Predicting Fluid Intelligence by Components of Reaction Time Distributions from Simple Choice Reaction Time Tasks
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Procedure and Measures
2.2.1. Choice Reaction Time Tasks
2.2.2. Fluid Intelligence Test
2.3. Data Preparation and Analysis
3. Results
3.1. Measurement Models for the eGM and the DDM Parameters
3.2. Associations of eGM and DDM Parameters with GF
4. Discussion
4.1. Separable Latent Factors for the eGM and the Main DDM Parameters
4.2. The eGM Parameter σ Predicts Gf
4.3. The DDM Parameter Drift Rate Predicts Gf
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Deary, I.J. Looking down on Human Intelligence: From Psychometrics to the Brain; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Jensen, A.R. Clocking the Mind: Mental Chronometry and Individual Differences; Elsevier: Oxford, UK, 2006. [Google Scholar]
- Nissan, J.; Liewald, D.; Deary, I.J. Reaction time and intelligence: Comparing associations based on two response modes. Intelligence 2013, 41, 622–630. [Google Scholar] [CrossRef]
- Schweizer, K.; Moosbrugger, H. Attention and working memory as predictors of intelligence. Intelligence 2004, 32, 329–347. [Google Scholar] [CrossRef]
- Jensen, A.R. The importance of intraindividual variation in reaction-time. Personal. Individ. Differ. 1992, 13, 869–881. [Google Scholar] [CrossRef]
- Baumeister, A.A. Intelligence and the “personal equation”. Intelligence 1998, 26, 255–265. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J.; Brown, S. On the linear relation between the mean and the standard deviation of a response time distribution. Psychol. Rev. 2007, 114, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Rammsayer, T.H.; Troche, S.J. Effects of age and the relationship between response time measures and psychometric intelligence in younger adults. Personal. Individ. Differ. 2010, 48, 49–53. [Google Scholar] [CrossRef]
- Larson, G.E.; Alderton, D.L. Reaction time variability and intelligence: A “worst performance” analysis of individual differences. Intelligence 1990, 14, 309–325. [Google Scholar] [CrossRef]
- Coyle, T.R. A review of the worst performance rule: Evidence, theory and alternative hypotheses. Intelligence 2003, 31, 567–587. [Google Scholar] [CrossRef]
- Salthouse, T. Relation of successive percentiles of reaction time distributions to cognitive variables and adult age. Intelligence 1998, 26, 153–166. [Google Scholar] [CrossRef]
- Saville, C.W.N.; Beckles, K.D.; Macleod, C.A.; Feige, B.; Biscaldi, M.; Beauducel, A.; Klein, C. A neural analogue of the worst performance rule: Insights from single-trial event-related potentials. Intelligence 2016, 55, 95–103. [Google Scholar] [CrossRef]
- Schmiedek, F.; Oberauer, K.; Wilhelm, O.; Süss, H.-M.; Wittmann, W.W. Individual differences in components of reaction time distributions and their relations to working memory and intelligence. J. Exp. Psychol. Gen. 2007, 136, 414–429. [Google Scholar] [CrossRef] [PubMed]
- Feige, B.; Biscaldi, M.; Saville, C.W.N.; Kluckert, C.; Bender, S.; Ebner-Priemer, U.; Klein, C. On the temporal characteristics of performance variability in attention deficit hyperactivity disorder (ADHD). PLoS ONE 2013, 8, e69674. [Google Scholar] [CrossRef]
- Heathcote, A. RTSYS: A DOS application for the analysis of reaction time data. Behav. Res. Methods Instrum. Comput. 1996, 28, 427–445. [Google Scholar] [CrossRef]
- Heathcote, A.; Popiel, S.J.; Mewhort, D.J.K. Analysis of response time distributions: An example using the Stroop task. Psychol. Bull. 1991, 109, 340–347. [Google Scholar] [CrossRef]
- Mewhort, D.J.K.; Braun, J.G.; Heathcote, A. Response time distributions and the Stroop task: A test of the Cohen, Dunbar, and McClelland (1990) model. J. Exp. Psychol. Hum. 1992, 18, 872–882. [Google Scholar] [CrossRef]
- Biscaldi, M.; Bednorz, N.; Weissbrodt, K.; Saville, C.W.N.; Feige, B.; Bender, S.; Klein, C. Cognitive endophenotypes of attention deficit/hyperactivity disorder and intra-subject variability in patients with autism spectrum disorder. Biol. Psychol. 2016, 118, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Hohle, R.H. Inferred components of reaction times as functions of foreperiod duration. J. Exp. Psychol. 1965, 4, 382–386. [Google Scholar] [CrossRef]
- Balota, D.A.; Spieler, D.H. Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. J. Exp. Psychol. Gen. 1999, 128, 32–55. [Google Scholar] [CrossRef] [PubMed]
- Matzke, D.; Wagenmakers, E.-J. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychon. Bull. Rev. 2009, 16, 798–817. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 1978, 85, 59–108. [Google Scholar] [CrossRef]
- Ratcliff, R.; McKoon, G. The diffusion decision model: Theory and data for two-choice decision tasks. Neural. Comput. 2008, 20, 873–922. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; Smith, P.L. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 2004, 111, 333–367. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; Thapar, A.; McKoon, G. Aging, practice, and perceptual tasks: A diffusion model analysis. Psychol. Aging 2006, 21, 353–371. [Google Scholar] [CrossRef] [PubMed]
- Klauer, K.C.; Voss, A.; Schmitz, F.; Teige-Mocigemba, S. Process components of the implicit association test: A diffusion-model analysis. J. Personal. Soc. Psychol. 2007, 93, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, F.; Voss, A. Decomposing task-switching costs with the diffusion model. J. Exp. Psychol. Hum. 2012, 38, 222–250. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.M.; Burns, N.R.; Wittert, G. Free testosterone levels, attentional control, and processing speed performance in aging men. Neuropsychology 2009, 23, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Oberauer, K.; Su, H.; Wilhelm, O.; Wittman, W.W. The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence 2003, 31, 167–193. [Google Scholar] [CrossRef]
- Cattell, R.B.; Cattell, A.K.S. Culture Fair Intelligence Test, Scale 2; Institute for Personality and Ability Testing: Champaign, IL, USA, 1960. [Google Scholar]
- Weiß, R.H. CFT-20-R Grundintelligenztest Skala 2—Revidierte Fassung; Hogrefe: Goettingen, Germany, 2006. (In German) [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Stasinopoulos, D.M.; Rigby, R.A. Generalized additive models for location scale and shape (GAMLSS). J. Stat. Softw. 2007, 23, 1–46. [Google Scholar] [CrossRef]
- Voss, A.; Voss, J. Fast-dm: A free program for efficient diffusion model analysis. Behav. Res. Methods 2007, 39, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Nagler, M.; Lerche, V. Diffusion models in experimental psychology: A practical introduction. Exp. Psychol. 2013, 60, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Muthén, L.K.; Muthén, B.O. Mplus [Computer Software]; Muthén & Muthén: Los Angeles, CA, USA, 2010. [Google Scholar]
- Klein, C. Developmental functions for saccadic eye movement parameters derived from pro- and antisaccade tasks. Exp. Brain Res. 2001, 139, 1–17. [Google Scholar] [PubMed]
- Cattell, R.B. Intelligence: Its Structure, Growth and Action; North-Holland: New York, NY, USA, 1987. [Google Scholar]
- Süß, H.-M.; Oberauer, K.; Wittmann, W.W.; Wilhelm, O.; Schulze, R. Working memory capacity explains reasoning ability—And a little bit more. Intelligence 2002, 30, 261–288. [Google Scholar] [CrossRef]
- Voss, A.; Voss, J.; Lerche, V. Assessing cognitive processes with diffusion model analyses: A tutorial based on fast-dm-30. Front. Psychol. 2015, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.-J.; van der Maas, H.L.J.; Grasman, R.P.P.P. An EZ-diffusion model for response time and accuracy. Psychon. Bull. Rev. 2007, 14, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, S.; Fagot, D.; Dirk, J.; de Ribaupierre, A. Generalization of the worst performance rule across the lifespan. Intelligence 2014, 42, 31–43. [Google Scholar] [CrossRef]
- Ratcliff, R.; Thapar, A.; McKoon, G. Individual differences aging and IQ in two choice tasks. Cognit. Psychol. 2010, 60, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Coyle, T.R. IQ is related to the worst performance rule in a memory task involving children. Intelligence 2001, 29, 117–129. [Google Scholar] [CrossRef]
Task | M (SD) | RTSD (SD) | μ (SD) | σ (SD) | τ (SD) | v (SD) | a (SD) | t0 (SD) | sv (SD) | szr (SD) | st0 (SD) |
---|---|---|---|---|---|---|---|---|---|---|---|
CRT LS | 750.72 (169.78) | 190.11 (62.68) | 581.52 (147.71) | 85.31 (57.10) | 169.29 (67.14) | 2.80 (0.97) | 1.42 (0.23) | 0.50 (0.12) | 0.62 (0.44) | 0.27 (0.17) | 0.23 (0.18) |
CRT OE | 801.87 (179.53) | 181.11 (63.59) | 658.46 (167.13) | 101.15 (63.33) | 142.62 (58.39) | 2.76 (1.08) | 1.29 (0.22) | 0.58 (0.14) | 0.60 (0.40) | 0.27 (0.19) | 0.28 (0.17) |
CRT UD | 696.55 (148.98) | 195.52 (64.09) | 519.19 (114.42) | 83.11 (47.51) | 176.26 (65.28) | 2.77 (1.01) | 1.39 (0.26) | 0.44 (0.10) | 0.69 (0.52) | 0.26 (0.18) | 0.22 (0.15) |
CRT AB | 642.19 (154.08) | 187.19 (68.00) | 476.21 (125.08) | 82.69 (51.13) | 165.24 (70.27) | 2.93 (1.15) | 1.39 (0.26) | 0.40 (0.10) | 0.72 (0.50) | 0.25 (0.17) | 0.22 (0.16) |
Task | Unstandardized Factor Loading (95% CI) | Standardized Factor Loading | Residual Correlation | ||||||
---|---|---|---|---|---|---|---|---|---|
μ | σ | τ | μ | σ | τ | μ − σ | μ − τ | σ − τ | |
CRT LS | 59.26 (50.93–69.30) | 23.68 (18.27–29.98) | 36.02 (29.40–42.07) | .62 | .52 | .59 | .81 | −.49 | −.56 |
CRT OE | 44.65 (34.65–54.89) | 14.67 (10.00–19.25) | 27.99 (21.77–34.17) | .45 | .34 | .48 | .76 | −.33 | −.47 |
CRT UD | 62.71 (56.12–69.76) | 25.48 (20.28–31.55) | 43.98 (37.28–49.83) | .86 | .71 | .72 | .64 | −.53 | −.50 |
CRT AB | 63.97 (56.05–73.18) | 29.92 (24.88–36.11) | 41.58 (34.78–48.14) | .67 | .68 | .64 | .83 | −.48 | −.48 |
Task | Unstandardized Factor Loading (95% CI) | Standardized Factor Loading | Residual Correlation | ||||||
---|---|---|---|---|---|---|---|---|---|
v | a | t0 | v | a | t0 | v − a | v − t0 | a − t0 | |
CRT LS | 0.53 (0.46–0.60) | 0.14 (0.11–0.17) | 0.07 (0.06–0.08) | .71 | .63 | .87 | −.02 | −.05 | −.31 |
CRT OE | 0.40 (0.29–0.51) | 0.14 (0.11–0.16) | 0.05 (0.04–0.06) | .48 | .60 | .59 | −.02 | −.24 | −.26 |
CRT UD | 0.62 (0.54–0.72) | 0.19 (0.16–0.21) | 0.04 (0.03–0.05) | .73 | .71 | .62 | .27 | .02 | −.38 |
CRT AB | 0.67 (0.58–0.77) | 0.19 (0.16–0. 21) | 0.04 (0.03–0.05) | .71 | .72 | .50 | .07 | −.01 | −.25 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulz-Zhecheva, Y.; Voelkle, M.C.; Beauducel, A.; Biscaldi, M.; Klein, C. Predicting Fluid Intelligence by Components of Reaction Time Distributions from Simple Choice Reaction Time Tasks. J. Intell. 2016, 4, 8. https://doi.org/10.3390/jintelligence4030008
Schulz-Zhecheva Y, Voelkle MC, Beauducel A, Biscaldi M, Klein C. Predicting Fluid Intelligence by Components of Reaction Time Distributions from Simple Choice Reaction Time Tasks. Journal of Intelligence. 2016; 4(3):8. https://doi.org/10.3390/jintelligence4030008
Chicago/Turabian StyleSchulz-Zhecheva, Yoanna, Manuel C. Voelkle, André Beauducel, Monica Biscaldi, and Christoph Klein. 2016. "Predicting Fluid Intelligence by Components of Reaction Time Distributions from Simple Choice Reaction Time Tasks" Journal of Intelligence 4, no. 3: 8. https://doi.org/10.3390/jintelligence4030008
APA StyleSchulz-Zhecheva, Y., Voelkle, M. C., Beauducel, A., Biscaldi, M., & Klein, C. (2016). Predicting Fluid Intelligence by Components of Reaction Time Distributions from Simple Choice Reaction Time Tasks. Journal of Intelligence, 4(3), 8. https://doi.org/10.3390/jintelligence4030008