Trait Characteristics of Diffusion Model Parameters
Abstract
:1. Introduction
1.1. The Diffusion Model: A Process Model of Speeded Binary Decision Making
1.2. Correlations between Diffusion Model Parameters and Mental Abilities
1.3. Diffusion Model Parameters as Personality Traits
2. Experimental Section
2.1. Participants
2.2. Measures
Response Time Tasks
2.3. Procedure
2.4. Data Analysis
2.4.1. Response Time Data
2.4.2. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Data
3.2. Diffusion Model Analysis
3.2.1. Drift Rate
3.2.2. Boundary Separation
3.2.3. Non-Decision Time
3.3. Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
Appendix A. QQ-Plot Evaluating the Fit of Diffusion Model Parameters
Appendix B. Correlation Tables for Diffusion Model Parameters Across Measurement Points
Session 1 | Session 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CR2 | CR4 | S1 | S3 | S5 | PI | NI | CR2 | CR4 | S1 | S3 | S5 | PI | NI | ||
Ses. 1 | CR2 | 1 | 0.43 | 0.28 | 0.35 | 0.25 | 0.51 | 0.55 | 0.60 | 0.47 | 0.51 | 0.45 | 0.47 | 0.48 | 0.56 |
CR4 | 1 | 0.26 | 0.37 | 0.21 | 0.31 | 0.45 | 0.39 | 0.44 | 0.42 | 0.43 | 0.33 | 0.35 | 0.41 | ||
S1 | 1 | 0.41 | 0.30 | 0.37 | 0.37 | 0.37 | 0.22 | 0.53 | 0.42 | 0.32 | 0.23 | 0.23 | |||
S3 | 1 | 0.31 | 0.44 | 0.40 | 0.30 | 0.15 | 0.43 | 0.52 | 0.35 | 0.39 | 0.40 | ||||
S5 | 1 | 0.38 | 0.45 | 0.25 | 0.26 | 0.30 | 0.53 | 0.53 | 0.32 | 0.44 | |||||
PI | 1 | 0.56 | 0.35 | 0.36 | 0.56 | 0.53 | 0.42 | 0.60 | 0.57 | ||||||
NI | 1 | 0.39 | 0.37 | 0.46 | 0.56 | 0.53 | 0.49 | 0.71 | |||||||
Ses. 2 | CR2 | 1 | 0.64 | 0.52 | 0.43 | 0.38 | 0.37 | 0.30 | |||||||
CR4 | 1 | 0.36 | 0.30 | 0.32 | 0.35 | 0.31 | |||||||||
S1 | 1 | 0.60 | 0.50 | 0.49 | 0.51 | ||||||||||
S3 | 1 | 0.59 | 0.59 | 0.66 | |||||||||||
S5 | 1 | 0.47 | 0.60 | ||||||||||||
PI | 1 | 0.70 | |||||||||||||
NI | 1 |
Session 1 | Session 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CR2 | CR4 | S1 | S3 | S5 | PI | NI | CR2 | CR4 | S1 | S3 | S5 | PI | NI | ||
Ses. 1 | CR2 | 1 | 0.39 | 0.06 | 0.15 | 0.26 | 0.22 | 0.17 | 0.46 | 0.33 | 0.40 | 0.26 | 0.15 | 0.18 | 0.13 |
CR4 | 1 | 0.02 | 0.12 | 0.24 | 0.42 | 0.54 | 0.41 | 0.51 | 0.46 | 0.30 | 0.22 | 0.48 | 0.49 | ||
S1 | 1 | 0.09 | 0.11 | 0.07 | 0.23 | 0.18 | 0.19 | 0.20 | 0.14 | 0.05 | 0.16 | 0.07 | |||
S3 | 1 | 0.15 | 0.09 | 0.20 | 0.24 | 0.07 | 0.23 | 0.22 | 0.22 | 0.23 | 0.15 | ||||
S5 | 1 | 0.29 | 0.45 | 0.25 | 0.35 | 0.32 | 0.47 | 0.34 | 0.24 | 0.36 | |||||
PI | 1 | 0.56 | 0.27 | 0.33 | 0.43 | 0.36 | 0.22 | 0.47 | 0.53 | ||||||
NI | 1 | 0.32 | 0.33 | 0.39 | 0.55 | 0.24 | 0.57 | 0.60 | |||||||
Ses. 2 | CR2 | 1 | 0.50 | 0.48 | 0.28 | 0.20 | 0.29 | 0.35 | |||||||
CR4 | 1 | 0.52 | 0.33 | 0.26 | 0.49 | 0.48 | |||||||||
S1 | 1 | 0.55 | 0.33 | 0.45 | 0.44 | ||||||||||
S3 | 1 | 0.45 | 0.38 | 0.47 | |||||||||||
S5 | 1 | 0.22 | 0.39 | ||||||||||||
PI | 1 | 0.57 | |||||||||||||
NI | 1 |
Session 1 | Session 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CR2 | CR4 | S1 | S3 | S5 | PI | NI | CR2 | CR4 | S1 | S3 | S5 | PI | NI | ||
Ses. 1 | CR2 | 1 | 0.48 | 0.25 | 0.31 | 0.28 | 0.39 | 0.41 | 0.26 | 0.28 | 0.22 | 0.21 | 0.24 | 0.33 | 0.27 |
CR4 | 1 | 0.17 | 0.33 | 0.37 | 0.48 | 0.44 | 0.17 | 0.26 | 0.33 | 0.43 | 0.28 | 0.34 | 0.40 | ||
S1 | 1 | 0.16 | 0.11 | 0.28 | 0.21 | 0.32 | 0.27 | 0.44 | 0.22 | 0.13 | 0.31 | 0.22 | |||
S3 | 1 | 0.61 | 0.42 | 0.29 | 0.30 | 0.18 | 0.33 | 0.55 | 0.53 | 0.23 | 0.20 | ||||
S5 | 1 | 0.54 | 0.34 | −0.01 | 0.03 | 0.23 | 0.61 | 0.54 | 0.29 | 0.34 | |||||
PI | 1 | 0.59 | 0.21 | 0.38 | 0.40 | 0.56 | 0.45 | 0.63 | 0.63 | ||||||
NI | 1 | 0.33 | 0.36 | 0.31 | 0.35 | 0.20 | 0.55 | 0.56 | |||||||
Ses. 2 | CR2 | 1 | 0.99 | 0.12 | −0.03 | −0.06 | −0.09 | −0.22 | |||||||
CR4 | 1 | 0.15 | 0 .01 | −0.02 | −0.04 | −0.14 | |||||||||
S1 | 1 | 0.49 | 0.35 | 0.28 | 0.37 | ||||||||||
S3 | 1 | 0.53 | 0.29 | 0.34 | |||||||||||
S5 | 1 | 0.27 | .30 | ||||||||||||
PI | 1 | 0.66 | |||||||||||||
NI | 1 |
References
- Sheppard, L.D.; Vernon, P.A. Intelligence and speed of information-processing: A review of 50 years of research. Personal. Individ. Differ. 2008, 44, 535–551. [Google Scholar] [CrossRef]
- Kranzler, J.H.; Jensen, A.R. The nature of psychometric g: Unitary process or a number of independent processes? Intelligence 1991, 15, 397–422. [Google Scholar] [CrossRef]
- Miller, L.T.; Vernon, P.A. Intelligence, reaction time, and working memory in 4- to 6-year-old children. Intelligence 1996, 22, 155–190. [Google Scholar] [CrossRef]
- Saccuzzo, D.P.; Larson, G.E.; Rimland, B. Speed of Information Processing and Individual Differences In Intelligence; Research Report NPRDC TR 86-23; Navy Personnel Research and Development Center: San Diego, CA, USA, 1986. [Google Scholar]
- Jensen, A.R. The importance of intraindividual variation in reaction time. Personal. Individ. Differ. 1992, 13, 869–881. [Google Scholar] [CrossRef]
- Jensen, A.R. Clocking the Mind: Mental Chronometry and Individual Differences; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Doebler, P.; Scheffler, B. The relationship of choice reaction time variability and intelligence: A meta-analysis. Learn. Individ. Differ. 2015. [Google Scholar] [CrossRef]
- Larson, G.E.; Alderton, D.L. Reaction time variability and intelligence: A “worst performance” analysis of individual differences. Intelligence 1990, 14, 309–325. [Google Scholar] [CrossRef]
- Coyle, T.R. A review of the worst performance rule: Evidence, theory, and alternative hypotheses. Intelligence 2003, 31, 567–587. [Google Scholar] [CrossRef]
- Fernandez, S.; Fagot, D.; Dirk, J.; de Ribaupierre, A. Generalization of the worst performance rule across the lifespan. Intelligence 2014, 42, 31–43. [Google Scholar] [CrossRef]
- Heathcote, A.; Popiel, S.J.; Mewhort, D.J. Analysis of response time distributions: An example using the Stroop task. Psychol. Bull. 1991, 109, 340–347. [Google Scholar] [CrossRef]
- Spieler, D.H.; Balota, D.A.; Faust, M.E. Levels of selective attention revealed through analyses of response time distributions. J. Exp. Psychol. Hum. Percept. Perform. 2000, 26, 506–526. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1993. [Google Scholar]
- Smith, G.A.; Carew, M. Decision time unmasked: Individuals adopt different strategies. Aust. J. Psychol. 1987, 39, 339–351. [Google Scholar] [CrossRef]
- Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 1978, 85, 59–108. [Google Scholar] [CrossRef]
- Voss, A.; Rothermund, K.; Voss, J. Interpreting the parameters of the diffusion model: An empirical validation. Memory Cogn. 2004, 32, 1206–1220. [Google Scholar] [CrossRef]
- Ratcliff, R.; Spieler, D.; McKoon, G. Explicitly modeling the effects of aging on response time. Psychon. Bull. Rev. 2000, 7, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Nagler, M.; Lerche, V. Diffusion models in experimental psychology: A practical introduction. Exp. Psychol. 2013, 60, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Voss, J. Fast-dm: A free program for efficient diffusion model analysis. Behav. Res. Methods 2007, 39, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Vandekerckhove, J.; Tuerlinckx, F. Fitting the Ratcliff diffusion model to experimental data. Psychon. Bull. Rev. 2007, 14, 1011–1026. [Google Scholar] [CrossRef] [PubMed]
- Vandekerckhove, J.; Tuerlinckx, F. Diffusion model analysis with MATLAB: A DMAT primer. Behav. Res. Methods 2008, 40, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.J.; van der Maas, H.L.J.; Grasman, R.P.P.P. An EZ-diffusion model for response time and accuracy. Psychon. Bull. Rev. 2007, 14, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Nunez, M.D.; Srinivasan, R.; Vandekerckhove, J. Individual differences in attention influence perceptual decision making. Front. Psychol. 2015, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Stahl, C.; Voss, A.; Schmitz, F.; Nuszbaum, M.; Tuscher, O.; Lieb, K.; Klauer, K.C. Behavioral components of impulsivity. J. Exp. Psychol. Gen. 2014, 143, 850–886. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; Thapar, A.; Mckoon, G. Individual differences, aging, and IQ in two-choice tasks. Cogn. Psychol. 2010, 60, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; Thapar, A.; Mckoon, G. Effects of aging and IQ on item and associative memory. J. Exp. Psychol. Gen. 2011, 140, 464–487. [Google Scholar] [CrossRef] [PubMed]
- Schmiedek, F.; Oberauer, K.; Wilhelm, O.; Suss, H.M.; Wittmann, W.W. Individual differences in components of reaction time distributions and their relations to working memory and intelligence. J. Exp. Psychol. Gen. 2007, 136, 414–429. [Google Scholar] [CrossRef] [PubMed]
- Schubert, A.L.; Hagemann, D.; Voss, A.; Schankin, A.; Bergmann, K. Decomposing the relationship between mental speed and mental abilities. Intelligence 2015, 51, 28–46. [Google Scholar] [CrossRef]
- Ratcliff, R.; Thompson, C.A.; Mckoon, G. Modeling individual differences in response time and accuracy in numeracy. Cognition 2015, 137, 115–136. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.J.; Balota, D.A.; Sibley, D.E.; Ratcliff, R. Individual differences in visual word recognition: Insights from the English Lexicon Project. J. Exp. Psychol. Hum. Percept. Perform. 2012, 38, 53–79. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; Mckoon, G. The diffusion decision model: Theory and data for two-choice decision tasks. Neural Comput. 2008, 20, 873–922. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, D.; Tuerlinckx, F.; van der Maas, H.L.J. Fitting Diffusion Item Response Theory Models for Responses and Response Times Using the R Package diffIRT. J. Stat. Softw. 2015, 66. [Google Scholar] [CrossRef]
- Tuerlinckx, F.; Boeck, P.D. Two interpretations of the discrimination parameter. Psychometrika 2005, 70, 629–650. [Google Scholar] [CrossRef]
- Van der Maas, H.L.J.; Molenaar, D.; Maris, G.; Kievit, R.A.; Borsboom, D. Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences. Psychol. Rev. 2011, 118, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Vandekerckhove, J. A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. J. Math. Psychol. 2014, 60, 58–71. [Google Scholar] [CrossRef]
- Allport, G.W. Personality, a Psychological Interpretation; Holt: New York, NY, USA, 1937. [Google Scholar]
- Cattell, R. Personality: A Systematic Theoretical and Factual Study; McGraw-Hill: New York, NY, USA, 1950. [Google Scholar]
- Steyer, R.; Schmitt, M.; Eid, M. Latent state–trait theory and research in personality and individual differences. Eur. J. Personal. 1999, 13, 389–408. [Google Scholar] [CrossRef]
- Langner, R.; Steinborn, M.B.; Chatterjee, A.; Sturm, W.; Willmes, K. Mental fatigue and temporal preparation in simple reaction-time performance. Acta Psychol. 2010, 133, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Doll, T.J. Motivation, reaction time, and the contents of active verbal memory. J. Exp. Psychol. 1971, 87, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Lerche, V.; Voss, A. Retest reliability of the parameters of the ratcliff diffusion model. Psychol. Res. 2016, 2016, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Larsen, L.; Hartmann, P.; Nyborg, H. The stability of general intelligence from early adulthood to middle-age. Intelligence 2008, 36, 29–34. [Google Scholar] [CrossRef]
- Hick, W.E. On the rate of gain of information. Q. J. Exp. Psychol. 1952, 4, 11–26. [Google Scholar] [CrossRef]
- Brown, S.D.; Heathcote, A. The simplest complete model of choice response time: Linear ballistic accumulation. Cogn. Psychol. 2008, 57, 153–178. [Google Scholar] [CrossRef] [PubMed]
- Usher, M.; McClelland, J.L. The time course of perceptual choice: The leaky, competing accumulator model. Psychol. Rev. 2001, 108, 550–592. [Google Scholar] [CrossRef] [PubMed]
- Leite, F.P.; Ratcliff, R. Modeling reaction time and accuracy of multiple-alternative decisions. Atten. Percept. Psychophys. 2010, 72, 246–273. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, S. Memory-scanning: Mental processes revealed by reaction-time experiments. Am. Sci. 1969, 57, 421–457. [Google Scholar] [PubMed]
- Posner, M.I.; Mitchell, R.F. Chronometric analysis of classification. Psychol. Rev. 1967, 74, 392–409. [Google Scholar] [CrossRef] [PubMed]
- Steyer, R.; Ferring, D.; Schmitt, M.J. States and traits in psychological assessment. Eur. J. Psychol. Assess. 1992, 8, 79–98. [Google Scholar]
- Steyer, R.; Mayer, A.; Geiser, C.; Cole, D.A. A theory of states and traits–revised. Annu. Rev. Clin. Psychol. 2015, 11, 71–98. [Google Scholar] [CrossRef] [PubMed]
- Danner, D.; Hagemann, D.; Schankin, A.; Hager, M.; Funke, J. Beyond IQ: A latent state-trait analysis of general intelligence, dynamic decision making, and implicit learning. Intelligence 2011, 39, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Deinzer, R.; Steyer, R.; Eid, M.; Notz, P.; Schwenkmezger, P.; Ostendorf, F.; Neubauer, A. Situational effects in trait assessment: The FPI, NEOFFI, and EPI questionnaires. Eur. J. Personal. 1995, 9, 1–23. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998–2012. [Google Scholar]
- Browne, M.W.; Cudeck, R. Alternative Ways of Assessing Model Fit. Sociol. Methods Res. 1992, 21, 230–258. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
Session 1 | ||||||
---|---|---|---|---|---|---|
ACC | RT | v | a | |||
CR2 | 1.00 (.01) | 383.45 (58.08) | 5.55 (1.31) | 1.15 (0.26) | 0.27 (0.04) | 0.08 (0.04) |
CR4 | .98 (.02) | 479.92 (89.30) | 4.68 (1.30) | 1.18 (0.34) | 0.34 (0.06) | 0.15 (0.09) |
S1 | .98 (.02) | 585.07 (108.54) | 3.48 (1.15) | 1.63 (0.98) | 0.35 (0.08) | 0.13 (0.11) |
S3 | .98 (.02) | 719.53 (161.38) | 3.20 (1.04) | 1.63 (0.79) | 0.45 (0.09) | 0.16 (0.11) |
S5 | .96 (.03) | 878.86 (232.06) | 2.55 (0.79) | 1.73 (0.52) | 0.53 (0.13) | 0.21 (0.19) |
PI | .98 (.02) | 614.90 (88.35) | 4.00 (0.94) | 1.27 (0.25) | 0.45 (0.05) | 0.14 (0.06) |
NI | .97 (.02) | 699.66 (112.81) | 2.97 (0.70) | 1.46 (0.35) | 0.45 (0.05) | 0.14 (0.07) |
Session 2 | ||||||
ACC | RT | v | a | |||
CR2 | 1.00 (.01) | 381.26 (61.00) | 5.58 (1.56) | 1.14 (0.27) | 0.27 (0.03) | 0.08 (0.05) |
CR4 | .98 (.02) | 467.36 (85.75) | 4.72 (1.11) | 1.14 (0.32) | 0.34 (0.04) | 0.14 (0.06) |
S1 | .98 (.02) | 584.02 (135.64) | 3.65 (1.35) | 1.38 (0.41) | 0.36 (0.07) | 0.13 (0.10) |
S3 | .98 (.03) | 706.61 (176.81) | 3.24 (1.00) | 1.43 (0.35) | 0.47 (0.10) | 0.16 (0.11) |
S5 | .95 (.09) | 850.98 (223.18) | 2.52 (1.00) | 1.54 (0.48) | 0.53 (0.13) | 0.19 (0.15) |
PI | .98 (.02) | 605.19 (102.41) | 4.04 (1.06) | 1.33 (0.36) | 0.42 (0.05) | 0.12 (0.06) |
NI | .97 (.2) | 704.38 (126.36) | 3.10 (0.77) | 1.49 (0.38) | 0.45 (0.06) | 0.15 (0.08) |
Session | Consistency | Occ. Spec. | Meth. Spec. | Reliability | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
Drift rate parameters | ||||||||
CR2 | .46 | .46 | .00 | .00 | .17 | .17 | .63 | .63 |
CR4 | .28 | .36 | .00 | .00 | .17 | .15 | .45 | .51 |
S1 | .34 | .42 | .00 | .00 | .11 | .10 | .45 | .52 |
S3 | .31 | .44 | .00 | .00 | .12 | .09 | .43 | .54 |
S5 | .28 | .36 | .00 | .00 | .11 | .10 | .38 | .45 |
PI | .53 | .52 | .00 | .00 | .00 | .00 | .53 | .52 |
NI | .66 | .69 | .00 | .00 | .00 | .00 | .66 | .69 |
Boundary separation parameters | ||||||||
CR2 | .14 | .14 | .00 | .00 | .20 | .20 | .35 | .35 |
CR4 | .38 | .33 | .00 | .00 | .17 | .19 | .55 | .52 |
S1 | .16 | .32 | .00 | .00 | .13 | .10 | .29 | .42 |
S3 | .06 | .30 | .00 | .00 | .13 | .10 | .20 | .40 |
S5 | .21 | .15 | .00 | .00 | .11 | .12 | .32 | .27 |
PI | .42 | .54 | .00 | .00 | .00 | .00 | .42 | .54 |
NI | .64 | .62 | .00 | .00 | .00 | .00 | .64 | .62 |
Non-decision time parameters | ||||||||
CR2 | .19 | .19 | .00 | .00 | .24 | .24 | .43 | .43 |
CR4 | .36 | .31 | .00 | .00 | .24 | .26 | .60 | .57 |
S1 | .14 | .31 | .00 | .00 | .00 | .00 | .14 | .31 |
S3 | .36 | .45 | .00 | .00 | .00 | .00 | .36 | .45 |
S5 | .43 | .43 | .00 | .00 | .00 | .00 | .43 | .43 |
PI | .60 | .54 | .00 | .00 | .00 | .00 | .60 | .54 |
NI | .41 | .34 | .00 | .00 | .00 | .00 | .41 | .34 |
Task | dm Parameter | Cond. | MP | Cons. | O. Spec. | M. Spec | Rel. |
---|---|---|---|---|---|---|---|
CRT | Drift rate v | CR2 | 1 | .53 | .00 | .15 | .68 |
CR4 | 1 | .51 | .00 | .00 | .51 | ||
CR2 | 2 | .53 | .00 | .15 | .68 | ||
CR4 | 2 | .51 | .00 | .00 | .51 | ||
Boundary sep. a | CR2 | 1 | .43 | .00 | .00 | .43 | |
CR4 | 1 | .43 | .00 | .00 | .43 | ||
CR2 | 2 | .43 | .00 | .00 | .43 | ||
CR4 | 2 | .43 | .00 | .00 | .43 | ||
Non-dec. time | CR2 | 1 | .38 | .14 | .18 | .70 | |
CR4 | 1 | .39 | .15 | .25 | .79 | ||
CR2 | 2 | .37 | .16 | .18 | .71 | ||
CR4 | 2 | .38 | .16 | .25 | .79 | ||
Sternberg | Drift rate v | S1 | 1 | .46 | .00 | .11 | .57 |
S3 | 1 | .47 | .00 | .00 | .47 | ||
S5 | 1 | .42 | .00 | .15 | .57 | ||
S1 | 2 | .46 | .00 | .11 | .57 | ||
S3 | 2 | .47 | .00 | .00 | .47 | ||
S5 | 2 | .42 | .00 | .15 | .57 | ||
Boundary sep. a | S1 | 1 | .31 | .00 | .00 | .31 | |
S3 | 1 | .30 | .00 | .00 | .30 | ||
S5 | 1 | .30 | .00 | .00 | .30 | ||
S1 | 2 | .31 | .00 | .00 | .31 | ||
S3 | 2 | .30 | .00 | .00 | .30 | ||
S5 | 2 | .30 | .00 | .00 | .30 | ||
Non-dec. time | S1 | 1 | .31 | .00 | .00 | .31 | |
S3 | 1 | .34 | .00 | .00 | .34 | ||
S5 | 1 | .35 | .00 | .00 | .35 | ||
S1 | 2 | .31 | .00 | .00 | .31 | ||
S3 | 2 | .34 | .00 | .00 | .34 | ||
S5 | 2 | .35 | .00 | .00 | .35 | ||
Posner | Drift rate v | PI | 1 | .58 | .00 | .00 | .58 |
NI | 1 | .57 | .00 | .16 | .72 | ||
PI | 2 | .58 | .00 | .00 | .58 | ||
NI | 2 | .57 | .00 | .16 | .72 | ||
Boundary sep. a | PI | 1 | .55 | .00 | .00 | .55 | |
NI | 1 | .57 | .00 | .00 | .57 | ||
PI | 2 | .55 | .00 | .00 | .55 | ||
NI | 2 | .57 | .00 | .00 | .57 | ||
Non-dec. time | PI | 1 | .44 | .16 | .00 | .60 | |
NI | 1 | .39 | .14 | .00 | .54 | ||
PI | 2 | .52 | .00 | .00 | .52 | ||
NI | 2 | .46 | .00 | .00 | .46 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schubert, A.-L.; Frischkorn, G.T.; Hagemann, D.; Voss, A. Trait Characteristics of Diffusion Model Parameters. J. Intell. 2016, 4, 7. https://doi.org/10.3390/jintelligence4030007
Schubert A-L, Frischkorn GT, Hagemann D, Voss A. Trait Characteristics of Diffusion Model Parameters. Journal of Intelligence. 2016; 4(3):7. https://doi.org/10.3390/jintelligence4030007
Chicago/Turabian StyleSchubert, Anna-Lena, Gidon T. Frischkorn, Dirk Hagemann, and Andreas Voss. 2016. "Trait Characteristics of Diffusion Model Parameters" Journal of Intelligence 4, no. 3: 7. https://doi.org/10.3390/jintelligence4030007
APA StyleSchubert, A. -L., Frischkorn, G. T., Hagemann, D., & Voss, A. (2016). Trait Characteristics of Diffusion Model Parameters. Journal of Intelligence, 4(3), 7. https://doi.org/10.3390/jintelligence4030007