object–method specificity,
rater specificity, rater–target interaction specificity, and model-implied intra-class correlations. In
the empirical application with alternate uses tasks as DT-measures, the model is estimated using
Bayesian statistics. The results are compared to the results yielded with a simplified version of the
model, once estimated with Bayesian statistics and once estimated with the maximum likelihood
method. The results show high trait-correlations and low consistency across DT-measures which
indicates more heterogeneity across the DT-measurement instruments than across different creativity
aspects. Substantive deliberations and further modifications, extensions, useful applications, and
limitations of the model are discussed.

Keywords: alternate uses task; confirmatory factor analysis; creativity; cross-classified data; CTC
(M − 1); divergent thinking; multitrait–multimethod

1. Introduction

Divergent thinking (DT) is arguably the best psychological construct for approximating
a quantitative display of inter-individual differences in human creativity in a psychometric
and test-theoretical manner and is useful for predicting creative achievement (Guilford
1966; Lubart et al. 2010; Kim 2008; Runco and Acar 2012; Wallach and Wing 1969). It is
understood as a person’s ability to produce several ideas or solutions to a given problem
or task (Guilford 1967). One example for a concrete DT-task is the insight test or, alterna-
tively labeled, the finding explanations task (FET; Forthmann et al. 2019; Jäger et al. 2006;
Preckel et al. 2011): A subject has to come up with explanations for a certain circumstance.
For example: Why do many people think of person X as choleric? One explanation might
state that X scolds her or his employees all the time for only minor mistakes; another expla-
nation might state that X yells at potatoes for not peeling themselves. Most people would
probably deem the second explanation more creative due to its humorous absurdity alone.

Another established method for assessing DT is the alternate uses task (AUT; Guilford
1967; Wallach and Kogan 1965). In such a task, a subject has to write down as many
alternate uses for an everyday object like a kitchen knife, for example. “Alternate” means
that the use should be different to the “normal” use of the object. For a kitchen knife, the
normal use would be to cut food; examples for alternate uses might be to use the reflective
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surface of the blade as a mirror or to stick the knife into a wall so that its handle can be
used as a coat hook.

The derivation of a quantitative DT-score is anything but straightforward. Deliber-
ations must be made even before idea production, as DT-tasks can come with different
instructions for the target subjects. The instruction can be to produce as many ideas as
possible (“be-fluent”; e.g., Runco and Acar 2010) or to focus on the production of creative
and unusual ideas (“be-creative”; e.g., Nusbaum et al. 2014) with the latter—at least in
principle—better reflecting the concept of creativity. After ideas have been gathered, one
may simply use the number of produced ideas (fluency) as an indicator for DT or consult
sample-independent raters to judge the creativity of the produced ideas (see, for example,
Forthmann et al. 2017). The latter process, again, lends itself more towards the concept of
creativity and can, in turn, be sub-divided into several more specific scoring procedures.
Raters may judge every single idea of a target or give so called “snapshot-ratings”, i.e.,
rate the overall set of ideas of each target (e.g., Silvia et al. 2009). Moreover, they may
rate the (set of) ideas with regards to different aspects like uncommonness, remoteness
(e.g., for an AUT: behavioral distance of the alternate use to the common use; using a
knife as a mirror is arguably more remote than using it as a coat hook as the latter use still
implies the process of cutting when the knife is inserted into the wall), cleverness, which
encompasses imaginativeness, ingenuity, funniness, and cunning aptness (French et al.
1963; Johnson et al. 1968; Mullins 1963; Stratton and Brown 1972; Wilson et al. 1953), and
usefulness (Runco and Jaeger 2012; probably more appropriate for AUTs than for FETs).
When raters are instructed to include all or a subset of the aforementioned aspects in their
ratings, the ratings are usually stated to indicate (overall) creative quality (e.g., Forthmann
et al. 2017). Note that the employment of (at least two) raters implies a cross-classified
data structure for DT scores (given that all raters rate all targets). Variability in ratings is
potentially attributable to differences in targets, differences in raters (independent higher
levels), and differences in rater–target dyads/interactions (lower interaction level; see, for
example, Koch et al. 2016).

On top of this plethora of different instructions and scoring procedures, often, several
DT-tasks are given to targets instead of only one. For example, targets might answer
three AUTs with the respective objects being a rope, a garbage bag, and a paperclip
(Forthmann et al. 2017). This is useful from a psychometric perspective as several tasks
that are intended to measure the same construct can be used to separate the true score from
measurement error within the framework of classical test theory using confirmatory factor
analysis (CFA; Bollen 1989). Once the ratings of all raters for all targets on all DT-tasks are
collected, the data is often analyzed in the following way (e.g., Forthmann et al. 2017, 2019):
for each DT-task or the mean across all DT-tasks, an intra-class correlation coefficient (ICC) is
computed. The ICC displays the proportion of variance in the ratings that can be attributed
to the targets. Therefore, the higher the value (that can range from 0 to 1) the more consent
among the raters is present (usually, a minimum value of 0.7 is aimed at). Note that by
using the raw ratings, measurement error is not partialized out before the ICC is computed.
Afterwards, some sort of aggregate among raters is computed for each DT-task and target,
so that one value is given for each target on every DT-task. With those values, a standard
CFA is estimated. If multiple rating-procedures were applied—say cleverness ratings
and separate creative quality (encapsulating uncommonness and remoteness) ratings for
the three AUTs as mentioned above (see Figure 1)—one target-specific score variable is
computed for every combination of DT-task and rating procedure. The DT-scores relating
to the same aspect/rating procedure (e.g., cleverness ratings) are combined to measure
the same latent variable (e.g., latent cleverness); the latent variables and their covariances
represent the overarching DT-construct. Partial covariances of residuals relating to the
same DT-tasks but different scoring procedures are modeled to respect possible DT-object
dependencies. With “DT-object”, we refer to the concrete available information within a
DT-task. This is literally a material item for which alternate uses are sought for in AUTs but
more abstract in other DT-tasks, e.g., the choleric personality in the FET-example above.
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Note that measurement error variance and DT-object specific variance are confounded in
the residual variance within this simple CFA approach.

J. Intell. 2024, 12, x FOR PEER REVIEW 3 of 23 
 

 

available information within a DT-task. This is literally a material item for which alternate 
uses are sought for in AUTs but more abstract in other DT-tasks, e.g., the choleric person-
ality in the FET-example above. Note that measurement error variance and DT-object spe-
cific variance are confounded in the residual variance within this simple CFA approach. 

 
Figure 1. Example for the standard CFA approach to analyzing divergent thinking (DT). In this ex-
ample, three different AUTs each scored both for cleverness and creative quality were used. ε depicts 
a residual. cl = cleverness, cq = creative quality. 

The purpose of the current contribution is to present an alternative CFA approach to 
analyzing rated responses to DT-tasks. By conceptualizing different creativity aspects 
(like cleverness and creative quality) as different traits, different DT-objects as structurally 
different methods and different raters as interchangeable methods, DT-scores can be ana-
lyzed with Multitrait–Multimethod (MTMM; Campbell and Fiske 1959) factor models. 
The particular MTMM–CFA approach utilized in the current contribution is a modifica-
tion of the Correlated Traits Correlated Methods Minus One (CTC(M − 1); see (Eid 2000; 
Eid et al. 2003, 2008; Nussbeck et al. 2006, 2009) model for cross-classified data (C4 for 
short; Koch et al. 2016). The model includes all variance components (targets, raters, rater–
target interactions, DT-task objects, and measurement error) by fully respecting the cross-
classified data structure of rated DT-responses in the model itself, directly adheres to the 
stochastic sampling process given in cross-classified DT scoring-procedures, and is for-
mally definable in the framework of classical test theory and stochastic measurement the-
ory (Steyer 1989; Zimmerman 1975). The following advantages over the standard CFA 
approach as depicted in Figure 1 are gained: 
1. Model-implied ICCs can be computed for the DT-scores within a specific rating pro-

cedure (construct) that only consider variability of true scores and separate measure-
ment error; 

2. DT-object-specific variability can be separated from measurement error; 
3. The model allows for the computation of additional informative relative true-score 

variance components such as various forms of consistency and method specificity; 
4. Using Bayesian methods, credibility intervals (CRIs) for all relative variances (men-

tioned in 1. and 3.) can be computed; 
5. Rater-effects (variability across raters) can be separated from interaction-effects (var-

iability across rater–target interactions) which allows one to investigate whether 
raters consistently maintain their standards across targets; 

Figure 1. Example for the standard CFA approach to analyzing divergent thinking (DT). In this
example, three different AUTs each scored both for cleverness and creative quality were used. ε

depicts a residual. cl = cleverness, cq = creative quality.

The purpose of the current contribution is to present an alternative CFA approach
to analyzing rated responses to DT-tasks. By conceptualizing different creativity aspects
(like cleverness and creative quality) as different traits, different DT-objects as structurally
different methods and different raters as interchangeable methods, DT-scores can be ana-
lyzed with Multitrait–Multimethod (MTMM; Campbell and Fiske 1959) factor models. The
particular MTMM–CFA approach utilized in the current contribution is a modification of
the Correlated Traits Correlated Methods Minus One (CTC(M − 1); see (Eid 2000; Eid et al.
2003, 2008; Nussbeck et al. 2006, 2009) model for cross-classified data (C4 for short; Koch
et al. 2016). The model includes all variance components (targets, raters, rater–target inter-
actions, DT-task objects, and measurement error) by fully respecting the cross-classified
data structure of rated DT-responses in the model itself, directly adheres to the stochastic
sampling process given in cross-classified DT scoring-procedures, and is formally definable
in the framework of classical test theory and stochastic measurement theory (Steyer 1989;
Zimmerman 1975). The following advantages over the standard CFA approach as depicted
in Figure 1 are gained:

1. Model-implied ICCs can be computed for the DT-scores within a specific rating procedure
(construct) that only consider variability of true scores and separate measurement error;

2. DT-object-specific variability can be separated from measurement error;
3. The model allows for the computation of additional informative relative true-score

variance components such as various forms of consistency and method specificity;
4. Using Bayesian methods, credibility intervals (CRIs) for all relative variances (men-

tioned in 1. and 3.) can be computed;
5. Rater-effects (variability across raters) can be separated from interaction-effects (vari-

ability across rater–target interactions) which allows one to investigate whether raters
consistently maintain their standards across targets;

6. Due to the flexibility of SEM, the model can be extended to include attributes of
raters in order to predict differences in raters, for example (the same is true for
rater–target interactions).
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In the following, we formally define the model in the frameworks of classical test
theory. We display the variance decomposition and introduce various types of relative
variances that can be computed. Lastly, we apply the model (and a simplification of it) to
data on cleverness and creative quality ratings for the three different AUT-tasks as also
shown in Figure 1.

2. Defining an Appropriate Cross-Classified CTC(M − 1) Model for DT-Ratings

The original C4 (Koch et al. 2016) was derived and illustrated for cases in which
self-reports (e.g., of personality traits like academic interest) of study participants/targets
(e.g., students) are augmented by other reports provided by a distinct set of interchangeable
raters (e.g., the teachers of the students). Other ratings reflect a structurally different
method to the “gold-standard” method (Eid et al. 2003) of self-reports. A common method
effect (reflecting rater-agreement or their “common perspective” with regard to a target; see
also Eid et al. 2008) can be defined as a residual to the trait as assessed with the standard
method of self-reports. In DT-studies, creativity self-ratings of targets are usually not given,
and the different DT-objects reflect the structurally different assessment methods of interest.
Therefore, the C4 can be applied with a modification: one DT-task/indicator (containing a
specific DT-object) can be defined as a standard method for assessing any creativity aspect
(trait) of a target using the common perspective of multiple interchangeable raters and
indicator- (or object-) specific method effects (e.g., Bishop et al. 2015; Eid and Diener 2004;
Eid et al. 2003; Geiser et al. 2008; Geiser and Lockhart 2012; Geiser and Simmons 2021; Koch
et al. 2018; Schmitt and Steyer 1993) of the structurally different non-standard methods
(indicators/objects) can be modeled while still respecting different raters as interchangeable
methods. In the following paragraphs, we show how such a modified C4 model can be
defined for DT-ratings within classical test theory. For convenience, we refer to this model
as the Divergent Thinking Cross-Classified model (DTCC). We refer to a simplified version
of this model that conglomerates rater and rater–target interaction effects as the Divergent
Thinking Two-Level model (DTTL). Readers already familiar with the C4 and the modeling
of indicator-specific method effects within the CTC(M − 1) tradition, and readers primarily
interested in the meaning of latent variables instead of technical aspects of model definition,
may refer to Figure 2 and its description for the final model(s) (see also Equations (7)–(9))
and skip ahead to the next section.

All latent variables of the DTCC are defined as conditional expectations or deviations
thereof in the framework of stochastic measurement theory where targets and raters are
treated as outcomes of random variables. The stochastic sampling space for cross-classified
data including mapping and the definition of conditional expectations is given in Koch
et al. (2016). Let Yrtij denote the given score of rater r to target t on DT-indicator i for
construct j. For example, i might have three levels (i = 1, 2, or 3), denoting the AUTs of rope,
garbage bag, and paperclip, respectively. j might have two levels (j = 1 or 2) with 1 denoting
cleverness and 2 denoting creative quality. If individual idea ratings are used (as opposed
to snapshot ratings) one needs to obtain Yrtij by computing a rater–target combination
specific aggregate for DT-task i of construct j like the mean or, preferably, the 0.75 quantile
of the idea ratings (see, for example, Forthmann et al. 2017). Within classical test theory, each
of these ratings can be decomposed into a true score τrtij and a measurement error εrtij:

Yrtij = τrtij + εrtij. (1)

Next, in accordance with the CTC(M − 1) tradition, one needs to define one indicator
i as a reference indicator/method. For example, for the three AUTs mentioned above on
might set indicator i = 1 (rope) is the reference indicator (note that i denotes an indica-
tor/method and an DT-object simultaneously). For this reference indicator, the true score
can be further decomposed into an unconditional expectation (intercept) across all raters
and targets µ1j, an expected conditional deviation from this intercept given the target (trait)
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Tt1j, an expected conditional deviation from this intercept given the rater (rater-effect) Rr1j,
and a deviation for the interaction (combination) of rater and target (interaction-effect) INTrt1j:

τrt1j = µ1j + Tt1j + Rr1j + INTrt1j (2)

(see Koch et al. 2016). For the true score of the remaining non-reference indicators (i ̸= 1) of
construct j, the same decomposition holds:

τrtij = µij + Ttij + Rrij + INTrtij. (3)
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Figure 2. The Divergent Thinking Cross-Classified model (DTCC) as a modified version of the C4
(Koch et al. 2016) with indicator-specific method factors (e.g., Geiser and Simmons 2021). In this
example, three DT-tasks (e.g., three AUTs with the objects of rope (i = 1), garbage bag (i = 2), and
paperclip (i = 3)) and two constructs (e.g., cleverness (j = 1) and creative quality (j = 2)) are given.
The first DT-indicator/object (i = 1) is defined as a reference method for all constructs. All factor
loadings (denoted by λ) for this indicator are set to 1. Yrtij = observed rating of rater r for target
t on DT-object (indicator) i for construct j. εrtij = residual of an observed rating. µij denotes an
intercept/unconditional expectation for indicator i and construct j (only exemplarily depicted for

the first indicator of the first construct). Ttj = latent trait variable for construct j. λ
Tj

ij Ttj denotes an
expected deviation from the intercept as assessed with the reference method i = 1 given target t.
OMtij = (DT-) object-specific (indicator-specific) method effect variable for non-reference object i ̸= 1

for construct j. It depicts the expected deviation from λ
Tj

ij Ttj given the non-reference method i ̸= 1.

Rrj = rater effect variable for construct j. λ
Rj

ij Rrj denotes an expected deviation from the intercept

given rater r. INTrtj = interaction effect variable for construct j. λ
INTj

ij INTrtj depicts the expected

deviation from the intercept, λ
Tj

ij Ttj +OMtij, and λ
Rj

ij Rrj given the specific combination of target t and
rater r. σ denotes a covariance. Note that all OMtij may covary with each other but only the covariance
between OMt22 and OMt32 is labeled exemplarily to maintain visual clarity. Dashed double arrows
indicate covariances that can only be modeled if the same raters (at least in part) are consulted for
both constructs. In the simplified Divergent Thinking Two-Level model (DTTL), the interaction-level
is described as level-1 and the target-level is described as level-2 (there is no rater-level) and the latent
variables on level-1 are more appropriately referred to as unique method-effect variables (UMrtj; see
Eid et al. 2008; Koch et al. 2016).
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We regress the target-specific latent trait variable for any non-reference indicator Ttij
on the latent trait of the reference indicator Tt1j, giving:

Ttij = λ
Tj
ij Tt1j + OMtij. (4)

Here, λ
Tj
ij Tt1j denotes an expected trait value for the non-reference DT-object i given the

trait value for the reference DT-object i = 1 and OMtij depicts a construct (j) and DT-object
specific residual for DT-object i—the object-specific (or indicator-specific) method effect
(Bishop et al. 2015; Eid and Diener 2004; Eid et al. 2003; Geiser et al. 2008; Geiser and
Lockhart 2012; Geiser and Simmons 2021; Koch et al. 2018; Schmitt and Steyer 1993).

For the Rrij and INTrtij of Equations (2) and (3), we assume that they are, respectively,

linear transformations of each other across different indicators (i ̸= i′): Rrij = λ
Rj
ii′ Rri′ j,

and INTrtij = λ
INTj
ii′ INTrti′ j. Note that no intercepts are given in the linear equations

Tt1j = λ
Tj
ij Tt1j + OMtij, Rrij = λ

Rj
ii′ Rri′ j, and INTrtij = λ

INTj
ii′ INTrti′ j as all of the latent vari-

ables depict deviations and, thus, have expectations of zero. We can impose, without loss
of generality, a congeneric measurement structure on the Rrij and INTrtij, respectively, by
defining the metric of latent variables for the reference indicator as the standard (Rr1j = Rrj
and INTrt1j = INTrtj) and define the respective latent variables of non-reference indicators

as transformations thereof: λ
Rj
ij Rrj and λ

INTj
ij INTrtj. Additionally defining Tt1j = Ttj gives:

τrt1j = µ1j + Ttj + Rrj + INTrtj (5)

for the reference (standard) indicators and

τrtij = µij + λ
Tj
ij Ttj + λ

Rj
ij Rrj + λ

INTj
ij INTrtj + OMtij (6)

for non-reference (non-standard) indicators.
Our final model equations for observed variables are:

Yrt1j = µ1j + Ttj + Rrj + INTrtj + εrt1j (7)

and
Yrtij = µij + λ

Tj
ij Ttj + λ

Rj
ij Rrj + λ

INTj
ij INTrtj + OMtij + εrtij. (8)

Note that all latent variables on the target-level (i.e., all latent trait-variables and all
object-specific method-effect variables) reflect parts of true expected ratings that are shared
(“common perspective”) by all raters (Koch et al. 2016; see also Eid et al. 2008). Note
further that all latent variables within an equation are orthogonal. Ttj, Rrj and INTrtj are
orthogonal due to the cross-classified data structure in which the target- and rater-levels
are independent (given that the set of targets and the set of raters do not contain the same
persons) and the interaction-level encompasses residual variables after the variables on the
higher levels are controlled for (see also Koch et al. 2016). The OMtij are orthogonal to Ttj
as they depict DT-object (e.g., AUT-object) specific residuals to the conditional expectation
given the reference DT-object. The following covariances are included: σTjTj′

depicts the
covariance of two traits across two different constructs (j ̸= j′) and reflects discriminant
validity from an MTMM-perspective. σOMijOMi′ j′

depicts the covariance of two different
DT-object method-effects that may relate to different objects (i ̸= i′) but the same construct
(j = j′), the same object (i = i′) but different constructs (j ̸= j′), or different objects (i ̸= i′) and
different constructs (j ̸= j′). σRjRj′

depicts the covariance of the two rater-effects across two
different constructs and σINTj INTj′

depicts the covariance of two interaction-effects across
two different constructs. Note that σRjRj′

and σINTj INTj′
can only be estimated if the same
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raters (at least in part) are employed across rating procedures (constructs) which is not
always the case in DT-studies (e.g., Forthmann et al. 2017).

The DTCC can be simplified to the DTTL by conglomerating the rater-effect and
the interaction-effect for each construct into a unique (referencing rater-disagreement or
uniqueness; Eid et al. 2008; Koch et al. 2016) method-effect (UMrtj):

λ
Rj
ij Rrj + λ

INTj
ij INTrtj = λ

UMj
ij UMrtj, (9)

with λ
Rj
1j = λ

INTj
1j = λ

UMj
1j = 1. This would be necessary if every target had her or his unique

set of raters, i.e., the data structure would not be cross-classified but adhere to a standard
two-level sampling process (Eid et al. 2008). Even in the case of cross-classified data, the
simplified model may be used if the separation of raters and rater–target interactions is not
of particular interest as long as parameter estimates do not undergo substantial bias and
affect the variance decomposition which we will explore in the empirical application. In
Figure 2, names and labels in parentheses show the appropriate names and labels for latent
variables and parameters on the lower level (level-1) of the DTTL (in which the target-level
is the only higher level or level-2).

3. Variance Decomposition

Due to the orthogonalized structure of latent variables within an observed variable,
the variance decomposition of the DTCC is straightforward. The complete variances for
any standard indicator (i = 1) and any non-standard indicator (i ̸= 1) of construct j are,
respectively, given by

σ2
Yrt1j

= σ2
Ttj

+ σ2
Rrj

+ σ2
INTrtj

+ σ2
εrt1j

(10)

and
σ2

Yrtij
= (λ

Tj
ij )

2
σ2

Ttj
+ (λ

Rj
ij )

2
σ2

Rrj
+ (λ

INTj
ij )

2
σ2

INTrtj
+ σ2

OMtij
+ σ2

εrtij
, (11)

with the variance of the respective true score encapsulating all components except for
measurement error (residual):

σ2
τrt1j

= σ2
Ttj

+ σ2
Rrj

+ σ2
INTrtj

= σ2
Yrt1j

− σ2
εrt1j

(12)

and
σ2

τrtij
= (λ

Tj
ij )

2
σ2

Ttj
+ (λ

Rj
ij )

2
σ2

Rrj
+ (λ

INTj
ij )

2
σ2

INTrtj
+ σ2

OMtij
= σ2

Yrtij
− σ2

εrtij
. (13)

For the true scores of standard indicators, we can define the following meaningful
relative variance parameters. The model-implied ICC (MIICC1j) depicts the proportion of
true score variance that is attributable to variability in the targets:

MIICC1j =
σ2

Ttj

σ2
Ttj

+ σ2
Rrj

+ σ2
INTrtj

. (14)

It can be interpreted as convergent validity from an MTMM perspective. The rater
(method) specificity coefficient (RMS1j) depicts the proportion of true score variance that is
attributable to variability in the raters:

RMS1j =
σ2

Rrj

σ2
Ttj

+ σ2
Rrj

+ σ2
INTrtj

. (15)
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The interaction (method) specificity coefficient (IMS1j) depicts the proportion of true
score variance that is attributable to variability in rater–target interactions:

IMS1j =
σ2

INTrtj

σ2
Ttj

+ σ2
Rrj

+ σ2
INTrtj

. (16)

One may also calculate a unique method specificity coefficient (UMS1j) that depicts the
proportion of true score variance that is not attributable to targets but to any kind of
rater-related method-effect:

UMS1j =
σ2

Rrj
+ σ2

INTrtj

σ2
Ttj

+ σ2
Rrj

+ σ2
INTrtj

= 1 − MIICC1j. (17)

For the non-standard indicators, the following meaningful relative variance parame-
ters can be defined. The level-2 (target-level) consistency coefficient (L2Conij) shows the
proportion of target-variability in a non-standard indicator (non-standard object) that can
be explained by the target-variability of the standard indicator (standard object):

L2Conij =
(λ

Tj
ij )

2
σ2

Ttj

(λ
Tj
ij )

2
σ2

Ttj
+ σ2

OMtij

. (18)

In contrast to this, the level-2 object-method specificity coefficient (L2OMSij) depicts the
remaining unexplained proportion of target-level variance that is attributable to object
method-effects:

L2OMSij =
σ2

OMtij

(λ
Tj
ij )

2
σ2

Ttj
+ σ2

OMtij

= 1 − L2Conij. (19)

Both standard object consistency and non-standard object specificity can also be computed
for the overall true score variability, giving the level-1 consistency coefficient (L1Conij) and
the level-1 object-method specificity coefficient (L1OMSij), respectively:

L1Conij =
(λ

Tj
ij )

2
σ2

Ttj

σ2
τrtij

(20)

and

L1OMSij =
σ2

OMtij

σ2
τrtij

(21)

The rater specificity coefficient, the interaction specificity coefficient and the unique method
specificity coefficient may also be defined for the non-standard indicators:

RMSij =
(λ

Rj
ij )

2
σ2

Rrj

σ2
τrtij

, (22)

IMSij =
(λ

INTj
ij )

2
σ2

INTrtj

σ2
τrtij

, (23)

and

UMSij =
(λ

Rj
ij )

2
σ2

Rrj
+ (λ

INTj
ij )

2
σ2

INTrtj

σ2
τrtij

(24)
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Lastly, the model-implied ICC for non-standard indicators must respect both the target-
specific trait-variance and the target-specific object method-effect variance:

MIICCij =
(λ

Tj
ij )

2
σ2

Ttj
+ σ2

OMtij

σ2
τrtij

= 1 − UMSij. (25)

For all indicators, regardless of whether they are standard indicators or not, we
can, of course, compute reliability (RELij) as the proportion of true score variance in the
complete variance:

RELij =
σ2

τrtij

σ2
Yrtij

= 1 −
σ2

εrtij

σ2
Yrtij

. (26)

Please note that the consistency- and method specificity-coefficients for non-standard
indicators reflect direct adaptations of the respective coefficients for the original C4 (see
Equations (21)–(25) in (Koch et al. 2016). Within the DTCC, RMSij, IMSij, and UMSij are
also definable for the standard indicators/objects (i = 1) because they employ interchange-
able raters as well.

For the DTTL, the variance decomposition is given in detail in Appendix A. Essen-
tially, for this simplified model, Equations (10)–(26) hold with the following restrictions:

λ
INTj
ij = λ

UMj
ij , σ2

INTrtj
= σ2

UMrtj
, IMSij = UMSij, and λ

Rj
ij = σ2

Rrj
= RMSij = 0.

4. Empirical Application

We illustrate the DTCC and the DTTL in comparison on an openly accessible dataset
(available at: https://osf.io/a9qnc, accessed on 20 July 2024) containing various forms of
AUT ratings. We first describe the data and its structure, then lay out the analytic strategy
and finally present the results.

4.1. The Data

The data stem from a DT-study executed in Germany and has been analyzed several
times before (Forthmann et al. 2017, 2020; Forthmann and Doebler 2022). 202 target-
participants (144 reported to be female; mean of age = 25.51, standard deviation of
age = 6.813, range of age: 17 to 75) received “be-creative” instructions for the three AUTs of
rope (i = 1), garbage bag (i = 2), and paperclip (i = 3). The time limit for the idea production
phase for each AUT was 2.5 min. There were seven raters for the derivation of scores.
Raters 1 through 5 gave snapshot cleverness (j = 1) ratings for each set of produced ideas.
Rater-instructions stated that highly clever ideas should be imaginative, apt, ingenious,
and funny, whereas unclever ideas should be too vague, too general, negligibly relevant,
and without sophistication. Raters 2, 6, and 7 judged every individual idea with regard
to creative quality (j = 2). For each creative quality rating, the raters were instructed to
weigh the aspects of uncommonness, remoteness, and cleverness against each other so that
high-quality ideas would strongly represent all three aspects. Both cleverness and creative
quality ratings were given on a 5-point Likert scale (range: 1 to 5). For the creative quality
ratings, we computed the 0.75 quantile of the set of produced ideas for each rater–target
dyad on each AUT and used these values as scores for the analysis. Usage of the 0.75 quan-
tile (instead of the median or mean) is common since it is more robust against low-quality
outlier ideas of otherwise very creative targets (e.g., Forthmann et al. 2017, 2019). Note
that only one rater (rater 2) gave both cleverness and creative quality ratings. This is not
enough to estimate the rater-effect covariance (σR1R2) in the DTCC and unsatisfactory for
estimating the interaction-effect covariance (σINT1 INT2 ) and the rater method-effect covari-
ance (σRM1RM2) in the DTCC and DTTL, respectively. Thus, we excluded rater 2 from the
cleverness ratings and orthogonalized all rater-related effects (i.e., we used the ratings of
rater 1, 3, 4, and 5 for cleverness and the ratings of rater 2, 6, and 7 for creative quality).

https://osf.io/a9qnc
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These measures constitute the observed variables for our main analysis. The average
measure absolute agreement ICC is 0.906 (95% confidence interval: [0.882, 0.925]) for
cleverness and 0.479 (95% confidence interval: [0.403, 0.547]) for creative quality. Table 1
shows an excerpt of the cross-classified data. The Supplementary Materials contains an R-
script (R Core Team 2013) that shows how to download the data from https://osf.io/a9qnc
and then restructure it in the required way. For further information on the complete data of
the study, we refer to Forthmann et al. (2017).

Table 1. Cross-classified structure of the dataset as used in the analysis.

Target Rater Y11 Y21 Y31 Y12 Y22 Y32

1 1 3 3 2 NA NA NA
1 2 NA NA NA 3.00 2.25 3.00
1 3 3 2 2 NA NA NA
1 4 4 3 3 NA NA NA
1 5 4 3 3 NA NA NA
1 6 NA NA NA 4.00 5.00 3.00
1 7 NA NA NA 2.00 3.00 3.00
2 1 2 4 3 NA NA NA
2 2 NA NA NA 3.00 3.50 1.75
2 3 2 4 2 NA NA NA
2 4 3 4 2 NA NA NA
2 5 3 4 2 NA NA NA
2 6 NA NA NA 4.00 4.50 2.75
2 7 NA NA NA 2.00 3.50 2.00

Notes. Yij = rating for AUT-object (indicator) i (1 = rope, 2 = garbage bag, 3 = paperclip) with regard to construct j
(1 = cleverness, 2 = creative quality), NA = Not Available (missing value). There were 202 targets in total but only
two are shown.

4.2. Analytic Strategy

In both models, the AUT-object of rope (i = 1) was chosen as the reference method for
both cleverness and creative quality. We believe that, out of the given three objects, the
rope (together with similar objects like the string) probably has the longest history and is
the most used as an AUT-object (e.g., the string was used as an illustrative AUT example in
Wallach and Kogan 1965). Therefore, it can be seen as a “gold-standard” (Eid et al. 2003)
and the DTCC (and DTTL) allows exploration of the object-specificity of newer AUTs in
comparison to this long-lasting standard.

To the best of our knowledge, a maximum likelihood estimator for cross-classified
CFAs containing freely estimated factor-loadings (such as the C4 and the DTCC) has not
yet been derived (see Jeon and Rijmen 2014 and Koch et al. 2016 for discussions). Thus, we
estimated the DTCC and the DTTL using Bayesian Markov Chain Monte Carlo simulation
with three Gibbs sampling chains. Appendix B shows the prior specifications in both
models. Further, we also estimated the DTTL using full information maximum likelihood
with robust Huber–White standard errors (e.g., Long and Ervin 2000) in order to compare
the Bayesian estimator with a frequentist approach. In the remainder, the DTTL estimated
with Bayesian statistics will be referred to as the DTTL-B and the DTTL estimated with the
maximum-likelihood method will be referred to as the DTTL-ML.

For the Bayesian estimation, we set the standard Gelman–Rubin convergence criterion
of a maximum potential scale reduction (PSR) factor of 1.1 (Asparouhov and Muthén
2021; Gelman and Rubin 1992; Muthén and Muthén 1998–2017). The DTCC converged
after 64,998 iterations, the DTTL-B converged after 21,898 iterations. The first half of
the iterations was treated as burn-in. For an additional convergence check, we created
trace plots which are presented in the Supplementary Materials. These were unsuspicious
with the exception that the trace plots for the creative quality rater-effect variance in the
DTCC indicated problems. Therefore, we re-estimated the DTCC with a fixed number of
1,000,000 iterations, with the first half treated as burn-in. The estimation time was 87 min on
a 3.4 GHz processor personal computer, the highest PSR factor was 1.021 and any observed

https://osf.io/a9qnc
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differences in comparison to the Gelman–Rubin procedure (see Supplementary Materials)
did not affect the main conclusions. The results of the fixed iterations procedure will be
reported in the following.

For the DTCC and the DTTL-B, we investigated model fit with the Bayesian Posterior
Predictive Checking procedure (BPPC; e.g., Asparouhov and Muthén 2021; Gelman et al.
1996) using the χ2-statistics. A model is maintained when the 95% confidence interval
(COI) for the difference between the observed and the replicated χ2-values (∆χ2) contains
zero and the posterior predictive p-value is above .05. For the DTTL-ML, we investigated
the χ2-test of exact fit, the RMSEA, and the SRMR for level-1 and level-2 with regard to
standard cut-off values. A model is rejected if the p-value of the χ2-test statistic is below .05.
Model fit is considered acceptable if RMSEA, SRMRlevel-1, and SRMRlevel-2 are equal to or
below .08 and good if they are equal to or below .05 (Browne and Cudeck 1992; Chen et al.
2008; Hu and Bentler 1999; West et al. 2012). We will compare the parameters and relative
variances across the three models. For all analyses, we used version 8.7 of Mplus (Muthén
and Muthén 1998–2017). The Supplementary Materials contains Mplus-scripts (Input files)
and results (Output files).

4.3. Results and Discussion

The DTCC did not have to be rejected (M(∆χ2) = −4.438, 95%-COI = [−56.534, 64.942],
p = .438) and neither did the DTTL-B (M(∆χ2) = −2.127, 95%-COI = [−28.479, 33.249],
p = .442). The DTTL-ML was rejected based on the test of exact fit and yielded a high
RMSEA, but the SRMR statistics suggested good model fit (χ2(13) = 207.954, p < .001,
RMSEA = 0.103, SRMRlevel-1 = 0.013, SRMRlevel-2 = 0.040).

Table 2 shows the complete results for the parameters and relative variances of all
three models. All parameter estimates were positive and no 95% CRI or COI (in the
case of the DTTL-ML) contained zero—with the exception of two non-significant object
method-effect covariances in the DTTL-ML. Overall, the models yielded quite similar
results (with some exceptions). On the target-level, more variance was observed in the
latent trait for cleverness (around 0.570) than for creative quality (around 0.200). Within
the DTCC, rater- and interaction-effects were quite sparse and balanced for cleverness
(σ2

Rr1
= 0.055, σ2

INTrt1
= 0.047). For creative quality, overall more true score variability was

attributable to unique method-effects and differences in raters were much more pronounced
than differences in rater–target interactions (σ2

Rr2
= 0.328, σ2

INTrt2
= 0.004) which suggests

that, while raters differed in their judgements, each rater was consistent across the targets.
Within the two DTTL models, unique method-effect variance was much higher for creative
quality than for cleverness as well (DTTL-B: σ2

UMr1
= 0.084, σ2

UMr2
= 0.253; DTTL-ML: σ2

UMr1

= 0.109, σ2
UMr2

= 0.240). With regard to trait correlation, some important differences between
the models need to be mentioned. Trait correlation was estimated to be high in all models
but substantially higher for the DTTL, especially with the maximum likelihood-estimator
(DTCC: rT1T2 = 0.876, DTTL-B: rT1T2 = 0.941, DTTL-ML: rT1T2 = 0.994). Analyzing the data
with a standard CFA as depicted in Figure 1, Forthmann et al. (2017) found a (first-order)
latent correlation between cleverness and creative quality of 0.831 which comes closest
to our result for the DTCC (it must be mentioned that their CFA model included several
more latent and observed variables, that they had one rater and two targets less, and that
their computation for creative quality scores was different which will be discussed further
below). Object method-effect correlations were also very high in all models of the current
application when the two object method-effects related to the same object but different
constructs (around 0.900).
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Table 2. Parameter estimates and relative variances for all models.

DTCC DTTL-B DTTL-ML

Parameter Y11 Y21 Y31 Y12 Y22 Y32 Y11 Y21 Y31 Y12 Y22 Y32 Y11 Y21 Y31 Y12 Y22 Y32

µij 2.993 3.066 3.026 2.907 3.132 2.927 2.996 3.055 3.024 2.908 3.124 2.922 2.993 3.069 3.030 2.904 3.129 2.926

λ
Tj
ij

1 0.489 0.498 1 0.540 0.459 1 0.510 0.514 1 0.531 0.461 1 0.521 0.508 1 0.598 0.497

λ
Rj
ij

1 0.715 0.502 1 1.108 0.583 - - - - - - - - - - - -

λ
INTj
ij or λ

UMj
ij

1 0.997 0.908 1 0.932 1.004 1 0.917 0.762 1 1.114 0.596 1 0.775 0.638 1 1.163 0.613

σ2
εrtij

0.324 0.261 0.273 0.158 0.209 0.188 0.346 0.257 0.274 0.183 0.207 0.208 0.321 0.262 0.275 0.208 0.195 0.209
σ2

Ttj
0.588 0.223 0.564 0.195 0.579 0.156

σ2
OMtij

0.468 0.429 0.210 0.182 0.469 0.424 0.207 0.180 0.456 0.426 0.170 0.137

σ2
Rrj

0.055 0.328 - - - -

σ2
INTrtj

or σ2
UMrtj

0.047 0.004 0.084 0.253 0.109 0.240

σT1T2 0.316 (.876) 0.310 (.941) 0.298 (.994)
σOM21OM31 0.187 (.420) 0.182 (.411) 0.181 (.410)
σOM21OM22 0.285 (.912) 0.282 (.908) 0.162 (.942)
σOM21OM32 0.075 (.260) 0.079 (.274) 0.058 (.232)
σOM31OM22 0.073 (.245) 0.066 (.224) 0.054 (.200) *
σOM31OM32 0.251 (.901) 0.251 (.913) 0.231 (.958)
σOM22OM32 0.051 (.263) 0.049 (.259) 0.007 (.045) *

L2Conij .231 .254 .237 .205 .238 .259 .210 .188 .256 .259 .247 .219
L2OMSij .769 .746 .763 .795 .762 .741 .790 .812 .744 .741 .753 .781
L1Conij .201 .228 .091 .126 .213 .238 .095 .133 .232 .241 .101 .145
L1OMSij .672 .674 .306 .520 .681 .680 .357 .575 .672 .688 .310 .515
MIICCij .846 .885 .911 .401 .405 .663 .870 .897 .921 .435 .457 .714 .842 .904 .928 .394 .411 .660
RMSij .080 .041 .022 .590 .589 .321 - - - - - - - - - - - -
IMSij .065 .065 .060 .006 .004 .009 - - - - - - - - - - - -
UMSij .154 .115 .089 .599 .595 .337 .130 .103 .079 .565 .543 .286 .158 .096 .072 .606 .589 .340
RELij .688 .730 .701 .780 .767 .655 .654 .730 .697 .710 .738 .602 .680 .721 .693 .655 .738 .559

Notes. N = 202. DTCC = Divergent Thinking Cross-Classified Model (Bayesian estimator with a fixed number of 1,000,000 iterations), DTTL-B = Divergent Thinking Two-Level Model
estimated using Bayesian statistics (Gelman–Rubin criterion), DTTL-ML = Divergent Thinking Two-Level Model estimated using full information maximum likelihood (robust standard
errors). Yij = AUT-score variable of object i (1 = rope, 2 = garbage bag, 3 = paperclip) scored for construct j (1 = cleverness, 2 = creative quality). µ indicates an intercept, λ indicates
a factor-loading, σ2 indicates a variance, and σ indicates a covariance. εrtij = residual of an AUT-score variable, Ttj = latent trait variable for construct j, OMtij = (DT-) object-specific
method-effect variable for non-reference object i for construct j, Rrj = rater-effect variable for construct j, INTrtj = interaction-effect variable for construct j, UMrtj = unique method-effect
variable for construct j, L2Conij = level-2 consistency for non-reference object i of construct j, L2OMSij = level-2 object-method specificity for non-reference object i of construct j,
L1Conij = level-1 consistency for non-reference object i of construct j, L1OMSij = level-1 object-method specificity for non-reference object i of construct j, MIICCij = model-implied
intra-class correlation of indicator i for construct j, RMSij = rater specificity of indicator i for construct j, IMSij = interaction specificity of indicator i for construct j, UMSij = unique method
specificity of indicator i for construct j, RELij = reliability of indicator i for construct j. Values of 1 were fixed. Numbers in parentheses depict correlations. Two-sided 95%-credibility
intervals (confidence intervals for the DTTL-ML) of point estimates did not include zero with the exception of the covariances marked with an asterisk (*) which had p > .05 in
the DTTL-ML.
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For the relative variances, again, results were very similar across models with relative
variance parameters usually not differing by more (and often less) than 5 percentage points
between models. The highest difference was observed for the reliability of the first AUT
(rope) scored for creative quality. This difference amounted to 12.5 percentage points and
was found between the DTCC (REL12 = 0.780) and the DTTL-ML (REL12 = 0.655). Across
all models, constructs, and AUTs, the level-2 consistency was rather low (ranging from
0.188 to 0.259), displaying a large amount of level-2 object-method specificity (ranging
from 0.741 to 0.812, accordingly). Level-1 object-method specificity was also larger than
level-1 standard object consistency. Note that, from an MTMM perspective, high method
specificity is reflective of low convergent validity and highly correlated traits (see above) are
reflective of low discriminant validity. Within the DTCC, rater-specificity and interaction-
specificity were quite low for cleverness (range: RMS31 = 0.022 to RMS11 = 0.080). For
creative quality, interaction-specificity was very low (range: IMS22 = 0.004 to IMS32 = 0.009)
but rater-specificity was much higher (range: RMS32 = 0.321 to RMS12 = 0.590) which,
again, nicely displays substantial differences between the raters, on one hand, but strong
rater-consistency across targets, on the other hand. Thus, unique method specificity was
rather low for cleverness but substantial for creative quality which was also found in
similar quantities for the DTTL regardless of the estimator. Accordingly, across all three
models, the model implied ICCs were very high for cleverness but much lower for creative
quality. Within the DTCC, we found for cleverness: MIICC11 = 0.846, MIICC21 = 0.885,
and MIICC31 = 0.911; and for creative quality: MIICC12 = 0.401, MIICC22 = 0.405, and
MIICC32 = 0.663. We can, again, compare these results to Forthmann et al. (2017) who
computed average measure absolute agreement ICCs before the modeling. For cleverness,
they found an ICC of 0.849. We yielded slightly higher results, which is partially explainable
by slightly different data (see above), but also by the fact that the ICC of the current
contribution relies on model assumptions, as well as by the fact that it only considers true
score variance and excludes measurement error. For creative quality, Forthmann et al.
(2017) found an ICC of 0.711. This is substantially higher than our results. We believe that
this is largely explainable by the fact that Forthmann et al. (2017) computed the ICC across
all individual idea ratings and then employed a different procedure for retrieving a target
score out of the individual idea ratings. They first averaged the individual idea ratings for
each rater–target dyad on each AUT. Then, they used the 0.75 quantile of the distribution
over the three raters as the actual score for the CFA. We first took the 0.75 quantile of the
distribution over individual idea ratings on each AUT for each rater–target dyad and then
aggregated across the raters within the CFA models. Therefore, our model-implied ICCs
refer to 0.75 quantile scores (instead of mean scores) that actually entered the model. We
argue that our procedure better reflects the rationale for the 0.75 quantile, as put forward
by Forthmann et al. (2017):

For example, there could be two participants who have the same number of good
quality ideas, but one of the two has several more low-quality ideas. On average,
these two performances may differ a great deal, but if the upper tails of their
distributions are considered, the performances of both persons are much more
alike. (p. 261)

Thus, when low-quality ideas within a set of ideas should receive less weight in
computing the score, the unweighted average across ideas should be avoided and the
0.75 quantile should be used for the distribution over the ideas (not raters).

In any case, low rater consent (represented by high unique method specificities and
low model-implied ICCs) is unfortunate as it minimizes the (trait) variability across targets.
A minimized variance also minimizes potential covariance, which is a problem if the latent
variables on the target-level were to be used as predictors, for example. Nevertheless, the
DTCC (and the DTTL) still appropriately aggregates the target-specific variance from the
total variance.
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Lastly, the indicators (AUT-tasks) were quite reliable across models and constructs as
the latent variables were able to explain more than 50% of the total variance in any case.
Reliabilities ranged from DTTL-ML: REL32 = 0.559 to DTCC: REL12 = 0.780.

5. General Discussion

In this contribution, we showed how the Correlated Traits Correlated Methods Minus
One Multitrait–Multimethod model for cross-classified data (Koch et al. 2016) can be
modified and applied in typical creativity research scenarios where an independent set
of raters judge the creative ideation of study targets. The model can be used to analyze
the variance decomposition of divergent thinking tasks (such as alternate use tasks, but
the model is not limited to those) in which raters assess various aspects of creativity in
ideas produced by target subjects. The model is strongly grounded in classical test theory
and stochastic measurement theory which gives its latent variables clear meaning. It does
not only separate true scores from measurement error but also decomposes the true score
into target-specific traits and DT-object-specific, rater-specific, and rater–target interaction-
specific method-effects. Thus, it allows for computing true score variance proportions
attributable to the various levels of the cross-classified data structure and objects of specific
divergent thinking problems.

5.1. Substantive Deliberations

The high object-method specificity and the high trait-correlation we found in the empir-
ical application is something important to consider. Compare the measurement of DT to the
measurement of personality. Within a Big 5 (Costa and McCrae 1989) personality trait like
conscientiousness, for example, different indicators are supposed to measure structurally
different facets or aspects (DeYoung et al. 2007) of the overarching personality construct.
For instance, the indicator “I keep things tidy” measures the conscientiousness-aspect of
orderliness while the indicator “I get things done quickly” measures the conscientiousness
aspect of industriousness. Within DT, one would expect cleverness and creative quality (or,
more fine-grained, remoteness or uncommonness, for example) to reflect structurally differ-
ent aspects of DT, but one would consider different AUT-objects (such as rope, garbage bag,
or paperclip) as interchangeable methods for assessing an aspect. Our empirical results,
however, suggest that this is not the case. The cross-construct correlation among the trait
variables was considerably higher than the reference-object consistency coefficients within
a single construct which reflects a simultaneous lack of both convergent and discriminant
validity of the creativity aspects. Thus, one might ask whether different AUT-objects
(maybe also DT-objects in general) may actually differ in their representation of a specific
creativity aspect or facet. For example, do ideas for ropes (such as using a single rope
fiber as dental floss) better correspond to remoteness, whereas ideas for paperclips (such
as building a humanoid sculpture with them) better correspond to cleverness? In this
regard, we shall, however, note that the high cross-construct correlations were expected
since creative quality raters were instructed to also consider cleverness (cleverness was
a confound in creative quality). The DTCC is probably put to its best use when different
aspects of creativity (cleverness, remoteness, uncommonness, usefulness, etc.) are to be
scrutinized separately. We note that even when high object-method-specificity is present,
the trait and object-specific method-effects of a single construct can be used in an efficient
manner for criterion prediction (e.g., for predicting creative achievement).

5.2. Modifications, Extensions, Useful Applications, and Limitations of the Model

The subjectivity component of creativity will certainly remain a problem for assessing
it with scientific methods that aim at objectivity. After all, the phrase “creative differences”
that is often used to explain the parting of formerly aligned artists exists for a reason. The
DTCC can be expanded to contain explanatory variables for rater-effects and rater–target
interactions-effects. For example, concerning variability among raters, it has been found
that art experts often perceive artistic works differently than laymen (e.g., Pihko et al.
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2011; Vogt and Magnussen 2007). Concerning variability among rater–target interactions,
one could investigate whether a fit between target and rater with regard to a self-reported
preference of a specific creativity aspect (e.g., remoteness vs. funniness) explains interaction-
effects. In the empirical illustration of the current contribution, however, we found only
little variability in interactions, suggesting that raters were consistent with their rating stan-
dards across targets. In this regard, it must be stated that rater instructions are usually given
to raters in DT-studies not least to minimize such subjectivity; however, how the remaining
subjectivity can be explained is—to the best of our knowledge—still an open question.

The DTCC (and the DTTL) can be expanded and modified to include all kinds of
DT-scores and break down the variance in various ways. For example, typing speed and/or
fluency could be included as target-level specific (latent) variables and could be partialized
out of the measurement of creative quality (see also Forthmann et al. 2017). In this vein, the
CTC(M − 1) logic can be further applied. For example, a fluency trait variable could be
conceptualized as a trait assessed with a reference scoring method and a cleverness latent
variable could be conceptualized as a latent non-reference scoring method residual variable
(see Forthmann et al. 2019 for a similar approach using completely structurally different
indicators in a standard CFA). Note that this particular example would demand the use of
the original C4 as displayed in Koch et al. (2016) since fluency only varies across the targets
but cleverness varies on the target-, rater-, and interaction-level. This approach would,
however, not be recommended when the different scoring methods are highly correlated
(which was the case for cleverness and creative quality in the current contribution) as the
residual scoring method variance would be expected to be very low. This potentially causes
anomalous results (or at least results that are difficult to interpret) such as irregular loading
patterns and high standard errors (see Jendryczko and Nussbeck 2024a).

We would like to stress that raters (and targets) within the DTCC (and the original
C4) and the DTTL are regarded as interchangeable, meaning they are conceptualized as
outcomes of a random variable. We already discussed that predictor variables can be used
to explore any structural differences between raters and between rater–target interactions.
Yet, one might also want to test the interchangeability assumption without the presence
of any predictors. To the best of our knowledge, this is not possible within the setting of
cross-classified CFAs. It is, however, possible to test the interchangeability of rater–target
interactions within a Two-Level CFA (and thus within the DTTL) using the wide data format
approach (Curran 2003; Mehta and Neale 2005; Nussbeck et al. 2009; see also Jendryczko
and Nussbeck 2022, 2024b). In this approach, there exists no rater-variable as a column in
the data frame, but each rater is represented by a separate column. Level-2 of the model
needs to be extended in a certain way and every latent variable on Level-1 needs to specified
once for every rater–target interaction. By implementing certain equality constraints (see,
for example, Nussbeck et al. 2009) the model is made parametrically identical to the
DTTL as presented in the current contribution. Using maximum likelihood estimation, the
unconstrained and the constrained model can be compared with a likelihood-ratio test to
test the Null hypothesis that both models explain the observed means and covariances
equally well. If the Null hypothesis can be maintained, interchangeability can be assumed
(Jendryczko and Nussbeck 2022).

The question remains how well the presented models and their estimation procedures
recover the true parameters. Importantly, the estimation of the rater-effect variance for
creative quality was somewhat unstable with regard to convergence (see Supplementary
Materials). This might be due to the very small sample of raters. There were only three
raters for creative quality; however, note that the estimation of the rater-effect variance for
cleverness worked much better even though there was only one rater more for this construct.
Thus, we recommend employing at least four, if not five raters for every creativity aspect in
future applications. With the empirical illustration, we showed that Bayesian estimation
of the DTCC, Bayesian estimation of the DTTL and maximum-likelihood estimation of
the DTTL deliver similar results and lead to the same general conclusions (at least in this
specific application). However, there were some notable differences, such as a higher
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trait-correlation within the DTTL (especially using maximum likelihood) and some (albeit
only a few) substantial differences in relative variances. Which model recovers the true
parameters best? This can only be answered with simulation studies. We hypothesize that,
given that the DTCC is the data generating model, the DTCC recovers the relative variances
best, but the DTTL can still sufficiently recover relative variances in most cases. We shall
also note that we treated the ratings as continuous, but it should be possible to derive
variants of the models for ordered categorical data (see also Nussbeck et al. 2006). This has
particular relevance for typical rating procedures in DT-studies, as one could argue that the
usual discrete rating scales (e.g., 1, 2, 3, 4, and 5 as possible outcomes in the application of
this contribution) are better treated as ordinal rather than continuous.

6. Conclusions

The Divergent Thinking Cross-Classified model as a modification of the Correlated
Traits Correlated Methods Minus One model for cross-classified data is a useful tool for
modeling the rated responses to divergent thinking tasks as the model is able to take all
variance components into account. Future studies need to derive it for ordered categorical
data and investigate its statistical properties with simulation studies. Its foundation in
structural equation modeling enables flexible extensions and modifications for pursuing
new research objectives.
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Appendix A. Variance Decomposition in the Divergent Thinking Two-Level Model (DTTL)

The complete variances for any standard indicator (i = 1) and any non-standard
indicator (i ̸= 1) are, respectively, given by

σ2
Yrt1j

= σ2
Ttj

+ σ2
UMrtj

+ σ2
εrt1j

(A1)

and
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ij )

2
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ij )

2
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, (A2)

with the variance of the respective true score encapsulating all components except for
measurement error (residual):
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For the true scores of standard indicators, we can define the following meaningful relative
variance parameters: The model-implied ICC (MIICC1j) depicts the proportion of true
score variance that is attributable to variability in the targets:

MIICC1j =
σ2

Ttj

σ2
Ttj

+ σ2
UMrtj

. (A5)

It can be interpreted as convergent validity form an MTMM-perspective. The unique
method specificity coefficient (UMS1j) depicts the proportion of true score variance that is
attributable to variability in rater-related method-effects:

UMS1j =
σ2

UMrtj

σ2
Ttj

+ σ2
UMrtj

= 1 − MIICC1j. (A6)

For the non-standard indicators, the following meaningful relative variance parame-
ters can be defined: The level-2 (target-level) consistency coefficient (L2Conij) shows the
proportion of target-variability in a non-standard indicator (non-standard object) that can
be explained by the target-variability of the standard indicator (standard object):

L2Conij =
(λ

Tj
ij )

2
σ2

Ttj

(λ
Tj
ij )

2
σ2

Ttj
+ σ2

OMtij

. (A7)

In contrast to this, the level-2 object-method specificity coefficient (L2OMSij) depicts the
remaining unexplained proportion of target-level variance that is attributable to object
method-effects:

L2OMSij =
σ2

OMtij

(λ
Tj
ij )

2
σ2

Ttj
+ σ2

OMtij

= 1 − L2Conij. (A8)

Standard object consistency and non-standard object specificity can also be computed for
the overall true score variability, giving the level-1 consistency coefficient (L1Conij) and the
level-1 object-method specificity coefficient (L1OMSij), respectively:

L1Conij =
(λ

Tj
ij )

2
σ2

Ttj

σ2
τrtij

(A9)

and

L1OMSij =
σ2

OMtij

σ2
τrtij

(A10)

The unique method specificity coefficient may also be defined for the non-standard indicators:

UMSij =
(λ

UMj
ij )

2
σ2

UMrtj

σ2
τrtij

. (A11)

Lastly, the model-implied ICC for non-standard indicators must respect both the target-
specific trait-variance and the target-specific object method-effect variance:

MIICCij =
(λ

Tj
ij )

2
σ2

Ttj
+ σ2

OMtij

σ2
τrtij

= 1 − UMSij. (A12)
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For all indicators, regardless of whether they are standard indicators or not, we
can, of course, compute reliability (RELij) as the proportion of true score variance in the
complete variance:

RELij =
σ2

τrtij

σ2
Yrtij

= 1 −
σ2

εrtij

σ2
Yrtij

. (A13)

Appendix B. Prior-Specifications within the DTCC and the DTTL-B of the Presented
Application

For our selection of prior-distributions, we followed the rationale put forward by
Koch et al. (2016) for cross-classified CTC(M − 1) models. Within the DTCC, for all residual
variances and variances of latent variables that are uncorrelated with any other latent
variables, we set uninformative priors following an inverse gamma distribution:

σ2
Rrj

∼ Γ−1(0.001, 0.001),

σ2
INTrtj

∼ Γ−1(0.001, 0.001),

σ2
εrtij

∼ Γ−1(0.001, 0.001).

For all blocks of covarying latent variables (the block of the two latent trait variables and the
block of the latent object method-effect variables), we set uninformative priors following
an inverse Wishart distribution:(

σ2
Tt1

σT1T2

σ2
Tt2

)
∼ Wishart−1(I, 2),

σ2
OMt21

σOM21OM31 σOM21OM22 σOM21OM32

σ2
OMt31

σOM31OM22 σOM31OM32

σ2
OMt22

σOM22OM32

σ2
OMt32

 ∼ Wishart−1(I, 2).

For intercepts and factor-loadings, we used informative priors. Since the intercepts merely
reflect unconditional expectations of observed variables, they should be estimated close
to their means. Accordingly, we used normal distributions with the indicator means and
low variance:

µ11 ∼ N(2.99, 0.1),
µ21 ∼ N(3.07, 0.1),
µ31 ∼ N(3.03, 0.1),
µ12 ∼ N(2.90, 0.1),
µ22 ∼ N(3.13, 0.1),
µ32 ∼ N(2.93, 0.1).

For factor loadings on the rater- and interaction-level, we used normal distributions with an
expectancy of one and low variance since one would expect a homogenous measurement.
For factor loadings of the latent trait variables, however, we used a normal distribution with
a lower expectancy and higher variance because the cross-loadings of traits (measured with
the standard method) on non-standard method-indicators are usually lower in CTC(M − 1)
models (Eid et al. 2003, 2008; Koch et al. 2016; Nussbeck et al. 2006):

λ
Rj
ij ∼ N(1, 0.1),

λ
INTj
ij ∼ N(1, 0.1),

λ
Tj
ij ∼ N(0.7, 0.2).
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Within the DTTL-B, we maintained all priors for intercepts and parameters on the target-
level (level-2) and used the priors of the DTCC’s interaction-level for level-1 of the DTTL-B,
that is:

σ2
UMrtj

∼ Γ−1(0.001, 0.001),

σ2
εrtij

∼ Γ−1(0.001, 0.001),

λ
UMj
ij ∼ N(1, 0.1).
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