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Abstract: Extended testing time in Raven’s Progressive Matrices (RPM) can lead to increased fatigue
and reduced motivation, which may impair cognitive task performance. This study explores the
application of artificial intelligence (AI) in RPM by combining eye-tracking technology with machine
learning (ML) models, aiming to explore new methods for improving the efficiency of RPM testing
and to identify the key metrics involved. Using eye-tracking metrics as features, ten ML models
were trained, with the XGBoost model demonstrating superior performance. Notably, we further
refined the period of interest and reduced the number of metrics, achieving strong performance, with
accuracy, precision, and recall all above 0.8, using only 60% of the response time and nine eye-tracking
metrics. This study also examines the role of several key metrics in RPM and offers valuable insights
for future research.
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1. Introduction

Raven’s Progressive Matrices (RPM) is a non-verbal intelligence test and is considered
an effective tool for measuring Spearman’s g factor (Raven 1941; Vernon and Parry 1949).
This test has gained widespread application due to its simple and easily interpretable re-
sults. As a non-verbal test, RPM holds particular advantages in cross-cultural research, as it
can be used by individuals from different language, professional, and cultural backgrounds.
The RPM has found widespread use across various fields, including educational settings,
organizational management, military, and clinical diagnostics. For instance, it is employed
to assess students’ cognitive abilities in educational settings (Antoniou et al. 2022; Mert
et al. 2016; Paz-Baruch and Maor 2023) and to evaluate employees’ problem-solving skills
in organizational management (Klein et al. 2015). In military settings, the test is used to
assess the capabilities of new recruits (Vanderpool and Catano 2008) and the neurocogni-
tive traits of young enlistees (Theleritis et al. 2012). Due to its excellent performance in
assessing cognitive abilities and detecting cognitive impairments, the RPM is also widely
used in clinical diagnostics, such as in the assessment of mild cognitive impairment and
Alzheimer’s disease (Angiolillo et al. 2023; Yoshiura et al. 2011).

With the advancement of technology, psychological testing has continued to evolve.
The goal of psychometrics has always been to ensure testing is scientific, efficient, and
accurate. With the development of artificial intelligence, more and more tests have adopted
computer-aided testing. This both simplifies the testing process and improves the validity
and accuracy of psychological tests. For example, through machine learning, we can fit
data to more appropriate models and deploy these trained models in real-world scenarios
to achieve more accurate predictions (Hatton et al. 2019; Wang et al. 2023a).

However, research on the RPM lags behind the development of AI technologies like
machine learning. Currently, only a few studies have applied machine learning methods to
RPM, mainly aimed at reducing the test length, which lags behind the deeper integration of
AI in other tests. This study aims to advance this research direction. Given the significant
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role of visual information in cognitive processing (Hering 1879; Wells 1792), this study
combines eye-tracking technology with machine learning models to advance the RPM
applications of computer technology.

Considering that in educational and developmental studies, general cognitive ability,
as measured by the RPM, is typically regarded as a background variable rather than a
variable of interest (Cheung et al. 2016; Meinhardt-Injac et al. 2020), the inclusion of such
tests significantly extends the duration of test administration. This extension poses a poten-
tial issue, as participants have limited attention spans and time for research participation.
Consequently, the assessment of general cognitive ability might substantially interfere
with the measurement of variables of interest. Therefore, we explored the performance of
machine learning models in predicting the accuracy of responses on a matrix reasoning test,
aiming to assess the feasibility of combining machine learning with eye-tracking technol-
ogy to reduce test duration. By collecting multimodal information and applying machine
learning algorithms for effective prediction, we aim to achieve the goal of shortening the
testing time.

1.1. Raven’s Progressive Matrices

The RPM is a non-verbal test designed by the British psychologist John C. Raven based
on the two-factor theory of intelligence. It primarily measures an individual’s reasoning
ability within the general factor (Raven 1941). Since RPM is a non-verbal intelligence test,
it is less susceptible to interference from factors such as educational level and cultural
differences. Over time, its reliability and validity have been verified across a wide range of
populations (Raven 2000; Van der Ven and Ellis 2000).

The RPM consists of 60 items, divided into five increasingly difficult sets: A, B, C, D,
and E. Each set contains 12 items, arranged in increasing order of difficulty. Each item
consists of a large image with a part missing from the lower right corner, and the task for
the examinee is to discover the pattern or rule based on the relationships within the large
image and determine which small image best completes it.

With advances in technology and growing demand for psychological testing, the
RPM has revealed several limitations. Researchers have questioned the accuracy of this
test, especially the effect of task fatigue (Kramer and Huizenga 2023). Developing shorter
versions of the RPM is one solution. For example, Langener et al. (2022) reduced the test to
15 items. The shortened version has been shown to effectively replace the original while
significantly reducing participant fatigue (Kramer and Huizenga 2023). However, this
approach may result in the loss of certain information from the original test, such as the
effect of increasing difficulty. Therefore, this study explores the feasibility of an alternative
solution. By combining computer technology, we utilize eye-tracking information and
machine learning algorithms to achieve accurate predictions with shorter response times,
thereby enhancing the efficiency of the test.

1.2. Application of ML in Psychological Testing

Artificial intelligence (AI) explores and develops methods, techniques, and appli-
cations to simulate and extend human intelligence. AI is widely applied in fields like
healthcare, finance, and entertainment. Machine learning, a key branch of AI, offers signifi-
cant advantages in handling high-dimensional data over traditional linear models (Geng
et al. 2015). It extracts nonlinear and seemingly unrelated factors that are difficult to iden-
tify using traditional methods (Doyen and Dadario 2022; Wu et al. 2020). With its strong
capabilities, machine learning is widely applied across various fields (Deo 2015).

In recent years, AI, especially machine learning, has gradually been applied to the
field of psychology, bringing about innovations in psychological assessment methods and
giving rise to a new field known as “psychometric AI.” In this field, the use of AI algorithms
for test scoring has been widely explored (Chen et al. 2010; Hussein et al. 2019). These
studies have shown that AI scoring is highly consistent with human raters, demonstrating
high reliability. This indicates that integrating AI with psychometrics can not only sim-
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plify the assessment process but also improve the accuracy, efficiency, and effectiveness of
measurements. More importantly, applying AI to psychological assessments helps reduce
the influence of human subjective factors, thereby enhancing the objectivity of the tests
(Aldhyani et al. 2022). With the widespread application of machine learning algorithms,
researchers have extensively explored the application of artificial intelligence in psycho-
logical testing, demonstrating that using machine learning methods to measure complex
psychological traits (such as abilities and personality) is effective. For instance, Wu et al.
(2015) predicted personality traits for over 70,000 participants using machine learning
algorithms. The results indicated that machine learning technology can be more accurate
than humans in assessing personality traits. Additionally, AI has also proven effective
in the measurement of abilities, with relevant research primarily focusing on predicting
academic performance. For example, Abuzinadah et al. (2023) successfully predicted stu-
dents’ online learning performance using multiple machine learning models, including the
Extra Tree Classifier. Ojajuni et al. (2021) employed various machine learning algorithms to
predict learning outcomes, achieving an accuracy rate of over 97%. Furthermore, Wang
et al. (2023b) explored emotional intelligence using eye-tracking technology and machine
learning algorithms. The combination of these two technologies has also been applied in
intelligence research (Bardach et al. 2024). Bardach and colleagues used gaze patterns to
build models that predicted intelligence test scores and found that a significant portion of
the variance in test performance (35.91%) could be explained by gaze patterns. This high-
lights the important role of eye movements in understanding intelligence test performance,
as well as the feasibility of using machine learning methods for prediction. Although
the effectiveness of artificial intelligence in psychometrics has been widely validated, few
studies have assessed the accuracy of reasoning correctness in this field. Therefore, this
study aims to systematically examine the accuracy of artificial intelligence in measuring
reasoning correctness.

Given the complexity of machine learning, model results are often difficult to interpret.
Therefore, machine learning algorithms are sometimes referred to as “black box meth-
ods”, limiting their practical application (Lee et al. 2018; Yarkoni and Westfall 2017). To
improve model interpretability, this study will use SHapley Additive exPlanations (SHAP)
to analyze the importance ranking of each predictor variable in the best-performing ma-
chine learning model. Compared to other explanation methods, SHAP has significant
advantages in visualizing complex ML models (Lundberg and Lee 2017). SHAP calculates
each feature’s contribution to model predictions using Shapley values. Derived from the
game theory, Shapley values provide a fair method for distributing payoffs in cooperative
games, ensuring that SHAP allocates each feature’s contribution fairly (Lundberg and Lee
2017; Nordin et al. 2023). SHAP offers multiple visualization tools that display feature
importance and the model’s decision-making process intuitively. Additionally, SHAP is
compatible with various models, including linear regression, decision trees, SVMs, and
neural networks (Lundberg and Lee 2017). Therefore, SHAP has broad applicability and
practical value in real-world scenarios. For example, SHAP’s effectiveness in improving
model interpretability has been demonstrated in suicide risk prediction (Nordin et al. 2023)
and disability risk prediction in healthy elderly individuals (Han and Wang 2023).

1.3. ML-Based Psychometrics Using Eye-Tracking for RPM

Eye-tracking technology can capture an individual’s eye-tracking information through-
out visual tasks, making it useful for studying cognitive processes related to visual activities
(Eckstein et al. 2017). Technological advancements have improved the sensitivity, accuracy,
and usability of eye-trackers. Eye-tracking is increasingly used in psychological research.
Beyond cognitive processes, eye-tracking is widely used in studies of interpersonal interac-
tions (Valtakari et al. 2021) and self-esteem (Potthoff and Schienle 2021).

With the advancement of technology, some studies have attempted to combine eye-
tracking technology with artificial intelligence to obtain more objective and accurate results.
Given that the features obtained from eye-tracking data may interact with each other in
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predicting outcomes, and that not all associations between eye-tracking metrics and the
target features are linear, this poses a challenge for traditional analytical methods. However,
AI models are highly capable of handling a large number of eye-tracking measures (Wang
et al. 2023b). For example, Berkovsky et al. (2019) successfully predicted HEXACO person-
ality test scores using eye-tracking technology and ML algorithms, achieving 90% accuracy.
Eye-tracking and machine learning have also shown advantages in predicting abilities. ML
models using eye-tracking features have demonstrated excellent performance in predicting
reading ability (Shi and Jiang 2024). In predicting emotional intelligence, machine learning
models achieved high accuracy with just 2 to 5 s of eye-tracking data (Wang et al. 2023b).

However, there has been less exploration in reasoning abilities. Thibaut et al. (2022)
explored analogical reasoning using textual materials, employing eye-tracking and machine
learning methods to achieve high-probability predictions. Specifically, they used support
vector machines to process the data and identified which search strategies best predicted
the outcome of a trial (error or correct) or the type of analogy (simple or complex). This
demonstrated the effectiveness of eye-tracking technology and machine learning algorithms
in complex cognitive tasks such as reasoning. To further explore reasoning and address the
gap in AI’s study of abstract reasoning abilities, this study aims to systematically examine
the effectiveness of various models in predicting the correctness of responses to RPM using
eye-tracking technology and machine learning models while simplifying the process as
much as possible.

More specifically, this study aims to contribute to the literature on AI-based psycho-
metrics for reasoning correctness by investigating three fundamental questions: (1) What
level of accuracy can machine learning models achieve in measuring the correctness of
abstract reasoning, and which model performs best? (2) If machine learning models can
predict reasoning correctness using eye-tracking data, what are the unique eye-tracking
features that best predict reasoning correctness? (3) How much data do machine learning
models need to achieve high accuracy in measuring reasoning correctness? Specifically, is
it possible to accurately measure reasoning correctness using fewer indicators and less data
over a shorter period? By exploring these three fundamental questions, we attempt to find
a way to improve the efficiency of the test.

2. Materials and Methods
2.1. Participants

The sample consisted of 50 students (24% female) from a university in Hebei, aged
19 to 23. This study was approved by the university’s Institutional Review Board. Upon
completing the experiment, the participants received monetary compensation in exchange
for their participation.

2.2. Experimental Materials and Procedure

The experimental material was Raven’s Standard Progressive Matrices (RSPM), the
most commonly used version, consisting of the initial 60 items suitable for all age groups.
Each item features a geometric pattern with a missing piece, and participants must choose
the correct option to complete the pattern. The test includes five sets (A, B, C, D, E), each
containing 12 items, with increasing difficulty within each set. Originally published in 1938,
the test is considered a valid indicator of general cognitive ability worldwide (Raven 2000).

The experiment was conducted in an eye-tracking laboratory using the Eyelink1000Plus
system to record monocular eye movement data. Before the experiment, instructions were
given advising the participants to keep their head position as still as possible. After a
9-point calibration, the experiment commenced. The RSPM items and options were pre-
sented simultaneously, and the participants selected their answers using a mouse. Once
an answer was selected, they moved on to the next item. The stimuli were displayed
on a 17-inch monitor with a resolution of 1024 × 768, positioned 60 cm away from the
participants, providing a visual angle of 4.1◦. The test items were presented in sequence,
and the participants made their choices by clicking directly on the corresponding pattern
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with the mouse, with a time limit of 5 min per item. The mouse cursor was set as a solid
red circular shape with a diameter of 0.5 cm. When each item was presented, the cursor
was positioned at the center of the screen.

During the inter-trial interval, a calibration screen appears with a black fixation point
at the center. The task will be presented only after the participants fixate on the black dot
and press the spacebar, ensuring that their gaze is centered on the screen when viewing the
task. Considering the potential for visual fatigue due to prolonged screen exposure, the
participants are informed that they can close their eyes for a brief rest when the calibration
screen appears (without moving their heads). After every 12 trials, a longer break will
be provided.

2.3. Eye-Tracking Data Metrics

In this study, we primarily selected fixation count, fixation duration, saccade count,
and saccade duration as features for the machine learning models.

Fixation count and fixation duration reflect the participants’ information extraction
and comprehension. Generally, a higher fixation count or longer fixation duration indicates
a better understanding of the information. However, an excessively high fixation count or
prolonged fixation duration may suggest difficulties in information acquisition, whereas
too few fixations or short fixation duration may indicate insufficient information acquisition
(Fu et al. 2013; Pan et al. 2009).

Saccade count refers to the number of movements from one fixation point to another.
There are relatively stable fixations between saccades; more saccades indicate a longer
search process by the participant. In the context of RPM, the saccade count reflects the
participant’s perception of the complexity of the items. An excessively high saccade count
indicates that the participant is unable to effectively identify the underlying patterns in the
task; while too few saccades indicate an insufficient information search (Silva et al. 2020).

Saccade distance refers to the distance between two consecutive fixation points and
reflects the participant’s perceptual span. A larger saccade distance indicates that the
participant is acquiring a larger amount of information in a single fixation. In the context
of RPM, the saccade count can reflect the participant’s reasoning efficiency, with a larger
saccade distance indicating higher reasoning efficiency (Petrov et al. 2011; Schweizer 1998).

Overall, eye movement information can index underlying cognitive processes. Con-
sidering that machine learning can analyze large amounts of eye movement data, we
have taken into account various eye movement metrics as comprehensively as possible,
including information from the initial, first, second, and final rounds of eye movements.

This study selected three areas of interest. The large image in the question part
was designated as “question”, all the small images in the options part were designated as
“answers”, and the small image representing the correct answer was designated as “correct”.
Due to the overlap between the “answers” and “correct”, we extracted the eye-tracking
metrics for “correct” separately (Holmqvist et al. 2011) (see Figure 1 for an example). For
each AOI, we extracted fixation count, fixation duration, first fixation duration, second
fixation duration, and other metrics.
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2.4. Data Analysis

Data analysis comprised three main steps. The first step was data preprocessing.
Specifically, this step involved creating areas of interest (AOIs) and periods of interest
(POIs), followed by standardizing the data. The second step was model building. In
this step, eye-tracking data were used as features in various models for training, and the
best-performing model was selected. The third step was data reduction. Specifically, the
models were built sequentially according to POIs from smallest to largest to identify the
minimum POI where the model performance stabilized. Next, SHAP was used to obtain
the feature importance ranking for this POI. Finally, features were entered into the model
in descending order of importance to select the model that achieved stable metrics.

2.4.1. Data Preprocessing

This study used Data Viewer and Python 3.8 to process the eye-tracking data. First,
we selected the question part, the options part, and the correct option part as the AOIs for
this study. To determine the duration of eye-tracking data needed for model performance
stabilization, we divided the time taken to complete each question into ten equal segments,
creating ten POIs, i.e., the first 10%, first 20%, up to 100%. After creating the AOIs and POIs,
we generated key eye-tracking measurement methods for the cognitive task. Subsequently,
the data were standardized for the subsequent analysis.

2.4.2. Machine Learning Models

After processing the data, we proceeded to run ten machine learning models: K-
Nearest Neighbors (KNN), Naive Bayes (NB), decision tree (DT), Logistic Regression (LR),
support vector machine (SVM), Random Forest (RF), Gradient Boosting, Adaptive Boosting
(AdaBoost), Extreme Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP). To
analyze and compare these models, we followed the method of Kim et al. (2022), with all
the other parameters of the machine learning models set to default except for the necessary
adjustments. More details about the models can be found in Supplementary Table S1.

To objectively compare each machine learning algorithm and reduce overfitting, we
employed 10-fold cross-validation. This involved evenly dividing the sample into ten
mutually exclusive parts and conducting ten training sessions. In each session, nine parts
were used as the training set, and the remaining part was used as the validation set. The
final metrics were the average values of the model’s performance on the test set after the ten
training sessions. Balanced accuracy, precision, recall, and the area under the curve (AUC)
were the metrics used to evaluate the performance of a classification model. Accuracy
measures how well a model correctly identifies both positive and negative instances,
calculated by dividing the total number of correct predictions (true positives and true
negatives) by the total number of instances. Precision focuses on the proportion of correctly
predicted positive instances among all the instances predicted as positive. It is determined
by dividing the number of true positive predictions by the sum of true positives and false
positives. Recall, also known as sensitivity or the true positive rate, assesses the proportion
of actual positive instances that the model correctly identifies. Balanced accuracy adjusts
for class imbalance by calculating the average of sensitivity (recall) and specificity, offering
a more reliable performance measure when class distributions are uneven. The AUC
evaluates the area under the receiver operating characteristic (ROC) curve, providing a
comprehensive assessment of the model’s ability to distinguish between classes.

Given the class imbalance, we adopted the modeling approach of Zhang et al. (2023),
which involves applying the SMOTE method for upsampling. Each index value was
obtained by performing a 10-fold cross-validation on the balanced samples generated by
SMOTE. Additionally, recognizing the high variability that can occur in machine learning
model results, we repeated the modeling process 10 times using different random seeds
and averaged the outcomes to ensure robustness.
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2.4.3. Shapley Additive Explanations (SHAP)

Given the limited interpretability of machine learning results, we do not clearly
understand how various features contribute to predicting reasoning correctness. To identify
which eye-tracking metrics play more significant roles, we used the SHAP method to
interpret the best-performing black-box model. SHAP estimates the impact of each feature
on the outcome based on game theory principles, enhancing model interpretability by
calculating the Shapley values to measure the contribution of each feature as its importance
(Lundberg and Lee 2017). Due to its advantages in interpretability and visualization, SHAP
is widely used in the machine learning field (Nordin et al. 2023; Wang et al. 2023a).

2.4.4. Identifying the Required Data Amount

To determine whether the amount of data affects the accuracy of ML models and to
ensure that the models use the minimum amount of data while maintaining accuracy, we
controlled the data amount from two aspects: the number of features and the period of
interest (POI). Specifically, we incrementally increased the POI from 10% to 100%. This ap-
proach allows us to determine how much eye-tracking information is needed to accurately
predict the correctness of the answers in the RPM. Then, based on the identified POI, we
used the feature importance derived from SHAP. By incrementally adding features to the
model in order of importance, we identified the minimum number of features required for
the model to achieve stable performance and selected these features accordingly.

3. Results
3.1. Descriptive Statistics

In this study, the average accuracy across all the questions was 82.05%, with the lowest
accuracy for any single question being 14.58% (i.e., the percentage of participants who
answered that particular question correctly). The participants’ average score was 49.23,
with the lowest individual score being 31. Overall, the participants performed well. For
college students, although there were some challenging questions, the overall difficulty of
the test was moderate.

3.2. Performance of Machine Learning Models

Table 1 shows the performance of the ten machine learning models selected in this
study for predicting the correctness of the RPM. All the models achieved an AUC value
greater than 0.8, indicating the feasibility of using eye-tracking metrics to construct machine
learning models for predicting the correctness of RPM answers. Among these, XGBoost
demonstrated the best performance, with accuracy, precision, recall, and AUC all exceeding
0.90. Therefore, this study used the XGBoost model for further exploration.

Table 1. Performance of ten models in predicting RPM correctness.

Model Balanced Accuracy Precision Recall AUC

KNN 0.85 0.96 0.72 0.94
GaussianNB 0.74 0.7 0.84 0.83
DecisionTree 0.84 0.85 0.82 0.84

LogisticRegression 0.83 0.82 0.84 0.89
SVM 0.9 0.9 0.9 0.96

RandomForest 0.92 0.94 0.89 0.98
GradientBoosting 0.88 0.88 0.88 0.95

AdaBoost 0.83 0.84 0.82 0.91
XGBoost 0.92 0.93 0.91 0.98

MLP 0.9 0.92 0.88 0.96
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3.3. Identifying the Required Data Amount Using ML Models
3.3.1. Effect of POI Variation on Model Performance

To determine whether the size of the POI affects the accuracy of ML models based on
eye-tracking metrics, we conducted repeated analyses using ten POIs (i.e., 10% to 100%).
The analyses were performed using XGBoost, identified as the best-performing ML model
in this study. To ensure the objectivity of model performance and avoid overfitting, we
employed ten-fold cross-validation. The results are visualized and presented in Figure 2.
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We observed that as the time window increases, the model’s overall performance
improves and has not yet reached its maximum potential. Notably, when the POI constitutes
50% of the total time, all the performance metrics of the model exceed 0.85. This suggests
that the model can effectively predict the answering performance with high accuracy, even
when using only 50% of the available time. Considering that the model results may exhibit
some degree of instability, despite the various measures we have implemented to mitigate
this issue, we have conservatively chosen to use 60% as the threshold in our subsequent
analysis to ensure robustness.

3.3.2. Predictive Performance of Various Eye-Tracking Metrics

To further investigate which eye-tracking metrics best predict the correctness of the
RPM answers, we continued to use the XGBoost model because it was the best performer.
By calculating the average SHAP values at the 60% point of interest (POI), we interpreted
and compared the impact of the features. SHAP can visually show the contribution of each
feature to a single prediction (Peng et al. 2021; Ward et al. 2021). Figure 3a displays the
SHAP values of 20 features in assessing the correctness of the RPM answers. The SHAP
values are on the horizontal axis, indicating how each feature affects the model’s outcome.
In each feature importance row, the red and blue dots represent the correct and incorrect
answers, respectively.

Figure 3b shows the important features in this model, with the vertical axis repre-
senting the ranking of feature importance. The results indicate that the duration of the
second fixation in the answer area, the fixation count in the correct answer area, and the
fixation duration in the question area play significant roles in predicting the correctness of
the RPM answers. Based on this result, we can identify the eye-tracking metrics that play a
significant role in predicting the accuracy of the responses on Raven’s Progressive Matrices,
providing a foundation for the subsequent feature selection.
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Figure 3. Local explanation summary (averaged feature importance) for the XGBoost. On the left, the
SHAP summary plot is presented (a), while on the right, there is the average absolute SHAP value
indicates the feature contribution (b).

3.3.3. Effect of Feature Quantity on Model Performance

Using eye-tracking information at the 60% POI, we added features to the model in
descending order of importance based on their significance. The relationship between the
number of features and model performance is shown in Figure 4. The results indicate that
with only nine eye-tracking metrics, the model’s performance metrics can all exceed 80%.
When the number of features reaches 13, further increasing the number of features results
in a slow improvement in the model performance. This suggests that with 13 features,
the model has nearly reached its performance limit given the current data and feature set.
Therefore, we believe that in our study, using only nine eye-tracking metrics can achieve
good predictive results. When the number of metrics increases to 13, further 3increasing
the metrics will raise the computational cost of the model, but the improvement in model
performance is very limited.
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4. Discussion

The RPM, a classic intelligence test, has been widely applied in many fields. With the
rapid development of artificial intelligence, the integration of AI technology and psycho-
metrics is becoming increasingly close, giving rise to a new research field, psychometric AI,
which is thriving. Previous studies have used machine learning algorithms to reduce the
length of the RPM, alleviating the fatigue effect on the test’s accuracy to some extent. Given
that reducing the test length might result in the loss of some content, the current study
adopted a different approach. It utilized eye-tracking technology and machine learning
algorithms to identify the correctness of answers at the item level while also reducing
the amount of data required by the model without compromising accuracy. The results
of running ten ML models indicate that ML methods can effectively use eye-tracking
metrics to predict the correctness of RPM answers. The XGBoost model demonstrated
the best performance, outperforming the other models in all the performance metrics
except precision.

Encouragingly, this study found that AI models can achieve excellent performance
using only the first 60% of the response time and nine eye-tracking metrics. Classical
measurement theory posits that using more data can reduce measurement error, thereby
achieving higher reliability and validity, i.e., better measurement quality. However, our
findings suggest that leveraging learning algorithms can overcome the limitations imposed
by data quantity on measurement quality. This result aligns with previous research findings,
where it was discovered that using 2, 5, and 10 s of eye-tracking data yielded similarly high
accuracy in predicting emotional intelligence (Wang et al. 2023b). From a psychometric
perspective, this result implies two significant advantages. Firstly, it suggests the potential
to save on resources such as samples and money required for testing. Secondly, it indicates
that test administration time can be reduced, thereby mitigating the fatigue effect on
test results.

Within the 60% POI, our study found that many eye-tracking metrics are highly
predictive of the correctness of the responses in the RPM, particularly the second fixation
duration in the answer area, the fixation count in the correct answer area, and the fixation
duration in the question area. Among these, the second fixation duration in the answer
area, the fixation count in the correct answer area, and the fixation duration in the question
area ranked as the top three contributors. These findings have significant implications for
future research.

Firstly, it is noteworthy that these three important metrics are distributed across the
question area, the answer choice area, and the correct answer area. This distribution not
only supports the validity of our AOI delineation but also highlights the significance of
both the question area and the answer choice area as critical sources of information in the
RPM. This finding is consistent with previous research. For instance, a study exploring
cognitive processes in the RPM used eye-tracking technology to describe in detail how
participants interact with both the question area and the answer choice area, emphasizing
the role of these areas as essential information sources during problem-solving (Carpenter
et al. 1990).

Future research could consider presenting the question part of the RPM first for a
certain period, followed by the options. This approach would allow for the collection of
eye-tracking metrics during the question presentation phase and building machine learning
models for prediction to further simplify the testing process.

Secondly, we found that the second fixation duration in the answer area is highly
predictive. Analyzing the SHAP information, we discovered that shorter second fixation
durations in the answer area are associated with higher accuracy rates. This may indicate
that longer second fixations reflect difficulties in extracting information or uncertainty in
selecting the correct answer, causing participants to weigh multiple options. Eye movement
patterns can reflect changes in information processing strategies, especially when second
fixation durations are prolonged, where participants may become trapped in complex or
inappropriate strategy choices, increasing the likelihood of errors (Petrov et al. 2011).
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In textual studies, re-fixations are closely related to confidence, often indicating un-
certainty and the need to gather more information (Sturt and Kwon 2018). In text tasks,
re-reading to gather more information is undoubtedly beneficial for correcting errors
(Paape and Vasishth 2022). However, our findings suggest the opposite for the RPM, where
re-fixations do not increase the likelihood of correctness. We propose two possible explana-
tions. First, participants might process and understand visual information quickly upon
first seeing the images (Shepard and Metzler 1971), meaning that during the RPM, partici-
pants acquire enough information in their initial fixations. Thus, re-fixations do not provide
additional information to resolve uncertain questions. This is similar to the findings of
Gonthier and Roulin (2020). They found that thoroughly processing before searching for a
match and mentally constructing the answer resulted in higher accuracy compared to using
the elimination method with multiple rounds of fixation. Second, when solving more diffi-
cult problems, the cognitive load may limit the effectiveness of re-fixations (Sweller 1988),
potentially hindering participants from effectively processing the information obtained
during the second fixation. In RPM tasks, as the duration of the second look increases,
especially during complex cognitive tasks, participants’ attention and cognitive resources
may gradually become depleted. As cognitive load increases, they may become more likely
to overlook clues to the correct answer, leading to a decrease in accuracy. The study by
Deck et al. (2021) supports this hypothesis. They investigated cognitive load in various
tasks, including logic tasks based on RPM, and the results indicated that as cognitive load
increased, learners’ ability to process information decreased, thereby affecting cognitive
performance. Future research could explore the reasons why second looks are ineffective at
improving response accuracy.

Thirdly, a higher fixation count in the correct answer area is a good predictor of higher
accuracy, indicating that participants have a clear goal orientation and go through an
answer verification process while responding. A study using computer simulations to
mimic human responses on the RPM found that the answer verification process is crucial
for ultimately solving the problems (Zhao et al. 2023). Future research could further explore
the differences in the answer verification process between correct and incorrect responses
when completing the RPM.

Lastly, a shorter fixation duration in the question area predicts higher accuracy, reflect-
ing the relationship between participants’ information extraction efficiency and correctness.
Shorter fixation durations often indicate that participants are more efficient in extracting
information and identifying patterns, while longer fixation durations suggest possible
obstacles in information acquisition in this area (Gog et al. 2005; Just and Carpenter 1976).
In the RPM, prolonged fixation in the question area may indicate that participants have
difficulty identifying the underlying patterns in the questions. Future research could refine
this metric to explore the range of fixation durations in the question area that represent the
highest likelihood of correct responses.

To our knowledge, this is the first study to explore the RPM using ML and eye-tracking
metrics. With the increasing accessibility of eye-tracking and ML technologies in academia,
we believe the results of this study have significant practical implications. This research
represents an innovative attempt to predict RPM outcomes using eye-tracking metrics
integrating machine learning methods and eye-tracking technology. This integration
enhances our understanding of the RPM. Researchers have investigated behaviors such as
false positives (e.g., lucky guesses) or false negatives (e.g., careless responses) inherent in
multiple-choice tests like the RPM (Antoniou et al. 2022). Our study’s findings suggest a
new approach to elucidating this issue by combining eye-tracking technology and machine
learning methods. Our cumulative time analysis suggests that the first 60% of response
time is critical for pattern recognition in the RPM. Cognitive processing during this period
can predict whether the current problem will be solved correctly. Furthermore, this study
provides important eye-tracking metrics for researching intellectual activities, particularly
in solving graphical reasoning problems. These metrics offer valuable insights into the
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application of eye-tracking technology and machine learning models in intelligence testing,
promoting the development of psychometric AI.

Despite many noteworthy contributions, this study has some limitations. For instance,
the results may only apply to university students. Future studies should expand to other
populations for broader applicability. Although breaks were provided, the participants
might still have experienced fatigue. Encouragingly, our study offers new insights into
mitigating fatigue effects in the RPM. Future research can build on our findings to explore
new models or identify new important metrics.

5. Conclusions

This study explored the application of artificial intelligence in the RPM by combining
eye-tracking data. We trained ten machine learning models to predict the correctness of
RPM answers. The results showed that the machine learning models could achieve our
objectives, with the XGBoost model performing the best. Additionally, the results indicated
that the machine learning models are robust enough to make accurate predictions using
only 60% of the POI and nine eye-tracking metrics. Finally, we analyzed the important
metrics derived from the SHAP method. These findings suggest that the combination of
machine learning and eye-tracking data provides a promising approach to enhance the
efficiency of administering the RPM, potentially improving the accuracy of the test and
offering new perspectives on the application of AI in cognitive assessments.
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