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Abstract: As psychological research progresses, the issue of concept overlap becomes
increasing evident, adding to participant burden and complicating data interpretation. This
study introduces an Embedding-based Semantic Analysis Approach (ESAA) for detecting
redundancy in psychological concepts, which are operationalized through their respective
scales, using natural language processing techniques. The ESAA utilizes OpenAI’s text-
embedding-3-large model to generate high-dimensional semantic vectors (i.e., embeddings)
of scale items and applies hierarchical clustering to group semantically similar items, re-
vealing potential redundancy. Three preliminary experiments evaluated the ESAA’s ability
to (1) identify semantically similar items, (2) differentiate semantically distinct items, and
(3) uncover overlap between scales of concepts known for redundancy issues. Additionally,
comparative analyses assessed the ESAA’s robustness and incremental validity against the
advanced chatbots based on GPT-4. The results demonstrated that the ESAA consistently
produced stable outcomes and outperformed all evaluated chatbots. As an objective ap-
proach for analyzing relationships between concepts operationalized as scales, the ESAA
holds promise for advancing research on theory refinement and scale optimization.

Keywords: redundancy detection; psychological scales; GPT; hierarchical clustering

1. Introduction
As psychological research progresses, an increasing number of concepts and scales

have been introduced, yet limited attention has been given to the potential overlaps among
them. These overlaps could increase participant burden (Deigan 2024), potentially compro-
mising data quality and complicating the interpretation of research findings (Elson et al.
2023; Condon and Revelle 2015; Condon et al. 2017). More critically, redundancy hinders
the field from advancing toward theoretical simplicity and precise measurement. Conse-
quently, addressing redundancy in psychological concepts and their associated scales has
become an urgent priority (Flake and Fried 2020; Bainbridge et al. 2022; Sharp et al. 2023).

Traditionally, redundancy in psychological scales has been identified through methods
such as factor analysis, correlational studies, and expert judgment (Fabrigar et al. 1999;
Clark and Watson 1995; DeVellis and Thorpe 2021). While these methods offer valuable
insights, they also present limitations. Factor analysis and correlational studies depend
on empirical data, which can be costly and time-consuming to gather, with the added
risk of survey errors (Costello and Osborne 2005; Schwarz 1999; Podsakoff et al. 2003).
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Expert judgment, while insightful, is inherently subjective, making it difficult to ensure the
reproducibility of research findings (Armstrong 2001; MacCoun 1998; Tetlock 2005).

In recent years, advancements in natural language processing (NLP) and machine
learning have created new opportunities for text data analysis. Notably, transformer-based
language models, such as Bidirectional Encoder Representations from Transformers (BERT),
Generative Pre-trained Transformer (GPT) have demonstrated remarkable capabilities in
understanding and representing semantic content (Vaswani 2017; Devlin 2019; Brown
et al. 2020). These large language models (LLMs) have found increasing applications in
educational and psychometric research, especially for analyzing psychological scales and
identifying redundancies (e.g., Bezirhan and von Davier 2023; Ma et al. 2024; Urban et al.
2024). At the core of these approaches is the use of text embeddings, which map words,
phrases, or sentences into high-dimensional vectors to capture semantic relationships
(Bojanowski et al. 2017; Mikolov et al. 2018; Pennington et al. 2014; Petukhova et al. 2024).
This has enabled researchers to assess conceptual overlaps by comparing the semantic
structures of scale items, revealing redundancies that align with theoretical models of
non-overlapping concepts (Hernandez and Nie 2022; Rosenbusch et al. 2020; Arnulf et al.
2024; Wulff and Mata 2024, preprint).

One of the earliest applications of embedding-like techniques in this domain was the
Semantic Scale Network (Rosenbusch et al. 2020), which used Latent Semantic Analysis
(LSA) to quantify semantic overlaps between psychological scales. LSA relied on vector-
izing textual data into a latent topic space and measuring semantic distances to identify
conceptual similarities. This allowed researchers to analyze scales without relying on
participant data, marking a significant step forward. However, LSA’s reliance on static,
predefined datasets (4023 scales) limited its ability to capture semantic representations from
the co-occurrence. Hommel and Arslan (2024, preprint) addressed these limitations by
adopting BERT embeddings, which provided richer semantic representations. They further
fine-tuned BERT using a domain-specific database (SBERT) to enhance its performance
in psychological survey tasks. Another key contribution of their work was providing
extensive validation of their approach against empirical psychometric data, while they did
not evaluate the model in these data.

Building on these efforts, we introduce a technique solution to the redundancy de-
tection of psychological concepts and scales that does not require the involvement of
human participants: the Embedding-based Semantic Analysis Approach (ESAA). The
ESAA leverages the power of advanced language models to generate high-dimensional
vector representations (embeddings) of scale items. Then, it applies unsupervised cluster-
ing algorithms and other techniques to perform semantic analysis on these embeddings,
providing a more objective and efficient means of detecting redundancy compared to tradi-
tional methods. Notably, some ongoing studies are also exploring the use of embeddings
to address the concept redundancy problem (Hommel and Arslan 2024, preprint; Wulff
and Mata 2024, preprint). For example, Wulff and Mata (2024, preprint) transitioned to
MPNet, a lightweight transformer-based LLM, which showed superior performance in
semantic parsing compared to fine-tuned BERT. They introduced a data-driven approach
to address clustering challenges, testing multiple clustering numbers to optimize their
solutions for empirical data. While this approach is reported to improve performance, its
implementation required significant computational resources, and its validation remains
not completely convincing for being heavily dependent on empirical datasets. Moreover,
the reliance on static embeddings, whether fine-tuned BERT or MPNet, remains a limitation
in rapidly evolving research contexts. The inherent superiority of LLMs in semantic rep-
resentation raises questions about whether incremental optimizations, such as clustering
number selection, justify the effort when the baseline performance of LLMs is already
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strong. As LLMs continue to evolve, the value of such resource-intensive refinements
diminishes, potentially rendering these models and their associated optimizations obsolete.

Our study adopts a distinct roadmap compared to contemporaneous research. The
ESAA follows a multi-step process, starting with transforming scale items into high-
dimensional vector representation using OpenAI’s text-embedding-3-large model (referred
as GPT-3 large model hereafter). Then, the ESAA applies unsupervised clustering al-
gorithms and related computational techniques to conduct semantic analysis on these
embeddings. The main output of the ESAA is a systematic framework referred to as the
ESAA-generated framework (EGF) that delineates the semantic relationships among items,
accompanied by their associated synthetic correlations.

As the initial phase of our research, we conducted a fundamental evaluation of the
ESAA’s performance against essential baseline requirements. Instead of using empirical
data, we adopted theoretical predictions from established psychological frameworks as eval-
uation criteria. This methodological choice was made to ensure objective and well-defined
assessment standards, minimizing potential biases and measurement errors inherent in
empirical benchmarks.

Thus, the validation strategy involves selecting several well-established psychological
constructs with clear theoretical relationships, then applying the ESAA to output its analysis
on the material, and finally comparing the ESAA’s output against theoretical predictions.
The ESAA will be considered for further investigation for more rigorous validation standard
only if it meets the baseline requirements in the current study, otherwise, further exploration
should not be warranted.

Following this strategy, our initial experiments evaluated three key capabilities of the
ESAA: (1) the convergence of semantically similar items, (2) the discrimination between
items with significant semantic differences, and (3) the identification of overlapping patterns
among concepts known for redundancy issues. Additionally, we conducted a robustness
check and comparative analyses to assess the incremental value of the ESAA over that
of state-of-the-art chatbots, such as ChatGPT-4. The findings indicate that the ESAA’s
performance meets the fundamental requirements for the specific experimental materials
tested, supporting its progression to more comprehensive testing in future research.

This paper is structured as follows: First, we introduce the principles and architecture
of the ESAA. Next, we describe a series of preliminary validation experiments conducted to
evaluate the ESAA’s performance. Subsequently, we discuss the key insights derived from
these experiments, compare our research with related studies, and highlight the limitations
of the current research. Finally, we outline directions for future work to further enhance
and validate the ESAA.

2. The Proposed Approach: The ESAA
The ESAA is designed to help psychologists investigate conceptual redundancy by

identifying overlaps among constructs operationalized as their scales. The ESAA follows a
clear multi-step process, as shown in Figure 1 (overview) and Figure 2 (detailed conceptual
diagrams). First, the ESAA uses OpenAI’s text-embedding-3-large model (referred to as
GPT-3 large model hereafter) to generate semantic embeddings for scale items, converting
textual data into high-dimensional vectors (see Figure 2A). For example, in Figure 2A, the
orange bar represents the input material processed by the ESAA, taken from Experiment 1
in the following section, consisting of 12 text-based items from psychological scales. The
green rectangle illustrates the embedding for an individual item as a row, while the purple
rectangle represents the embedding’s 3072-dimensional structure generated by the GPT-3
large model. Next, the ESAA computes semantic distances between these embeddings to
capture relationships among scale items. As illustrated in Figure 2B, semantic distance
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calculation uses mathematical concepts such as Euclidean distance and cosine similarity.
Since visualizing a 3072-dimensional space directly is not practical, Figure 2B uses a 3D
coordinate system to represent these concepts, where each data point corresponds to an
embedding from Figure 2A. A pairwise cosine similarity matrix is also shown, summarizing
the semantic relationships across all item embeddings. To replace traditional empirical
correlations, the ESAA introduces a new metric, synthetic correlation, which assesses these
relationships based entirely on semantic embeddings. Finally, unsupervised clustering
techniques are applied to identify latent structures within the digitized items, providing
insights into redundancies among psychological constructs. As shown in Figure 2C, the
steps of agglomerative hierarchical clustering are outlined, illustrating how items are
grouped based on their semantic similarities. The following sections explain the key steps
of the ESAA in detail.
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Figure 2. Conceptual Diagram for the ESAA Using Material of Experiment 1 as an Example.
Panel (A) (Step 1): (a) Input text (12 items) is transformed into embeddings; (b) embeddings are
represented as high-dimensional vectors. The green plot provides a general visualization, while
the purple plot adds internal details (embeddings generated by GPT-3-large). Both plots depict
the same 12 embeddings but highlight different aspects. Panel (B) (Step 2): (a) Semantic distances
(Euclidean distance and cosine similarity) are visualized conceptually; Colored points represent
individual embeddings (high-dimensional vectors) projected into a three-dimensional space for
illustration purposes. (b) Pairwise synthetic correlation matrix is generated. Panel (C) (Step 3):
Process and method for the hierarchical clustering. The points (e.g., a, b, c) represent individual
embeddings. (a) Agglomerative hierarchical clustering is demonstrated step-by-step; (b) clustering
process visualized as hierarchical merging.

2.1. Step 1. Data Processing: Text Vectorization

The first key operation of the ESAA is to convert the semantics of text-based scale
items into computable formats. This is achieved by transforming the text into numerical
representations known as embeddings. In the context of large language models (LLMs),
embeddings are high-dimensional vector representations that capture the semantic meaning
of the text, enabling comparison across different texts. LLMs, such as GPT-3, are based on
transformer architectures, which rely on self-attention mechanisms to process text. When
a text input (e.g., a psychological scale item) is provided to an LLM, the model breaks it
into smaller units (tokens). Each token is mapped to an initial embedding vector from a
learned vocabulary. The transformer layers then refine these embeddings by iteratively
updating them through attention mechanisms and feed-forward neural networks. During
this process, each token’s embedding is adjusted based on its contextual relationship with
other tokens in the input sequence. The final output embeddings encapsulate the individual
word meanings and their semantic relationships within the given context. For applications
like the ESAA, the model generates a single embedding for the entire text input (sentence
or phrase), representing its overall semantic meaning.
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Selecting an appropriate LLM is crucial in that embeddings are generated by these
models, which rely on advanced neural network architectures. By September 2024, the final
design phase of the ESAA, a wide range of LLMs are available, either as open-source re-
sources or through Application Programming Interfaces (API) based services, with varying
capabilities in representing the semantics of textual material. For example, BERT model,
a widely used model with 768-dimensions embeddings and notable for its extensive use
in academic research (Khadhraoui et al. 2022). On the other hand, LLMs with higher-
dimensional embeddings have been reported to capture multi-faced semantic meanings
(Tennenholtz et al. 2024), such as concept activation and user performance. Concretely,
OpenAI’s text-embedding-3-small model produces embeddings with 1536 dimensions.,
and GPT-3-large model stands out as more powerful, offering embeddings with 3072 dimen-
sions. As OpenAI’s latest released model, GPT-3 large model size and diverse pretraining
enable it to capture richer semantic relationships than models like BERT, which is critical
for redundancy detection in psychological scales (e.g., Brown et al. 2020). Additionally, our
preliminary study showed that embeddings generated by the BERT model were signifi-
cantly distant from validation (see Supplementary Material SM1: An experiment testing
embedding generated by the BERT model), while GPT-3 produced more cohesive clusters
that aligned better with theoretical constructs. Therefore, we chose the GPT-3 large model
as LLM for embedding generation in the ESAA. The embedding generation process is
conceptually shown in Figures 1 and 2 (Panel for Step 1).

The vectorization process involves sending the text input (i.e., psychological scale
items after necessary preprocessing) to the API endpoint provided by OpenAI, which
returns the corresponding embeddings. The API handles the tokenization and encoding
processes internally, ensuring consistent and high-quality embedding vectors. The vectoriz-
ing were performed using Python 3.11.3 in this study, with the openai libraries employed.
An example of the embedding for a scale item is provided in Supplementary Material SM2.

2.2. Step 2. Algorithmic Computation: Semantic Distance and Structure Exploration

The second key step in the ESAA is the analysis of embeddings, divided into two sub-
steps. First, we calculate the semantic distance or similarity between items in the semantic
space (similarity and distance are mathematically related, which are used interchangeably
in this study as two sides of the same coin). Second, we analyze the relationships among
items based on these semantic distances, focusing on the internal structure of the item set
as a whole.

2.2.1. Semantic Distance

Semantic distance is an important metric in this study, reflecting the relationships
between embeddings. A smaller semantic distance indicates a closer approximation of
the semantics of the embeddings. Several methods are available for calculating semantic
distances between high-dimensional vectors, including Euclidean distance and Cosine
distance. Each distance metric is best suited to different application scenarios. Theoretically,
cosine similarity is considered the optimal choice for text-based research due to its ability
to measure the angle between vectors, which is crucial for understanding semantic rela-
tionships. However, clustering algorithms such as hierarchical clustering rely on distance
metrics rather than similarity measures. Thus, we transform cosine similarity into semantic
distance to ensure compatibility with clustering methods and intuitive interpretation of
dendrograms. This approach also aligns with cognitive psychology traditions, where
distance-based representations are commonly used to illustrate relationships between con-
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structs (Yu et al. 2016). Therefore, in this study, we define semantic distance as follows
(Schütze et al. 2008), and a conceptual illustration is provided in Figure 2B(a):

Semantic Distance = 1 − cosine similarity (1)

2.2.2. Structure Exploration

A core function of the ESAA is to suggest a framework for categorizing all material
items, thereby enabling researchers to gain insights into the underlying data structure. This
functionality is achieved through the use of an algorithms, hierarchical clustering.

Hierarchical clustering is an unsupervised clustering method particularly suitable for
exploring hierarchical relationships among embedding. Unlike other clustering methods, it
does not require pre-specifying the number of clusters, instead building a hierarchical tree
(dendrogram) that reveals the multi-level nested structure of data. This study employs a
bottom-up (agglomeration) approach, beginning with each data point as its own cluster
and progressively merging similar points. This method’s advantage lies in its ability to
comprehensively display multi-level relationships among data points, making it especially
apt for examining the semantic relationships among psychological scale items.

In hierarchical clustering calculations, various methods are available, including Ward’s
method, average method, and complete method. Ward’s method notably excels in mini-
mizing total variance within clusters, resulting in compact, well-defined clusters—a critical
aspect for identifying similar items in psychological constructs. Given these merits, we hy-
pothesized that Ward’s method would be the most suitable for the ESAA. Our preliminary
experiments confirmed this prediction, demonstrating its superior efficacy. Thus, we have
chosen Ward’s method for the ESAA. Further detailed analyses, including outcome metrics
and comprehensive methodological frameworks, will substantiate these findings.

2.3. Step 3: Output: Synthetic Correlation and Framework
2.3.1. Synthetic Correlation

As a methodological tool for redundancy detection in psychology, the ESAA is de-
signed to report on the semantic relationships between items. This functionality is achieved
through the computation of synthetic correlation or semantic distance. Synthetic correla-
tion, a metric introduced in this study, serves as an alternative to traditional correlations
derived from empirical data collected from human participants. Synthetic correlation is
defined as the cosine similarity between the embeddings. Specifically, Synthetic Pairwise
Item Correlation (SPIC) refers to the cosine similarity between a pair of two items (see the
conceptual illustration in Figure 2B(b):

Assume that the embeddings for each item i and j are vectors vi and vj, respectively.
The formula for calculating the Synthetic Pairwise Item Correlation (SPIC) is:

SPIC(i, j) = cos(θ) =
vi · vj

∥vi∥∥vj∥ (2)

where vi·vj represents the dot product of vi and vj. ∥vi∥ and ∥vj∥ are the Euclidean norms
(or magnitudes) of vi and vj, respectively.

Intra-group (Cluster/Scale) SPIC refers to the synthetic pairwise item correlations
calculated between items within the same group, which would be cluster or scale in this
study. These correlations are expected to be higher, reflecting the semantic consistency and
coherence of items that are theoretically or empirically grouped together.

Inter-group (Cluster/Scale) SPIC refers to the synthetic pairwise item correlations
calculated between items from different groups, which would be cluster or scale in this
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study. These correlations are typically lower, indicating the semantic distinction and
divergence between items that belong to different concepts or theoretical categories.

2.3.2. Framework: Solution of Hierarchical Clustering

To analyze the structure of the embeddings, an unsupervised clustering algorithm is
needed for pattern mining. Following an extensive review of mathematical theory and
performing a series of preliminary experiments, agglomerative hierarchical clustering
with Ward’s method was selected. This method constructs a hierarchy of clusters by
iteratively merging them based on selected a predefined linkage criterion. The process
of this clustering is illustrated in the conceptual diagram shown in Figure 2C. And its
calculations were performed using Python 3.11.3 in this study, with the scipy and scikit-
learn libraries primarily employed for implementation.

The solution of the hierarchical clustering, which is the major output of the ESAA,
referred as the “ESAA-generated Framework (EGF)”, is visually represented as a dendro-
gram (e.g., Figure 3a). A dendrogram is a tree-like diagram that visually represents the
hierarchical relationships among items or clusters, illustrating how individual elements are
grouped together based on their similarity or distance.
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Gratitude scales, using Ward’s method. The horizontal axis represents the items, labeled with a
“C” prefix for items from the Conscientiousness scale and a “G” prefix for items from the Gratitude
scale. Details of the labels and their corresponding item contents can be found in Supplementary
Materials. The vertical axis represents the semantic distance between the item embeddings at merge.
The clusters are color coded for clarity. (b) KDE plot of PCA Components in Experiment 1. This
figure displays kernel density estimation (KDE) contours of item embeddings projected onto the first
two principal components. Data points representing the item embeddings are colored according to
their assigned clusters from EGF. Varying shades of blue represent the density of item embeddings in
the area, with deeper blues indicating regions with more nearby items, while lighter blues signifying
areas of lower data density.

The term “framework” in this study refers to any classification scheme applied to a
given set of items. Theoretically, there can be many frameworks for the same set of items.
One particular framework is the outcome of the ESAA, i.e., EGF. On the other hand, a
classification scheme where each category corresponds directly to the originating scale of
its items is also considered a framework. We refer to this as the “Scale Origin Framework”
(SOF). The comparison between EGF and SOF will also be part of the ESAA’s output, as it
can reflect potential overlaps between the scales of the original materials.

3. Validation of the Proposed Approach
While comprehensive validation through extensive studies is typically necessary for

proposing a new approach, such validation is beyond the scope of this initial study. Instead,
we focus on the fundamental criteria that an effective method in detecting redundancy
in psychological constructs. Specifically, the approach should demonstrate three key
capabilities: (1) converging items that are highly correlated, (2) discriminating between
items that are uncorrelated, and (3) identifying semantic overlap across different concept
that are operationalized as groups of their scale items. To assess these capabilities, we
conducted three experiments. The first experiment tested the approach’s ability to converge
highly correlated items and to discriminate uncorrelated items. The second experiment
evaluated its capacity to identify overlap between items from different scales. Finally, the
third experiment served as a robustness check, offering a series of comparative analyses to
access of the overall competence of the approach.

The strategy for these tests is theory driven. A robust theoretical foundation regarding
correlation, non-correlation, and overlap between concepts provides benchmarks for evalu-
ating the ESAA. If the results produced by the ESAA deviate significantly from theoretical
expectations, it indicates that the approach is ineffective. Conversely, if the outcomes align
closely with theoretical predictions—showing no evidence to contradict the validity of the
ESAA—it supports the approach’s potential for further in-depth investigation.

In prior research on conceptual redundancy, Grit has been widely documented as a
relevant construct for such an investigation due to its well-established body of literature
and meta-analytic findings. This theoretical grounding ensures that even with a smaller
number of items, the results remain interpretable and relevant. Furthermore, expanding
the sample size in these preliminary studies would not necessarily provide additional value
without compromising the need for clear, theory-based validation. This approach aligns
with the perspective of Hofman et al. (2021), who highlight the importance of integrating
explanation and prediction in computational social science. By prioritizing the development
of an explanatory framework, our work aims to provide meaningful theoretical insights
into conceptual redundancy, rather than merely constructing predictive models.
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3.1. Experiment 1: Convergence and Discriminant Validity

The experiment aims to evaluate the ESAA’s ability to converge highly correlated
items and discriminate low-correlated items. If the ESAA has reliable convergence ability,
then EGF should categorize those items measuring a same underlying conceptual construct
together, with intra-cluster SPIC at least as high as the corresponding intra-scale SPIC. In
contrast, if the EGF has sufficient discriminant ability, it should allocate items from scales
measuring conceptually distinct constructs into different clusters, with inter-cluster SPIC
much lower than corresponding intra-cluster SPIC, and not higher than the corresponding
inter-scale SPIC.

3.1.1. Methods

Materials, data, and Supplementary Materials for this study are available through the
Open Science Framework: https://osf.io/9fxmq/?view_only=ccb8fc28195c4dadb9ba1df1
9636591e (accessed on 21 October 2024). Data preprocessing and statistical analyses were
conducted using Python (version 3.11.3).

To test the ESAA’s convergence and discrimination abilities, the experimental materials
must meet certain criteria: (1) each scale should be widely recognized for high internal
consistency, (2) the concepts should exhibit low correlation, as supported by prior studies,
and (3) both scales should have an equal number of items.

In line with these criteria, the Conscientiousness and Gratitude scales were chosen:
Conscientiousness Scale: Derived from the NovoPsych Five Factor Personality Scale—

30 (Buchanan and Hegarty 2023), this 6-item scale measures the well-established five factor
model of personality (a.k.a. OCEAN). A sample item is “I often do just enough work to get
by” (reverse scored).

Gratitude Scale: The Gratitude Questionnaire-Six Item Form (GQ-6: McCullough et al.
2002) includes 6 items, with a sample item being “I have so much in life to be thankful for”.

Both scales are well validated with high internal consistency and the two concepts
exhibit minimal to no correlation (Ajmal et al. 2016; Kong et al. 2020), making them ideal
for examining convergence and discrimination in psychological research.

Given the nature of these scales, the items measuring Conscientiousness and Gratitude
should map distinctly into two separate regions, in the semantic space of embeddings, with
the distance between these regions significantly greater than within-region distances.

Hypothesis 1. The macro-structure of the EGF will match the SOF; and in the EGF, the inter-
cluster SPIC will be significantly lower than the intra-cluster SPIC, with a large effect size.

3.1.2. Results and Discussion

The hierarchical clustering analysis conducted for these 12 items reveals two distinct
clusters, each corresponding precisely to one of the original scales. Embeddings from the
same scale are closely grouped together, while embeddings from different scales are clearly
separated, as shown in Figure 3a,b. Figure 3a displays the EGF represented as the dendro-
gram, illustrating the hierarchical clustering of item embeddings using Ward’s method.
The embeddings were grouped into two widely separated clusters, corresponded to all
items from the Conscientiousness scale and all items from the Gratitude scale, respectively.
This clustering pattern aligns with hypothesis.

Figure 3b illustrates the structure of the embeddings in Experiment 1 using an alter-
native approach: a Kernel Density Estimate (KDE) plot of the two components derived
from Principal Component Analysis (PCA). To generate Figure 3b, we followed a three-step
process: (1) semantic distance computation, (2) reducing the embedding dimensions to two
using PCA, and (3) applying a KDE to the PCA dimensional reduction results, with the

https://osf.io/9fxmq/?view_only=ccb8fc28195c4dadb9ba1df19636591e
https://osf.io/9fxmq/?view_only=ccb8fc28195c4dadb9ba1df19636591e
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color-label for items follows EGF, i.e., the results of previous clustering. The KDE plot was
generated using a Gaussian kernel function with an automatically adjusted bandwidth.
This plot clearly highlights the separation and cohesion of clusters of the EGF.

As mentioned in the section II of this study, intra-cluster SPIC values represent the se-
mantic coherence within each cluster, while inter-cluster SPIC values reflect the divergence
between different clusters. The average SPIC values for the intra-cluster pairs within the
Gratitude scale and the Conscientiousness scale (M = 0.426, SD = 0.0039) were significantly
higher than those for inter-cluster pairs (M = 0.193, SD = 0.0022), demonstrating that item
pairs within the same cluster are closer to each other than those between different clusters.
To examine whether such difference between intra-cluster and inter-cluster SIC values is sig-
nificant, we conducted statistic test. Welch’s t-test is adopted due to unequal variances and
sample sizes. The results revealed a significant difference, t (43.35) = 18.46, p < 0.001. The
effect size, measured by Cohen’s d, was 4.50, indicating a very large effect. These findings
suggest that intra-cluster similarities are significantly higher than inter-cluster similarities.

These results support H1, demonstrating that the ESSA effectively distinguishes
between concepts and converges items within the same concept. Therefore, we can con-
fidently reject the null hypothesis, which suggest that the ESAA lacks convergence or
discriminant abilities.

However, it is important to note that these conclusions are limited to the specific
materials used in this experiment. Similar to the Turing test, Experiment 1 was designed to
explore the capabilities of a new technique. While the results from this single experiment
are promising, they only serve as a necessary condition for demonstrating the ESAA’s
effectiveness. Extensive empirical validation through future research is required to fully
confirm the approach’s generalizability and robustness.

3.2. Experiment 2: Overlap-Detection Competence Validation

The aim of this experiment is to assess the effectiveness of the ESAA in detecting
semantic proximity between scale items that measure psychological concepts with potential
redundancy. These concepts may be so similar that they lack incremental validity—meaning
they do not contribute unique information beyond what is already captured by other
concepts. As the ESAA is designed to help researchers identify redundancy in psychological
concepts, demonstrating this overlap-detection capability is crucial for validating its utility
in future studies.

3.2.1. Methods

To assess the ESAA’s capacity for detecting redundancy, it is important to select
psychological concepts that have been explicitly recognized in the literature as containing
overlapping elements. This ensures a clear benchmark for evaluating the reliability of the
ESAA’s results.

The concepts of Grit and Conscientiousness were chosen as they meet this criterion.
Grit was doubted for its redundancy with Conscientiousness by many research. A meta-
analysis of Grit research (Credé et al. 2017), which analyzed 584 effect sizes across 88
independent samples (totaling 66,807 individuals), revealed that Grit, initially proposed as
a higher-order trait predicting of success and performance, shows an excessively strong
correlation (ρ = 0.84) with Conscientiousness, raising questions about challenging its
distinctiveness as a construct.

This experiment utilized the following scales:
Conscientiousness Scale: Same as that in Experiment 1.



J. Intell. 2025, 13, 11 12 of 23

Grit Scale: derived from Duckworth et al. (2007), this scale contains 12 items divided
into two facets: Perseverance of engagement and Consistency of interest, with 6 items per
facet. A sample item is “I have achieved a goal that took years of work”.

If there is no overlap between Consciousness and Grit, the data structure should
resemble the pattern depicted in Figure 4, where Grit and Conscientiousness are distinct
categories, with the two facets of Grit as sub-categories. However, theoretical perspectives
suggest that Conscientiousness and Grit may be overlapping or even redundant constructs.
As Credé et al. (2017) noted, the Perseverance facet of Grit and Conscientiousness was
reported to have a correlation of ρ = 0.89, far exceeds the typical correlation found between
two different global measures of Conscientiousness (ρ = 0.63) (Pace and Brannick 2010).
Thus, the meta-analysis suggested that “Grit is not a higher-order construct characterized
by two lower-order facets” and “may be redundant with Conscientiousness”. Therefore,
if the ESAA is capable of identifying redundancy, the EGF should not mirror the SOF in
Figure 4 but instead exhibit signs of semantic blending between Conscientiousness and
Grit items. This leads to the hypothesis for the current experiment:

Hypothesis 2. The structure of the EGF will not be identical to the SOF, with items from Grit and
Conscientiousness interfused, rather than separated.
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if there is no overlap between Consciousness and Grit.

3.2.2. Results and Discussion

The application of the ESAA on the items from the Grit and Conscientiousness scales re-
sulted in two major clusters, as revealed in the hierarchical structure depicted by Figure 5a,b.
The full merging process is visualized in the dendrogram in Figure 5a, which illustrates the
hierarchical clustering of item embeddings from the two scales based on Ward’s method.
The y-axis represents the dissimilarity at which clusters are merged, while the x-axis shows
individual items, color coded for clarity. Items from the Conscientiousness scale are la-
beled “C”, while those from the Grit scale are labeled “G”. “Cluster 1” in Figure 5 notably
includes a mix of items from the Grit scale along with all of the Conscientiousness items.
This suggests that, in terms of semantic proximity, some Grit items are closer to Conscien-
tiousness, leading the algorithm to group them together. Specifically, the part of Grit items
involving the interfusion are exactly those measuring the so-called Perseverance of Engage
facet, which evidence is perfectly consistent with the conclusion of the meta-analysis by
Credé et al. (2017). Figure 5b provides further evidence of semantic overlap, displaying a
KDE plot based on the dimension reduction in the embeddings. This figure highlights the
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interweaving of Grit and Conscientiousness items, confirming the semantic fusion between
them. The generation of Figure 5b followed the same three-step process as in Experiment 1,
including semantic distance computation, dimensionality reduction, and KDE visualization.
These results clearly support Hypothesis 2, which predicted interfusion between items
from the Grit and Conscientiousness scales. In sum, the result of the ESAA, i.e., the EGF
of Experiment 2, supports H2, being highly consistent with the literature suggesting the
redundancy of the Grit concept.
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Figure 5. (a) The ESAA-Generated Framework in Experiment 2. This figure shows the dendrogram
resulting from the hierarchical clustering of the item embeddings from the Conscientiousness and
Grit scales, using Ward’s method. The horizontal axis represents the items, labeled with a “C” prefix
for items from the Conscientiousness scale and a “G” prefix for items from the Grit scale. Details
of the labels and their corresponding item contents can be found in Supplementary Materials. The
vertical axis represents the semantic distance between the item embeddings at merge. The clusters
are color coded for clarity. (b) KDE plot of PCA Components in Experiment 2. This figure displays



J. Intell. 2025, 13, 11 14 of 23

kernel density estimation (KDE) contours of item embeddings projected onto the first two principal
components. Data points representing the item embeddings are colored according to their assigned
clusters from hierarchical clustering. Varying shades of blue represent the density of item embeddings
in the area, with deeper blues indicating regions with more nearby items, while lighter blues signifying
areas of lower data density.

Moreover, EGF performs well in terms of convergence and discriminate validity, as
detailed statistics shown in Table 1. The intra-cluster SPIC of EGF (M = 0.372, SD = 0.132,
n = 81) was significantly higher than the inter-cluster SPIC (M = 0.294, SD = 0.071, n = 72).
Welch’s t-Tests were conducted instead of a traditional t-test due to the significant hetero-
geneity of variance observed in the data, t (126) = 4.572, p < 0.001. The large effect size
(Cohen’s d = −0.717) indicate that the pairwise semantic similarity of items within and
between cluster in EGF differ significantly. Further, the difference between intra-scale and
inter-scale SPICs for SOF also reached significance, but the all the statistic values indicating
performance of framework are inferior to those of EGF.

Table 1. SPICs Comparison between EGF and SOF.

Framework SPIC Mean SD n t(df) p-Value Cohen’s d

EGF Intra-cluster 0.372 0.132 81 -- -- --
Inter-cluster 0.294 0.071 72 -- -- --
Difference (1) 0.077 4.572(126) 0.000 0.717

SOF Intra-scale 0.370 0.130 81 -- -- --
Inter-scale 0.297 0.078 72 -- -- --
Difference (2) 0.073 4.284(134) 0.0000 0.675

In summary, the results of Experiment 2 demonstrate that the ESAA successfully
identified semantic interfusion between the Grit and Conscientiousness scales, as evidenced
by the hierarchical structure and reduced dimensional KDE plots. Hypothesis 2, which
predicted this interfusion, was supported by the formation of the mixed-source cluster,
highlighting the overlapping semantic nature of the two concepts. Furthermore, statistics
of SPICs demonstrate the validity of this EGF. Overall, the results in Experiment 2 indicate
that the ESAA has potential to serve as a reliable tool for detecting redundancy among
psychological constructs, addressing this study’s objective of validating the ESAA’s overlap-
detection competence.

3.3. Experiment 3. Robust Check and Comparative Analysis

The results from the previous two experiments present the ESAA as a potential tool
for redundancy research on psychological concepts. However, before drawing a validating
conclusion, two arguments remain: (1) Are the results from the first two experiments
robust? Experiments 1 and 2 selected corresponding experimental materials independently.
However, if the experimental materials were input in a different way, will the ESAA’s
calculations remain stable? This is the “robust” argument. (2) Does the ESAA provide
added value compared to baseline tools? A sample and intuitive baseline is the use of
chatbots based on LLMs, such as ChatGPT. If similarly effective analytical results can be
generated through simple prompts, there may be no substantial benefit in developing a
new tool. Therefore, it becomes crucial to compare the performance of the ESAA with
existing chatbot. The comparison will help determine whether the ESAA offers genuine
innovations and improvements. This is the “incremental value” argument.

To address these questions, we designed a series of trials in this experiment applying
the ESAA and alternative approaches on same input material, and comparing the perfor-
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mance of their outputs, namely the EGF and other frameworks. The hypotheses are that the
ESAA has robustness and incremental value, which means that the outputs of the ESAA
are consistent with each other and the performance of EGF beats any other frameworks in
terms of convergence, discriminate, and redundancy detection performance.

3.3.1. Material and Procedure

The materials for this experiment are a combination of those used in the previous two
experiments, incorporating three scales measuring Conscientiousness, Grit, and Gratitude
(24 items in total). The procedure involved generating the frameworks, followed by three se-
ries of trials comparing the EGF with the frameworks generated by alternative approaches.

The robustness of the ESAA was evaluated by comparing the EGF in from Experiments
3 from those from Experiments 1 and 2. We expected the EGF of the current experiment
to align with the previous ones, confirming the stability of the ESAA’s output. Secondly,
to assess the ESAA’s incremental value, we generated two baseline frameworks using
the most advanced LLM-based chatbots (GPT-4.0) in present, i.e., ChatGPT-4o and -o1,
anticipating that the chatbot-generated frameworks would be inferior to EGF in terms of
the convergence, discrimination, and interpretability.

3.3.2. Results and Discussion

The clustering results in Figure 6a,b clearly reveal the hierarchical structure of the
EGF for Experiment 3. Figure 6a presents the dendrogram of the ESAA analysis, which
illustrates the hierarchical clustering of item embeddings from the Conscientiousness and
Gratitude scales, based on Ward’s method. The y-axis shows the semantic distance between
clusters, while the x-axis lists individual item embeddings, color coded by clusters. Items
from the Conscientiousness scale are labeled “C”, Gratitude scale items are labeled “G”,
and the two facets of Grit—Consistency of Interest and Perseverance of Effort—are labeled
with “I” and “E”, respectively. When the clustering threshold was set at 0.7 for the mean
distance between clusters at merge, the items were divided into four distinct groups,
corresponding to the original subscales. However, a closer look at the dendrogram reveals
some semantic blending, particularly between Grit and Conscientiousness items. For
example, the Perseverance of Effort facet of Grit initially clusters with Conscientiousness
items before later merging with the Consistency of Interest facet, indicating a notable
overlap between these two constructs. This merged group is then combined with the
Gratitude items at a more distant clustering level.

The step-by-step merging process is further visualized in Figure 7a–c, which depict
the distribution of data points after reducing the high-dimensional embedding space to two
dimensions using PCA. In Figure 7a, the data points are divided into four classes, matching
the original subscales. As seen in Figure 7b, when the clustering is reduced to three classes,
the Conscientiousness items merge with the Perseverance of Effort facet from the Grit scale,
reflecting their semantic proximity. Finally, Figure 7c illustrates the division into two major
clusters, where the combined Grit and Conscientiousness items form a single category that
merges with Gratitude at a higher level of abstraction. This merging pattern highlights
the structural relationships between the concepts, suggesting significant overlap between
Grit and Conscientiousness, while the separation from Gratitude demonstrates the ESAA’s
ability to discriminate between more distinct concepts. This result showcases the ESAA’s
effectiveness in capturing both convergence and distinction across psychological scales,
particularly in identifying concepts with overlapping semantic features.
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Figure 6. (a) The ESAA-Generated Framework in Experiment 3. This figure shows the dendrogram
resulting from the hierarchical clustering of the item embeddings from the Gratitude, Conscientious-
ness and Grit scales, using Ward’s method. The horizontal axis represents the items, labeled with
a “C” prefix for items from the Conscientiousness scale, a “G” prefix for items from the Gratitude
scale, and “I” and “E” prefix representatively for items from the two facets of Grit scale: persistency
of interest and engagement. Details of the labels and their corresponding item contents can be found
in Supplementary Materials. The vertical axis represents the semantic distance between the item
embeddings at merge. The clusters are color coded for clarity. (b) KDE plot of PCA Components in
Experiment 3. This figure displays kernel density estimation (KDE) contours of item embeddings
projected onto the first two principal components. Data points representing the item embeddings
are colored according to their assigned clusters from hierarchical clustering. Varying shades of blue
represent the density of item embeddings in the area, with deeper blues indicating regions with more
nearby items, while lighter blues signifying areas of lower data density.
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Figure 7. Stepwise Clustering and Dimensional Reduction in Item Embeddings in Experiment 3.
(a) Clustering into four classes corresponding to the original subscales; (b) clustering into three classes,
showing the merging of Conscientiousness with the Perseverance of Effort facet from Grit; and (c) final
clustering into two major categories, highlighting the integration of Grit and Conscientiousness
with Gratitude.

The information suggested by EGF for overlap shows statistical significance. Specif-
ically, the facet E items from the Grit scale first merges with the Conscientiousness scale
items, resulting in the formation of cluster 2.2. This cluster 2.2 (M = 0.535, SD = 0.090) ex-
hibits a higher mean of intra-group SPICs compared to the Grit scale (M = 0.355, SD = 0.138),
with a significant difference observed (Cohen’s d = 1.382, p < 0.001).

Additionally, the discriminant validity among the (sub)clusters was also confirmed.
The intra-group Synthetic Pairwise Item Correlations (SPICs) for each (sub)cluster were
aggregated and used as a baseline for comparison, and the results indicated significant
discriminant validity for all comparisons (p < 0.001). The effect sizes for these comparisons,
as shown in Table 2, were substantial, with Cohen’s d values indicating large effects across
all clusters.

Table 2. Statistics on the Key SPICs of the EGF in Experiment 3.

Inter-Group SPIC Mean SD Difference with Baseline Cohen’s d p-Value

Cluster1 to Cluster2 0.193 0.050 0.251 −3.400 0.000
Cluster 2.1 to Cluster 2.2 0.294 0.071 0.150 −1.744 0.000
Cluster 2.2.1 to Cluster 2.2.2 0.270 0.080 0.174 −1.878 0.000
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The comparative analysis results were fully in line with expectations and are further
summarized in Table 3, which highlights the consistency of various framework outputs with
theoretical expectations. The robustness check confirmed that the EGF from Experiment 3
was entirely consistent with those from Experiments 1 and 2, with Gratitude items forming
a distinct sub-cluster, identical to the EGF structure from Experiment 1. This consistency
reinforces the stability of the ESAA’s calculations.

In terms of incremental value, the ChatGPT models (versions 4o and o1 preview)
failed to generate frameworks that aligned with theoretical expectations as effectively as
the ESAA, confirming the ESAA’s superiority in terms of convergence, discrimination,
and interpretability. Although the ChatGPT-generated frameworks captured the macro-
structure, they were unable to provide consistent sub-structures, thus falling short of the
precision achieved by the ESAA.

Table 3. Comparative Analysis of Various Framework Results with Respect to Their Consistency
with Theoretical Expectation.

Output of the Approach Macro-Structure Sub-Structures

EGF of Exp3
√ √

EGF of Exp1 or Exp2
√ √

Framework by ChatGPT-4o
√

×
Framework by ChatGPT-o1 preview

√
×

Note. In the “Output of the Approach” column of the above table, unless otherwise specified, the term “approach”
refers to that used in Experiment 3.

√
indicates consistency with theoretical expectations; × indicates inconsistency

with theoretical expectations.

Detailed outcome frameworks generated by all the alternative approaches can be seen
in the Supplementary Materials at https://osf.io/9fxmq/?view_only=ecef150ef2184d0da5
106b6413f093c4 (accessed on 21 October 2024).

4. Discussion
The primary aim of this study is to propose and evaluate an approach for detect-

ing redundancy in psychological concepts by utilizing the latest advancements in AI
technology development. The proposed method, referred to as the Embedding-based
Semantic Analysis Approach (ESAA) is a multi-step process. Initially, the ESAA takes
as input the textual content of psychological scale items and transforms them into high-
dimensional vectors by leveraging the GPT-3 large language model. This transformation
effectively converts qualitative textual data into computable numerical representations that
capture their semantic meanings. Subsequently, the ESAA applies unsupervised clustering
algorithms—particularly hierarchical clustering—to these embeddings to uncover latent se-
mantic structures among the items. Finally, the output includes an analysis of the semantic
relationships among these items, encapsulated in a framework referred to as EGF, as well
as synthetic correlations.

Through a series of three experiments, preliminary evidence attests to the ESAA’s
usefulness and reliability. The ESAA successfully converged semantically similar items,
discriminated between items with significant semantic differences, and identified patterns
of semantic overlap among constructs known to have theoretical redundancies. These
findings suggest that the ESAA has the potential to serve as a tool for researchers aiming to
refine theories and reduce redundancies in psychological measurement.

Some features of the ESAA distinguish it from contemporary research, which, to
the best of our knowledge, also exploits embeddings. The first one is the ESAA’s design
philosophy: simplifying the processes of vectorization, clustering, and evaluation to ensure
accessibility for psychological researchers without requiring extensive computational ex-

https://osf.io/9fxmq/?view_only=ecef150ef2184d0da5106b6413f093c4
https://osf.io/9fxmq/?view_only=ecef150ef2184d0da5106b6413f093c4
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pertise. Unlike the methods that rely heavily on fine-tuning language models like BERT or
LLM (Hommel and Arslan 2024, preprint; Wulff and Mata 2024, preprint), the ESAA uses
the latest API-based language models, which continuously evolve with advancements in
the field. This approach eliminates the need for resource-intensive retraining and empow-
ers psychological researchers by providing a practical and streamlined manual to guide
redundancy detection. Our intention is to keep the core work of redundancy detection
within the domain of psychological researchers, allowing them to leverage automated tools
while retaining control and interpretability of the process. The ESAA is designed as an aid,
not a replacement, supporting psychologists in analyzing item content in a more automated
and repeatable way, as opposed to the time-intensive manual efforts traditionally required.
By combining cutting-edge NLP techniques with an accessible and operational framework,
the ESAA bridges the gap between advanced computational tools and psychological re-
search, ensuring the redundancy detection process remains grounded in the expertise of
domain professionals.

Secondly, while contemporaneous studies (e.g., Wulff and Mata 2024, preprint) rely on
large-scale empirical data from public databases, we have deliberately chosen to evaluate
the reliability of the ESAA outcomes through psychological theory-based predictions. This
choice underscores the importance of the researcher’s role in the testing process. Psycho-
logical researchers bring theoretical knowledge and critical judgment, which adds a unique
and valuable perspective to redundancy detection. By incorporating this perspective, the
ESAA provides a meaningful complement to purely data-driven evaluations, offering
insights that are both theoretically grounded and practically applicable.

To sum up, the ESAA exhibits the potential to contribute to the development of psy-
chological theoretical research, particularly areas such as conceptual redundancy reduction
and integration studies. This approach offers unique value through its ability to perform
analyses based solely on the content of the psychological scales, thereby eliminating the
need for traditional data collection from participants in psychological research. This would
significantly reduce research costs. Furthermore, by mitigating subjective bias, ESSA would
enhance the reproducibility of findings and improves the reliability of research conclusions.

The ESAA also represents a meaningful step forward in psychological measurement
by addressing redundancy and refining the core components of scales, it provides new
opportunities for optimizing psychological instruments and improving data quality. Scales
are commonly used data collection tools in research across psychology, sociology, education,
and other fields, where studies often require the collection of multi-faceted information.
However, the overlap among scales measuring various aspects can lead to substantial cost
inefficiencies in terms of participants’ engagement. The ESAA can facilitate the design
of large-scale streamlined measurement instruments for these studies at negligible cost,
resulting in a substantial reduction in the number of items in the processed questionnaire
format while preserving the richness of the information obtained.

However, the current research remains in the initial stage and suffers considerable
limitations in the following aspects. First, before a definitive judgment regarding the
ESAA’s reliability can be made, further validation through comprehensive testing on
diverse datasets and psychological constructs is needed. This study uses psychological
theoretical predictions as the standard for assessing the ESAA’s performance, rather than
making direct comparisons with traditional methods. While this approach offers clear
advantages for an initial investigation, it lacks generalizability. Moreover, the reliance of
this study on specific psychological scales raises questions about the generalizability of the
findings to other constructs. Furthermore, the generalizability of the findings in this study
to disparate languages or cultural contexts remains uncertain. The current study focuses
solely on English-language scales, and linguistic structures, cultural-specific concepts, and
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expressions can vary significantly across different languages and cultures. Consequently,
the ESAA’s applicability and effectiveness in non-English or culturally diverse contexts
have yet to be tested. Additionally, it is noteworthy that future research employing the
ESAA with proprietary scales, such as the MBI or BDI-II, must ensure compliance with
copyright regulations and obtain the necessary permissions before incorporating such
materials into their analyses.

Secondly, the ESAA lacks control and optimization over the quality of embeddings,
which entails certain risks. The ESAA directly uses embeddings generated by the GPT-
3 Large model; however, any large language models (LLMs) may introduce biases in
language representation, potentially affecting the semantic analysis outcomes. These biases
could stem from the training data and might influence the model’s understanding of
certain terms, leading to skewed findings. Additionally, in this study, the ESAA generated
embeddings using LLM only once, which may introduce sample bias. Technically, if
the order of the input text is disrupted, the resulting embeddings are likely to differ
because embeddings are generated based on the content of the text and its context; thus,
the sequence of the text affects its semantic representation. Disrupting the order may
lead to variations in the model’s understanding of the text, resulting in the generation of
different embedding vectors. Although such perturbations may not significantly impact the
semantic relationships between embeddings, a systematic evaluation of the specific effects
of these perturbations must be conducted before the ESAA can be claimed as a reliable
tool. This aspect has not been addressed in the current study and must be considered in
future research.

Third, the impact of text preprocessing steps on the results was not thoroughly exam-
ined. Different preprocessing techniques, such as lemmatization, removal of stop words,
could influence the embeddings generated by the LLMs, potentially affecting the semantic
analysis outcomes. Future studies should systematically investigate how various text
preprocessing methods affect the ESAA’s performance.

Future research involves several tasks that need to be addressed. Validation, appli-
cation, and iterative improvement are all important directions requiring effort, and the
work aimed at these goals may overlap. Among these, some constitute fundamental and
essential research. For example, it is crucial to incorporate empirical participant data, such
as item response patterns and inter-item correlations, to cross-validate the ESAA’s outputs.
Second, we propose applying the ESAA to more complex scales with less overlap and
more nuanced constructs to evaluate its performance in diverse and challenging contexts.
For instance, longer scales or item pools like PROMIS (Patient-Reported Outcomes Mea-
surement Information System), designed with numerous items across health domains,
pose challenges for manual redundancy detection due to their complexity and volume.
AI-based tools like the ESAA have the potential to offer a scalable and objective solution for
identifying redundancy and refining constructs, making them particularly promising for
large-scale psychometric evaluations. Third, we aim to extend the ESAA to cross-linguistic
testing by analyzing psychological scales across different languages. Collectively, these
efforts will contribute to refining the ESAA as a reliable and versatile tool for redundancy
detection and theoretical advancement in psychological research.

Aside from research focusing on tool evaluation, another research opportunity arises
to utilize and upgrade the ESAA to conduct meaningful research addressing theoretical
and practical problems in psychology. As previously mentioned, our research aims to serve
psychological researchers by enabling them to harness the power of AI while retaining
control and interpretability of the research process. With attainable technical upgrades
to the ESAA, it could soon facilitate numerous psychological studies. For example, a
considerable number of studies rely on questionnaires that need to collect empirical data on
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multiple psychological constructs simultaneously. However, the feasibility of these studies
is greatly limited by the length of questionnaires that human participants can tolerate.
The ESAA’s capabilities on detecting extremely similar items across scales for different
constructs may make a previously impossible task achievable: obtaining data equivalent to
that from full-length questionnaires through significantly reduced number of questionnaire
items. We call for cooperation on this type of research.

The ultimate aspiration that motivates the creation of the ESAA—namely, the redun-
dancy reduction in psychological concepts and measurements, as well as the refinement of
theory—holds immeasurable value for the advancement of psychology. The proposal and
validation of a tool for redundancy detection represent merely the first small step toward
this vision. A substantial amount of research work remains to be accomplished, and it is
hoped that scholars will join in this endeavor.
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