Surface Properties of Ti6Al7Nb Alloy: Surface Free Energy and Bacteria Adhesion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Surface Texture Preparation
- –
- laser type: diode-pumped pulse disk laser with harmonic generation 3;
- –
- wavelength: 343 nm;
- –
- average power: 5 W;
- –
- pulse duration: 6.2 ps;
- –
- 400 kHz pulse frequency with the possibility of dividing by a number from 1 to 10,000;
- –
- maximum pulse energy: 12.6 μJ;
- –
- fluence: 4.8 J/cm2.
- –
- 15.86% density, 15.69 μm depth;
- –
- 44.14% density, 15.69 μm depth;
- –
- 10.00% density, 41.50 μm depth;
- –
- 30.00% density, 5.00 μm depth;
- –
- 15.86% density, 67.31 μm depth;
- –
- 30.00% density, 41.50 μm depth;
- –
- 30.00% density, 78.00 μm depth;
- –
- 44.14% density, 67.31 μm depth;
- –
- 50.00% density, 41.50 μm depth.
- –
- 50% density, 5 μm depth;
- –
- 10% density, 5 μm depth;
- –
- 10% density, 78 μm depth.
2.2. Surface Free Energy Determination
2.3. Bacterial Cell Culture and Assessment of Bacterial Adhesion and Biofilm Formation
2.4. Statistical Analysis
3. Results
3.1. Topography of the Laser Textured Surfaces
3.2. Surface Free Energy Determination
3.3. Bacterial Adhesion and Biofilm Formation
4. Discussion
- –
- 50% density, 5 μm depth;
- –
- 10% density, 5 μm depth;
- –
- 10% density, 78 μm depth.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mabboux, F.; Ponsonnet, L.; Morrier, J.J.; Jaffrezic, N.; Barsotti, O. Surface free energy and bacterial retention to saliva-coated dental implant materials—An in vitro study. Colloids Surf. B Biointerfaces 2004, 39, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys and related materials for biomedical applications. Mater. Sci. Eng. C 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Olmedo, D.G.; Duffó, G.; Cabrini, R.L.; Guglielmotti, M.B. Local effect of titanium implant corrosion, an experimental study in rats. Int. J. Oral Maxillofac. Surg. 2008, 37, 1032–1038. [Google Scholar] [CrossRef]
- Pfleging, W.; Kumari, R.; Besser, H.; Scharnweber, T.; Majumdar, J.D. Laser surface textured titanium alloy (Ti-6Al-4V): Part 1—Surface characterization. Appl. Surf. Sci. 2015, 355, 104–111. [Google Scholar] [CrossRef]
- Pou, P.; Riveiro, A.; Del Val, J.; Comesaña, R.; Penide, J.; Arias-González, F.; Soto, R.; Lusquiños, F.; Pou, J. Laser surface texturing of titanium for bioengineering applications. Procedia Manuf. 2017, 13, 694–701. [Google Scholar] [CrossRef]
- Chan, C.W.; Carson, L.; Smith, G.C.; Morelli, A.; Lee, S. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering. Appl. Surf. Sci. 2018, 404, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Rajab, F.H.; Liauw, C.M.; Benson, P.S.; Li, L.; Whitehead, K.A. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics. Colloids Surf. B Biointerfaces 2017, 160, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.C.; Siedlecki, C.A. Surface texturing and control of bacterial adhesion. Reference module in materials science and materials engineering. Compr. Biomater. II 2017, 4, 303–320. [Google Scholar]
- Cunha, A.; Serro, A.P.; Oliveira, V.; Almeida, A.; Vilar, R.; Durrieu, M.C. Wetting behaviour of femtosecond laser textured Ti-6Al-4V surfaces. Appl. Surf. Sci. 2013, 265, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.; Elie, A.M.; Plawinski, L.; Serro, A.P.; Botelho do Rego, A.M.; Almeida, A.; Urdaci, M.C.; Durrieu, M.C.; Vilar, R. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 2016, 360, 485–493. [Google Scholar] [CrossRef]
- Antoszewski, B. Mechanical seals with sliding surface texture—Model fluid flow and some aspects of the laser forming of the texture. Procedia Eng. 2012, 39, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Schlie, S.; Fadeeva, E.; Koch, J.; Ngezahayo, A.; Chichkov, B.N. Femtosecond laser fabricated spike structures for selective control of cellular behaviour. J. Biomater. Appl. 2010, 25, 217–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdoğan, M.; Öktem, B.; Kalaycıoğlu, H.; Yavaş, S.; Mukhopadhyay, P.K.; Eken, K.; Ozgören, K.; Aykaç, Y.; Tazebay, U.H.; Ilday, F.Ö. Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt. Express. 2011, 11, 10986–10996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallgren, C.; Reimers, H.; Chakarov, D.; Gold, J.; Wennerberg, A. An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials 2003, 24, 701–710. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Choe, H.C.; Brantley, W.A.; Sohn, I.B. Hydroxyapatite thin film coatings on nanotube-formed Ti-35Nb-10Zr alloys after femtosecond laser texturing. Surf. Coat. Technol. 2013, 25, 13–22. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 2007, 253, 7272–7280. [Google Scholar] [CrossRef]
- Bizi-Bandoki, P.; Benayoun, S.; Valette, S.; Beaugiraud, B.; Audouard, E. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment. Appl. Surf. Sci. 2011, 12, 5213–5218. [Google Scholar] [CrossRef]
- Dahotre, N.B.; Paital, S.R.; Samant, A.N.; Daniel, C. Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication. Philos. Trans. Royal Soc. A 2010, 368, 1863–1889. [Google Scholar] [CrossRef]
- Tiainen, L.; Serna, R. Novel laser surface texturing for improved primary stability of titanium implants. J. Mech. Behav. Biomed. Mater. 2019, 98, 26–39. [Google Scholar] [CrossRef]
- Suraj Nanduru, V.S.P.; Ramakrishna, N.S.; Babu, R.S.; Babu, P.D.; Marimuthu, P.; Miryala, S.; Srinandan, C.S. Laser surface texturing inhibits biofilm formation. Mater. Chem. Phys. 2021, 271, 124909. [Google Scholar] [CrossRef]
- Sirdeshmukh, N.; Dongre, G. Laser micro & nano surface texturing for enhancing osseointegration and antimicrobial effect of biomaterials: A review. Mater. Today Proc. 2021, 44, 2348–2355. [Google Scholar] [CrossRef]
- Lazzini, G.; Romoli, L.; Lutey, A.H.A.; Fuso, F. Modelling the interaction between bacterial cells and laser-textured surfaces. Surf. Coat. Technol. 2019, 375, 8–14. [Google Scholar] [CrossRef]
- Krzywicka, M.; Antoszewski, B.; Pałka, K.; Tofil, S. Ti6Al7Nb alloy laser micromachining-surface properties. In Proceedings of the 2018 Conference on Electrotechnology: Processes, Models, Control and Computer Science, Kielce, Poland, 12–14 November 2018; p. 8596530. [Google Scholar] [CrossRef]
- Jain, A.; Kumari, N.; Jagadevan, S.; Bajpai, V. Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling. Surf. Interfaces 2020, 21, 100714. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Miao, L.; Fu, L. Effects of laser-textured surface pattern on the wetting behavior and composition optimization of brazing filler: Experimental study and numerical simulation. Appl. Phys. A Mater. 2019, 125, 879. [Google Scholar] [CrossRef]
- Sęk, P.; Antoszewski, B. Texturing surface—Topography and surface energy. Adv. Sci. Technol. 2011, 6, 88–95. [Google Scholar]
- Hsu, L.C.; Fang, J.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. Environ. Microbiol. 2013, 79, 2703–2712. [Google Scholar] [CrossRef] [Green Version]
- Fadeeva, E.; Truong, V.K.; Stiesch, M.; Chichkov, B.N.; Crawford, R.J.; Wang, J.; Ivanova, E.P. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 2011, 27, 3012–3019. [Google Scholar] [CrossRef]
- Capitanu, L.; Badita, L.L.; Tiganesteanu, C.; Florescu, V.; Isvoranu, L.F. Increasing the wear resistance of hip prosthesis by laser surface microtexturing of the femoral head. Acta Electroteh. 2019, 60, 43–57. [Google Scholar]
- Lutey, A.H.A.; Gemini, L.; Romoli, L.; Lazzini, G.; Fuso, F.; Faucon, M.; Kling, R. Towards laser-textured antibacterial surfaces. Sci. Rep. 2018, 8, 10112. [Google Scholar] [CrossRef]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Yang, M.; Zhang, H.P. Dynamic clustering in suspension of motile bacteria. EPL 2015, 111, 54002. [Google Scholar] [CrossRef] [Green Version]
- Ijaola, A.O.; Bamidele, E.A.; Akisin, C.J.; Bello, I.T.; Oyatobo, A.T.; Abdulkareem, A.; Farayibi, P.K.; Asmatulu, E. Wettability transition for laser textured surfaces: A comprehensive review. Surf. Interfaces 2020, 21, 100802. [Google Scholar] [CrossRef]
- Ahn, S.J.; Lim, B.S.; Lee, S.J. Surface characteristics of orthodontic adhesives and effects on streptococcal adhesion. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chibowski, E.; Szcześ, A. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy. Mater. Sci. Eng. C 2017, 70, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.J.; Bundy, K.J.; Connor, K.O.; Moses, R.L.; Jacobs, J.J. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001, 7, 55–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liber-Kneć, A.; Łagan, S. The use of contact angle and the surface free energy as the surface characteristics of the polymers used in medicine. Polym. Med. 2014, 44, 29–37. [Google Scholar]
- Pereni, C.; Zhao, Q.; Liu, Y.; Abel, E. Surface free energy effect on bacterial retention. Colloids. Surf. B Biointerfaces 2006, 48, 143–147. [Google Scholar] [CrossRef]
- Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm develop-ment. Clin. Oral. Implants Res. 2006, 17 (Suppl. S2), 68–81. [Google Scholar] [CrossRef]
- Quirynen, M.; Bollen, C. The influence of surface roughness and surface-free energy on supra-and subgin-gival plaque formation in man: A review of the literature. J. Clin. Periodontol. 1995, 22, 1–14. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, X.; Gao, X.; Chen, F.; Liang, X.; Li, D. Effects of surface properties of polymer-based restorative materials on early adhesion of Streptococcus mutans in vitro. J. Dent. 2016, 54, 33–40. [Google Scholar] [CrossRef]
- Truong, V.K.; Webb, H.K.; Fadeeva, E.; Chichkov, B.N.; Wu, A.H.F.; Lamb, R.; Wang, J.Y.; Crawford, R.J.; Ivanova, E.P. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. Biofouling 2021, 28, 539–550. [Google Scholar] [CrossRef]
- Braem, A.; Van Mellaert, L.; Mattheys, T.; Hofmans, D.; De Waelheyns, E.; Geris, L.; Anné, J.; Schrooten, J.; Vleugels, J. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. J. Biomed. Mater. Res. 2014, 102, 215–224. [Google Scholar] [CrossRef]
- Peter, A.; Lutey, A.H.A.; Faas, S.; Romoli, L.; Onuseit, V.; Graf, T. Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces. Opt. Laser. Technol. 2020, 123, 105954. [Google Scholar] [CrossRef]
- Romoli, L.; Lazzini, G.; Lutey, A.H.A.; Fuso, F. Influence of ns laser texturing of AISI 316L surfaces for reducing bacterial adhesion. CIRP Ann. 2020, 69, 529–532. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
Density [%] | Depth [µm] | SFE [mJ/m2] |
---|---|---|
15.86 | 15.69 | 42.33 |
44.14 | 15.69 | 46.47 |
10.00 | 41.50 | 47.17 |
30.00 | 5.00 | 48.97 |
15.86 | 67.31 | 49.30 |
30.00 | 41.50 | 50.60 |
30.00 | 78.00 | 53.07 |
44.14 | 67.31 | 53.50 |
50.00 | 41.50 | 58.57 |
Density [%] | Depth [µm] | CFU/mL | OD |
---|---|---|---|
50 | 5 | 5.53 × 106 | 0.437 |
10 | 5 | 2.10 × 106 | 0.336 |
10 | 78 | 4.66 × 106 | 0.317 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzywicka, M.; Szymańska, J.; Tofil, S.; Malm, A.; Grzegorczyk, A. Surface Properties of Ti6Al7Nb Alloy: Surface Free Energy and Bacteria Adhesion. J. Funct. Biomater. 2022, 13, 26. https://doi.org/10.3390/jfb13010026
Krzywicka M, Szymańska J, Tofil S, Malm A, Grzegorczyk A. Surface Properties of Ti6Al7Nb Alloy: Surface Free Energy and Bacteria Adhesion. Journal of Functional Biomaterials. 2022; 13(1):26. https://doi.org/10.3390/jfb13010026
Chicago/Turabian StyleKrzywicka, Monika, Jolanta Szymańska, Szymon Tofil, Anna Malm, and Agnieszka Grzegorczyk. 2022. "Surface Properties of Ti6Al7Nb Alloy: Surface Free Energy and Bacteria Adhesion" Journal of Functional Biomaterials 13, no. 1: 26. https://doi.org/10.3390/jfb13010026
APA StyleKrzywicka, M., Szymańska, J., Tofil, S., Malm, A., & Grzegorczyk, A. (2022). Surface Properties of Ti6Al7Nb Alloy: Surface Free Energy and Bacteria Adhesion. Journal of Functional Biomaterials, 13(1), 26. https://doi.org/10.3390/jfb13010026