Biocompatibility of Nanocellulose-Reinforced PVA Hydrogel with Human Corneal Epithelial Cells for Ophthalmic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Biocompatibility Studies
3. Materials and Methods
3.1. Materials
3.2. TEMPO-Mediated Oxidation of Cellulose
3.3. Preparation of CNC-Reinforced PVA Hydrogel
3.4. Optical Microscopy
3.5. Protein Adsorption Assay
3.6. Biocompatibility Studies
3.6.1. Cell Culture
3.6.2. Direct Cytocompatibility Test
3.6.3. Cell Adhesion and Viability
- Live-dead staining: Adherent cells were double stained with calcein-AM and propidium iodine (PI) to visualize live and non-viable cells, respectively, after 24 h culture. Cell culture medium was removed from the wells, the lenses were carefully rinsed with PBS, and 300 µL of assay solution (2 μL calcein-AM and 1 μL PI per mL of PBS) was added to each sample and incubated for 15 min at 37 °C, 5% CO2. The stained cells were imaged using a fluorescence microscope (Nikon ECLIPSE TE2000-U, Tokyo, Japan) with λex 490 nm, λem 515 nm filter to visualize live cells and λex 535 nm, λem 617 nm filter to visualize cells with compromised membrane integrity.
- Cell viability test: Cell metabolic activity, an indicator of cell viability, was assessed by the AB assay following the protocol described in Section 3.6.2.
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [PubMed]
- Lloyd, A.; Faragher, R.; Wassall, M.; Rhys-Williams, W.; Wong, L.; Hughes, J.; Hanlon, G. Assessing the in vitro cell based ocular compatibility of contact lens materials. Contact Lens Anter. Eye 2000, 23, 119–123. [Google Scholar] [CrossRef]
- Sakata, M.; Sack, R.A.; Sathe, S.; Holden, B.; Beaton, A.R. Polymorphonuclear leukocyte cells and elastase in tears. Curr. Eye Res. 1997, 16, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.S.; Schottman, T.; Gulati, M. Turning the tide of corneal blindness. Indian J. Ophthalmol. 2012, 60, 423. [Google Scholar] [CrossRef] [PubMed]
- Myung, D.; Duhamel, P.E.; Cochran, J.R.; Noolandi, J.; Ta, C.N.; Frank, C.W. Development of Hydrogel-Based Keratoprostheses: A Materials Perspective. Biotechnol. Prog. 2008, 24, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagerholm, P.; Lagali, N.S.; Merrett, K.; Jackson, W.B.; Munger, R.; Liu, Y.; Polarek, J.W.; Söderqvist, M.; Griffith, M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci. Transl. Med. 2010, 2. [Google Scholar] [CrossRef] [PubMed]
- Carrier, P.; Deschambeault, A.; Talbot, M.; Giasson, C.J.; Auger, F.A.; Guérin, S.L.; Germain, L. Characterization of wound reepithelialization using a new human tissue-engineered corneal wound healing model. Invest. Ophthalmol. Vis. Sci. 2008, 49, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Aldave, A.J.; Kamal, K.M.; Vo, R.C.; Yu, F. The Boston type I keratoprosthesis: Improving outcomes and expanding indications. Ophthalmology 2009, 116, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Chirila, T.V.; Hicks, C.R.; Dalton, P.D.; Vijayasekaran, S.; Lou, X.; Hong, Y.; Clayton, A.B.; Ziegelaar, B.W.; Fitton, J.H.; Platten, S. Artificial cornea. Prog. Polym. Sci. 1998, 23, 447–473. [Google Scholar] [CrossRef]
- McLaughlin, C.R.; Acosta, M.C.; Luna, C.; Liu, W.; Belmonte, C.; Griffith, M.; Gallar, J. Regeneration of functional nerves within full thickness collagen–phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials 2010, 31, 2770–2778. [Google Scholar] [CrossRef] [PubMed]
- Uchino, Y.; Miyashita, H.; Shimmura, S.; Kobayashi, H.; Shimazaki, J.; Tsubota, K. Amniotic Membrane–Poly (Vinyl Alcohol) Hybrid Polymer as an Artificial Cornea Scaffold. Invest. Ophthalmol. Vis. Sci. 2005, 46, 4986. [Google Scholar]
- Princz, M.; Sheardown, H.; Griffith, M. Biomaterials and Regenerative Medicine in Ophthalmology; CRC Press/Woodhead Publishing: Cambridge, UK, 2009. [Google Scholar]
- Ghezzi, C.E.; Rnjak-Kovacina, J.; Kaplan, D.L. Corneal tissue engineering: Recent advances and future perspectives. Tissue Eng. Part B 2015, 21, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.; Alarcon, E.; Brunette, I. Regenerative approaches for the cornea. J. Intern. Med. 2016, 280, 276–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, A.W.; Faragher, R.G.; Denyer, S.P. Ocular biomaterials and implants. Biomaterials 2001, 22, 769–785. [Google Scholar] [CrossRef]
- Karlgard, C.; Wong, N.; Jones, L.; Moresoli, C. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials. Int. J. Pharm. 2003, 257, 141–151. [Google Scholar] [CrossRef]
- Meadows, D.L.; Paugh, J.R. Use of confocal microscopy to determine matrix and surface protein deposition profiles in hydrogel contact lenses. CLAO J. 1994, 20, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Stone, R. Why contact lens groups? Contact Lens Spectr. 1988, 38–41. [Google Scholar]
- Stapleton, F.; Stretton, S.; Papas, E.; Skotnitsky, C.; Sweeney, D.F. Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf. 2006, 4, 24–43. [Google Scholar] [CrossRef]
- Liu, W.; Merrett, K.; Griffith, M.; Fagerholm, P.; Dravida, S.; Heyne, B.; Scaiano, J.C.; Watsky, M.A.; Shinozaki, N.; Lagali, N. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 2008, 29, 1147–1158. [Google Scholar] [CrossRef]
- Rowe, R.; Sheskey, P.; Quinn, M. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Hyon, S.H.; Cha, W.I.; Ikada, Y. Preparation of Transparent Poly(vinyl-Alcohol) Hydrogel. Polym. Bull. 1989, 22, 119–122. [Google Scholar] [CrossRef]
- Hyon, S.H.; Cha, W.I.; Ikada, Y.; Kita, M.; Ogura, Y.; Honda, Y. Poly(Vinyl Alcohol) Hydrogels as Soft Contact-Lens Material. J. Biomat. Sci. Polym. E 1994, 5, 397–406. [Google Scholar] [CrossRef]
- Kita, M.; Ogura, Y.; Honda, Y.; Hyon, S.H.; Cha, W.I.; Ikada, Y. Evaluation of Polyvinyl-Alcohol Hydrogel as a Soft Contact-Lens Material. Graef. Arch. Clin. Exp. 1990, 228, 533–537. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Sun, F. Cyclodextrin-containing hydrogels for contact lenses as a platform for drug incorporation and release. Acta Biomater. 2010, 6, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, X.; Sun, F.; Cao, P. PVA hydrogels containing beta-cyclodextrin for enhanced loading and sustained release of ocular therapeutics. J. Biomater. Sci. Polym. Ed. 2010, 21, 1023–1038. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yu, Z.; Cai, Z.; Yu, L.; Lv, Y. Voriconazole Composited Polyvinyl Alcohol/Hydroxypropyl-beta-Cyclodextrin Nanofibers for Ophthalmic Delivery. PLoS ONE 2016, 11, e0167961. [Google Scholar] [CrossRef] [PubMed]
- Winterton, L.C.; Lally, J.M.; Sentell, K.B.; Chapoy, L.L. The elution of poly (vinyl alcohol) from a contact lens: The realization of a time release moisturizing agent/artificial tear. J. Biomed. Mater. Res. B 2007, 80b, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Tsuk, A.G.; Trinkaus-Randall, V.; Leibowitz, H.M. Advances in polyvinyl alcohol hydrogel keratoprostheses: Protection against ultraviolet light and fabrication by a molding process. J. Biomed. Mater. Res. 1997, 34, 299–304. [Google Scholar] [CrossRef]
- Wu, X.; Trinkaus-Randall, V.; Tsuk, A. Keratoprosthesis design and biological response to a synthetic cornea. Zhonghua Yan Ke Za Zhi 2001, 37, 462–464. [Google Scholar] [PubMed]
- Hou, Y.; Chen, C.; Liu, K.M.; Tu, Y.; Zhang, L.; Li, Y.B. Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism. RSC Adv. 2015, 5, 24023–24030. [Google Scholar] [CrossRef]
- Yokoyama, F.; Masada, I.; Shimamura, K.; Ikawa, T.; Monobe, K. Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid. Polym. Sci. 1986, 264, 595–601. [Google Scholar] [CrossRef]
- Zu, Y.; Zhang, Y.; Zhao, X.; Shan, C.; Zu, S.; Wang, K.; Li, Y.; Ge, Y. Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int. J. Biol. Macromol. 2012, 50, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Del. Rev. 2012, 64, 223–236. [Google Scholar] [CrossRef]
- Pan, Y.-S.; Xiong, D.-S.; Ma, R.-Y. A study on the friction properties of poly (vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear 2007, 262, 1021–1025. [Google Scholar] [CrossRef]
- Tummala, G.K.; Joffre, T.; Rojas, R.; Persson, C.; Mihranyan, A. Strain-induced stiffening of nanocellulose-reinforced poly (vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 2017, 13, 3936–3945. [Google Scholar] [CrossRef] [PubMed]
- Tummala, G.K.; Felde, N.; Gustafsson, S.; Bubholz, A.; Schröder, S.; Mihranyan, A. Light scattering in poly (vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic use. Opt. Mater. Express 2017, 7, 2824–2837. [Google Scholar] [CrossRef]
- Tummala, G.K.; Rojas, R.; Mihranyan, A. Poly (vinyl alcohol) Hydrogels Reinforced with Nanocellulose for Ophthalmic Applications: General Characteristics and Optical Properties. J. Phys. Chem. B 2016, 120, 13094–13101. [Google Scholar] [CrossRef]
- Åhlén, M.; Tummala, G.K.; Mihranyan, A. Nanoparticle-loaded Hydrogels as a Pathway for Enzyme-triggered Drug Release in Ophthalmic Applications. Int. J. Pharm. 2017, 536, 73–81. [Google Scholar] [CrossRef]
- Luensmann, D.; Jones, L. Protein deposition on contact lenses: The past, the present, and the future. Contact Lens Anter. Eye 2012, 35, 53–64. [Google Scholar] [CrossRef]
- Green-Church, K.B.; Nichols, K.K.; Kleinholz, N.M.; Zhang, L.; Nichols, J.J. Investigation of the human tear film proteome using multiple proteomic approaches. Mol. Vis. 2008, 14, 456–470. [Google Scholar]
- Sindt, C.W.; Longmuir, R.A. Contact lens strategies for the patient with dry eye. Ocul. Surf. 2007, 5, 294–307. [Google Scholar] [CrossRef]
- Tummala, G.K.; Joffre, T.; Lopes, V.R.; Liszka, A.; Buznyk, O.; Ferraz, N.; Persson, C.; Griffith, M.; Mihranyan, A. Hyperelastic Nanocellulose-Reinforced Hydrogel of High Water Content for Ophthalmic Applications. ACS Biomater. Sci. Eng. 2016, 2, 2072–2079. [Google Scholar] [CrossRef]
- Mihranyan, A. Viscoelastic properties of cross-linked polyvinyl alcohol and surface-oxidized cellulose whisker hydrogels. Cellulose 2013, 20, 1369–1376. [Google Scholar] [CrossRef]
- Marques, M.R.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tummala, G.K.; Lopes, V.R.; Mihranyan, A.; Ferraz, N. Biocompatibility of Nanocellulose-Reinforced PVA Hydrogel with Human Corneal Epithelial Cells for Ophthalmic Applications. J. Funct. Biomater. 2019, 10, 35. https://doi.org/10.3390/jfb10030035
Tummala GK, Lopes VR, Mihranyan A, Ferraz N. Biocompatibility of Nanocellulose-Reinforced PVA Hydrogel with Human Corneal Epithelial Cells for Ophthalmic Applications. Journal of Functional Biomaterials. 2019; 10(3):35. https://doi.org/10.3390/jfb10030035
Chicago/Turabian StyleTummala, Gopi Krishna, Viviana R. Lopes, Albert Mihranyan, and Natalia Ferraz. 2019. "Biocompatibility of Nanocellulose-Reinforced PVA Hydrogel with Human Corneal Epithelial Cells for Ophthalmic Applications" Journal of Functional Biomaterials 10, no. 3: 35. https://doi.org/10.3390/jfb10030035
APA StyleTummala, G. K., Lopes, V. R., Mihranyan, A., & Ferraz, N. (2019). Biocompatibility of Nanocellulose-Reinforced PVA Hydrogel with Human Corneal Epithelial Cells for Ophthalmic Applications. Journal of Functional Biomaterials, 10(3), 35. https://doi.org/10.3390/jfb10030035