A Review of Functional Analysis of Endothelial Cells in Flow Chambers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Monolayer Chambers
3.1.1. Parallel Chamber
3.1.2. T-Chamber
3.1.3. Step Flow Chamber
3.1.4. Cone Plate Flow Chamber
3.1.5. Stretch Chambers
3.2. Summary of Monolayer Chambers
3.3. Application of WSS to EC-SMC Coculture
3.3.1. Interaction between ECs and SMCs
3.3.2. EC and SMC Coculture Models for WSS Experiments
- Double-side type (flat and tubular types; Figure 7A,B): ECs and SMCs are cocultured on the opposite sides of a porous membrane (flat type, 20 cases (44.4%), tubular type, 6 cases (13.3%), total of 26 cases (57.8%));
- Single-side type (Figure 7C): ECs and SMCs are cocultured on the same surface (3 cases (6.7%));
- Direct culture type (Figure 7D): ECs are directly cultured above a pre-cultured SMC layer (7 cases (15.6%));
- 3D culture type (Figure 7E): ECs are cultured on type I collagen gel or the other types of ECM gel containing embedded SMCs (8 cases (17.8%));
- Another type: ECs are cultured on the inside of a culture insert, and SMCs are cocultured on the bottom of the well in which the culture insert was placed (1 case (2.2%)).
3.3.3. Responses of ECs and SMCs to WSS under Coculture Conditions
3.3.4. Advanced Applications of EC and SMC Coculture Models
3.4. Cellular Experiments of ECs with Microfluidic Devices
3.4.1. Microfluidic Cellular Experiments
3.4.2. Microfluidic Devices for Shear Stress Applications
3.4.3. Experiments with EC monolayer
3.4.4. Experiments with Microvascular Networks and Their Perspective
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Flaherty, J.T.; Pierce, J.E.; Ferrans, V.J.; Patel, D.J.; Tucker, W.K.; Fry, D.L. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 1972, 30, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.L.; Smith, M.J.; Lawrence, M.B.; Ley, K. Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo. Microcirculation 2002, 9, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.W.; Ferrara, K.W.; Barakat, A.I. Modulation of ATP/ADP concentration at the endothelial surface by shear stress: Effect of flow recirculation. Ann. Biomed. Eng. 2007, 35, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Avari, H.; Savory, E.; Rogers, K.A. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells. Cardiovasc. Eng. Technol. 2016, 7, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Viegas, K.D.; Dol, S.S.; Salek, M.M.; Shepherd, R.D.; Martinuzzi, R.M.; Rinker, K.D. Methicillin resistant Staphylococcus aureus adhesion to human umbilical vein endothelial cells demonstrates wall shear stress dependent behaviour. Biomed. Eng. Online 2011, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Taba, Y.; Sasaguri, T.; Miyagi, M.; Abumiya, T.; Miwa, Y.; Ikeda, T.; Mitsumata, M. Fluid shear stress induces lipocalin-type prostaglandin D(2) synthase expression in vascular endothelial cells. Circ. Res. 2000, 86, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Frame, M.D.; Sarelius, I.H. Flow-induced cytoskeletal changes in endothelial cells growing on curved surfaces. Microcirculation 2000, 7, 419–427. [Google Scholar] [CrossRef]
- Lafaurie-Janvore, J.; Antoine, E.E.; Perkins, S.J.; Babataheri, A.; Barakat, A.I. A simple microfluidic device to study cell-scale endothelial mechanotransduction. Biomed. Microdevices 2016, 18, 63. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xiang, C.; Liu, B.; Zhu, Y.; Luan, Y.; Liu, S.T.; Qin, K.R. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells. Biomed. Eng. Online 2016, 15, 154. [Google Scholar] [CrossRef] [Green Version]
- Levesque, M.J.; Nerem, R.M. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 1985, 107, 341–347. [Google Scholar] [CrossRef]
- Prasad, A.R.; Logan, S.A.; Nerem, R.M.; Schwartz, C.J.; Sprague, E.A. Flow-related responses of intracellular inositol phosphate levels in cultured aortic endothelial cells. Circ. Res. 1993, 72, 827–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munn, L.L.; Melder, R.J.; Jain, R.K. Analysis of cell flux in the parallel plate flow chamber: Implications for cell capture studies. Biophys. J. 1994, 67, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Anzai, H.; Watanabe, T.; Han, X.; Putra, N.K.; Wang, Z.; Kobayashi, H.; Ohta, M. Endothelial cell distributions and migration under conditions of flow shear stress around a stent wire. Technol. Health Care 2020, 28, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Putra, N.K.; Anzai, H.; Ohta, M. Endothelial Cell Distribution after Flow Exposure with Two Stent Struts Placed in Different Angles. Front. Physiol. 2022, 12, 733547. [Google Scholar] [CrossRef] [PubMed]
- Cadroy, Y.; Diquelou, A.; Dupouy, D.; Bossavy, J.P.; Sakariassen, K.S.; Sie, P.; Boneu, B. The thrombomodulin/protein C/protein S anticoagulant pathway modulates the thrombogenic properties of the normal resting and stimulated endothelium. Arter. Thromb. Vasc. Biol. 1997, 17, 520–527. [Google Scholar] [CrossRef]
- Gopalan, P.K.; Smith, C.W.; Lu, H.; Berg, E.L.; McIntire, L.V.; Simon, S.I. Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow can be activated through L-selectin. J. Immunol. 1997, 158, 367–375. [Google Scholar]
- Gosgnach, W.; Challah, M.; Coulet, F.; Michel, J.B.; Battle, T. Shear stress induces angiotensin converting enzyme expression in cultured smooth muscle cells: Possible involvement of bFGF. Cardiovasc. Res. 2000, 45, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Chen, Y.R.; Jones, C.I., 3rd; Meenakshisundaram, G.; Zweier, J.L.; Alevriadou, B.R. Shear-induced reactive nitrogen species inhibit mitochondrial respiratory complex activities in cultured vascular endothelial cells. Am. J. Physiol. Cell Physiol. 2007, 292, C1103–C1112. [Google Scholar] [CrossRef]
- Popa, M.; Tahir, S.; Elrod, J.; Kim, S.H.; Leuschner, F.; Kessler, T.; Bugert, P.; Pohl, U.; Wagner, A.H.; Hecker, M. Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell-platelet-monocyte interaction. Proc. Natl. Acad. Sci. USA 2018, 115, E5556–E5565. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.B.; McIntire, L.V.; Eskin, S.G. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 1987, 70, 1284–1290. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, T.; Zhang, P.; Fu, C.; Dong, C. Fibrin serves as a divalent ligand that regulates neutrophil-mediated melanoma cells adhesion to endothelium under shear conditions. Am. J. Physiol. Cell Physiol. 2012, 302, C1189–C1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kona, S.; Dong, J.F.; Liu, Y.; Tan, J.; Nguyen, K.T. Biodegradable nanoparticles mimicking platelet binding as a targeted and controlled drug delivery system. Int. J. Pharm. 2012, 423, 516–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rychak, J.J.; Lindner, J.R.; Ley, K.; Klibanov, A.L. Deformable gas-filled microbubbles targeted to P-selectin. J. Control. Release 2006, 114, 288–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Berk, B.C. Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. J. Clin. Investig. 1996, 98, 2623–2631. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Kim, M.; Hu, Y.L.; Jalali, S.; Schlaepfer, D.D.; Hunter, T.; Chien, S.; Shyy, J.Y. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. J. Biol. Chem. 1997, 272, 30455–30462. [Google Scholar] [CrossRef] [Green Version]
- Geiger, R.V.; Berk, B.C.; Alexander, R.W.; Nerem, R.M. Flow-induced calcium transients in single endothelial cells: Spatial and temporal analysis. Am. J. Physiol. 1992, 262, C1411–C1417. [Google Scholar] [CrossRef]
- Chachisvilis, M.; Zhang, Y.L.; Frangos, J.A. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc. Natl. Acad. Sci. USA 2006, 103, 15463–15468. [Google Scholar] [CrossRef] [Green Version]
- Plata, A.M.; Sherwin, S.J.; Krams, R. Endothelial nitric oxide production and transport in flow chambers: The importance of convection. Ann. Biomed. Eng. 2010, 38, 2805–2816. [Google Scholar] [CrossRef]
- Surya, V.N.; Michalaki, E.; Fuller, G.G.; Dunn, A.R. Lymphatic endothelial cell calcium pulses are sensitive to spatial gradients in wall shear stress. Mol. Biol. Cell 2019, 30, 923–931. [Google Scholar] [CrossRef]
- Michalaki, E.; Surya, V.N.; Fuller, G.G.; Dunn, A.R. Perpendicular alignment of lymphatic endothelial cells in response to spatial gradients in wall shear stress. Commun. Biol. 2020, 3, 57. [Google Scholar] [CrossRef]
- Chiu, J.J.; Chen, C.N.; Lee, P.L.; Yang, C.T.; Chuang, H.S.; Chien, S.; Usami, S. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J. Biomech. 2003, 36, 1883–1895. [Google Scholar] [CrossRef]
- Bao, X.; Lu, C.; Frangos, J.A. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: Role of NO, NF kappa B, and egr-1. Arter. Thromb. Vasc. Biol. 1999, 19, 996–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.; Clark, C.B.; Frangos, J.A. Temporal gradient in shear-induced signaling pathway: Involvement of MAP kinase, c-fos, and connexin43. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1598–H1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.; Lu, C.; Frangos, J.A. Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H22–H29. [Google Scholar] [CrossRef] [PubMed]
- Haidekker, M.A.; L’Heureux, N.; Frangos, J.A. Fluid shear stress increases membrane fluidity in endothelial cells: A study with DCVJ fluorescence. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1401–H1406. [Google Scholar] [CrossRef]
- Butler, P.J.; Norwich, G.; Weinbaum, S.; Chien, S. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. Cell Physiol. 2001, 280, C962–C969. [Google Scholar] [CrossRef]
- Butler, P.J.; Tsou, T.C.; Li, J.Y.; Usami, S.; Chien, S. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: A role for membrane perturbation in shear-induced MAPK activation. FASEB J. 2002, 16, 216–218. [Google Scholar] [CrossRef]
- Chien, S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 2003, 83, 131–151. [Google Scholar] [CrossRef]
- Dewey, C.F., Jr.; Bussolari, S.R.; Gimbrone, M.A., Jr.; Davies, P.F. The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress. J. Biomech. Eng. 1981, 103, 177–185. [Google Scholar] [CrossRef]
- Alevriadou, B.R.; Moake, J.L.; Turner, N.A.; Ruggeri, Z.M.; Folie, B.J.; Phillips, M.D.; Schreiber, A.B.; Hrinda, M.E.; McIntire, L.V. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 1993, 81, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Galbusera, M.; Zoja, C.; Donadelli, R.; Paris, S.; Morigi, M.; Benigni, A.; Figliuzzi, M.; Remuzzi, G.; Remuzzi, A. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood 1997, 90, 1558–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallgren, C.; Ljungh, A.; Shenkman, B.; Varon, D.; Savion, N. Venous shear stress enhances platelet mediated staphylococcal adhesion to artificial and damaged biological surfaces. Biomaterials 2002, 23, 4581–4589. [Google Scholar] [CrossRef]
- Bongrazio, M.; Pries, A.R.; Zakrzewicz, A. The endothelium as physiological source of properdin: Role of wall shear stress. Mol. Immunol. 2003, 39, 669–675. [Google Scholar] [CrossRef]
- Maroski, J.; Vorderwülbecke, B.J.; Fiedorowicz, K.; Da Silva-Azevedo, L.; Siegel, G.; Marki, A.; Pries, A.R.; Zakrzewicz, A. Shear stress increases endothelial hyaluronan synthase 2 and hyaluronan synthesis especially in regard to an atheroprotective flow profile. Exp. Physiol. 2011, 96, 977–986. [Google Scholar] [CrossRef]
- Bretón-Romero, R.; González de Orduña, C.; Romero, N.; Sánchez-Gómez, F.J.; de Álvaro, C.; Porras, A.; Rodríguez-Pascual, F.; Laranjinha, J.; Radi, R.; Lamas, S. Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress. Free Radic. Biol. Med. 2012, 52, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, H.; Kawata, K.; Park, J.-Y. Exercise-Mediated Wall Shear Stress Increases Mitochondrial Biogenesis in Vascular Endothelium. PLoS ONE 2014, 9, e111409. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, M.; O’Connor, D.T.; Marcar, L.; Power, D.; Moloney, M.A.; Kavanagh, E.G.; Leask, R.L.; Nolan, J.; Kiely, P.A.; Walsh, M.T. The Presence of a High Peak Feature Within Low-Average Shear Stimuli Induces Quiescence in Venous Endothelial Cells. Ann. Biomed. Eng. 2020, 48, 582–594. [Google Scholar] [CrossRef]
- O’Keeffe, L.M.; Muir, G.; Piterina, A.V.; McGloughlin, T. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses. J. Biomech. Eng. 2009, 131, 3148191. [Google Scholar] [CrossRef]
- Parker, I.K.; Roberts, L.M.; Hansen, L.; Gleason, R.L., Jr.; Sutliff, R.L.; Platt, M.O. Pro-atherogenic shear stress and HIV proteins synergistically upregulate cathepsin K in endothelial cells. Ann. Biomed. Eng. 2014, 42, 1185–1194. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.; Kaazempur-Mofrad, M.; Kamm, R.; Zhang, Y.; Vaughn, S.; García-Cardeña, G.; A Gimbrone, M. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-prone and atherosclerosis-protected regions of the human vasculature. Cardiovasc. Pathol. 2004, 13, 26. [Google Scholar] [CrossRef]
- Franzoni, M.; Cattaneo, I.; Ene-Iordache, B.; Oldani, A.; Righettini, P.; Remuzzi, A. Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers. Cytotechnology 2016, 68, 1885–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feaver, R.E.; Gelfand, B.D.; Blackman, B.R. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat. Commun. 2013, 4, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankaran, H.; Neelamegham, S. Nonlinear Flow Affects Hydrodynamic Forces and Neutrophil Adhesion Rates in Cone–Plate Viscometers. Biophys. J. 2001, 80, 2631–2648. [Google Scholar] [CrossRef] [Green Version]
- Vedernikov, Y.P.; Aarhus, L.; Shepherd, J.T.; Vanhoutte, P.M. Postmortem changes in endothelium-dependent and independent responses of porcine coronary arteries. Gen. Pharmacol. Vasc. Syst. 1990, 21, 49–52. [Google Scholar] [CrossRef]
- Rosales, O.R.; Isales, C.M.; Barrett, P.Q.; Brophy, C.; Sumpio, B.E. Exposure of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools. Biochem. J. 1997, 326, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Caille, N.; Tardy, Y.; Meister, J.J. Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann. Biomed. Eng. 1998, 26, 409–416. [Google Scholar] [CrossRef]
- Yamada, H.; Ando, H. Orientation of apical and basal actin stress fibers in isolated and subconfluent endothelial cells as an early response to cyclic stretching. Mol. Cell Biomech. 2007, 4, 1–12. [Google Scholar]
- Takeda, H.; Komori, K.; Nishikimi, N.; Nimura, Y.; Sokabe, M.; Naruse, K. Bi-phasic activation of eNOS in response to uni-axial cyclic stretch is mediated by differential mechanisms in BAECs. Life Sci. 2006, 79, 233–239. [Google Scholar] [CrossRef]
- Katanosaka, Y.; Bao, J.H.; Komatsu, T.; Suemori, T.; Yamada, A.; Mohri, S.; Naruse, K. Analysis of cyclic-stretching responses using cell-adhesion-patterned cells. J. Biotechnol. 2008, 133, 82–89. [Google Scholar] [CrossRef]
- Hashimoto-Komatsu, A.; Hirase, T.; Asaka, M.; Node, K. Angiotensin II induces microtubule reorganization mediated by a deacetylase SIRT2 in endothelial cells. Hypertens. Res. 2011, 34, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Barbero, N.; Gutierrez-Munoz, C.; Blanco-Colio, L.M. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int. J. Mol. Sci. 2021, 22, 7284. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.J.; Chen, L.J.; Lee, P.L.; Lee, C.I.; Lo, L.W.; Usami, S.; Chien, S. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 2003, 101, 2667–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastings, N.E.; Simmers, M.B.; McDonald, O.G.; Wamhoff, B.R.; Blackman, B.R. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell Physiol. 2007, 293, C1824–C1833. [Google Scholar] [CrossRef]
- Ji, Q.; Wang, Y.L.; Xia, L.M.; Yang, Y.; Wang, C.S.; Mei, Y.Q. High shear stress suppresses proliferation and migration but promotes apoptosis of endothelial cells co-cultured with vascular smooth muscle cells via down-regulating MAPK pathway. J. Cardiothorac. Surg. 2019, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wang, L.; Wei, F.; Li, C.; Wang, Z.; Yu, H.; Chen, H.; Wang, B.; Jiang, A. Effects of Caveolin-1-ERK1/2 pathway on endothelial cells and smooth muscle cells under shear stress. Exp. Biol. Med. (Maywood) 2020, 245, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Nackman, G.B.; Fillinger, M.F.; Shafritz, R.; Wei, T.; Graham, A.M. Flow modulates endothelial regulation of smooth muscle cell proliferation: A new model. Surgery 1998, 124, 353–361. [Google Scholar] [CrossRef]
- Qi, Y.X.; Jiang, J.; Jiang, X.H.; Wang, X.D.; Ji, S.Y.; Han, Y.; Long, D.K.; Shen, B.R.; Yan, Z.Q.; Chien, S.; et al. PDGF-BB and TGF-{beta}1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc. Natl. Acad. Sci. USA 2011, 108, 1908–1913. [Google Scholar] [CrossRef] [Green Version]
- Rashdan, N.A.; Lloyd, P.G. Fluid shear stress upregulates placental growth factor in the vessel wall via NADPH oxidase 4. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1655–H1666. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.C.; Chen, L.; Zhou, J.; Tang, Z.; Hsu, T.F.; Wang, Y.; Shih, Y.T.; Peng, H.H.; Wang, N.; Guan, Y.; et al. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ. Res. 2009, 105, 471–480. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yan, Z.Q.; Qi, Y.X.; Cheng, B.B.; Wang, X.D.; Zhao, D.; Shen, B.R.; Jiang, Z.L. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann. Biomed. Eng. 2010, 38, 729–737. [Google Scholar] [CrossRef]
- Yao, Q.P.; Qi, Y.X.; Zhang, P.; Cheng, B.B.; Yan, Z.Q.; Jiang, Z.L. SIRT1 and Connexin40 Mediate the normal shear stress-induced inhibition of the proliferation of endothelial cells co-cultured with vascular smooth muscle cells. Cell Physiol. Biochem. 2013, 31, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, Y.S.; Nguyen, P.; Wang, K.C.; Weiss, A.; Kuo, Y.C.; Chiu, J.J.; Shyy, J.Y.; Chien, S. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: Role of shear stress. Circ. Res. 2013, 113, 40–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmond, E.M.; Cahill, P.A.; Sitzmann, J.V. Perfused transcapillary smooth muscle and endothelial cell co-culture--a novel in vitro model. Vitr. Cell Dev. Biol. Anim. 1995, 31, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Redmond, E.M.; Cahill, P.A.; Sitzmann, J.V. Flow-mediated regulation of endothelin receptors in cocultured vascular smooth muscle cells: An endothelium-dependent effect. J. Vasc. Res. 1997, 34, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Redmond, E.M.; Cullen, J.P.; Cahill, P.A.; Sitzmann, J.V.; Stefansson, S.; Lawrence, D.A.; Okada, S.S. Endothelial cells inhibit flow-induced smooth muscle cell migration: Role of plasminogen activator inhibitor-1. Circulation 2001, 103, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Cucullo, L.; Hossain, M.; Tierney, W.; Janigro, D. A new dynamic in vitro modular capillaries-venules modular system: Cerebrovascular physiology in a box. BMC Neurosci. 2013, 14, 18. [Google Scholar] [CrossRef] [Green Version]
- Janke, D.; Jankowski, J.; Ruth, M.; Buschmann, I.; Lemke, H.D.; Jacobi, D.; Knaus, P.; Spindler, E.; Zidek, W.; Lehmann, K.; et al. The “artificial artery” as in vitro perfusion model. PLoS ONE 2013, 8, e57227. [Google Scholar] [CrossRef] [Green Version]
- Niwa, K.; Kado, T.; Sakai, J.; Karino, T. The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC-SMC coculture. Ann. Biomed. Eng. 2004, 32, 537–543. [Google Scholar] [CrossRef]
- Yamamoto, M.; James, D.; Li, H.; Butler, J.; Rafii, S.; Rabbany, S. Generation of stable co-cultures of vascular cells in a honeycomb alginate scaffold. Tissue Eng. Part A 2010, 16, 299–308. [Google Scholar] [CrossRef]
- Sakamoto, N.; Ohashi, T.; Sato, M. Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model. Ann. Biomed. Eng. 2006, 34, 408–415. [Google Scholar] [CrossRef]
- Wang, H.Q.; Huang, L.X.; Qu, M.J.; Yan, Z.Q.; Liu, B.; Shen, B.R.; Jiang, Z.L. Shear stress protects against endothelial regulation of vascular smooth muscle cell migration in a coculture system. Endothelium 2006, 13, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.J.; Chen, L.J.; Chang, S.F.; Lee, P.L.; Lee, C.I.; Tsai, M.C.; Lee, D.Y.; Hsieh, H.P.; Usami, S.; Chien, S. Shear stress inhibits smooth muscle cell-induced inflammatory gene expression in endothelial cells: Role of NF-kappaB. Arter. Thromb. Vasc. Biol. 2005, 25, 963–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, N.; Ueki, Y.; Oi, M.; Kiuchi, T.; Sato, M. Fluid shear stress suppresses ICAM-1-mediated transendothelial migration of leukocytes in coculture model. Biochem. Biophys. Res. Commun. 2018, 502, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Lavender, M.D.; Pang, Z.; Wallace, C.S.; Niklason, L.E.; Truskey, G.A. A system for the direct co-culture of endothelium on smooth muscle cells. Biomaterials 2005, 26, 4642–4653. [Google Scholar] [CrossRef] [Green Version]
- Truskey, G.A. Endothelial Cell Vascular Smooth Muscle Cell Co-Culture Assay For High Throughput Screening Assays For Discovery of Anti-Angiogenesis Agents and Other Therapeutic Molecules. Int. J. High Throughput Screen 2010, 2010, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Wu, A.; Truskey, G.A. Biomechanical effects of flow and coculture on human aortic and cord blood-derived endothelial cells. J. Biomech. 2011, 44, 2150–2157. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, N.; Kiuchi, T.; Sato, M. Development of an endothelial-smooth muscle cell coculture model using phenotype-controlled smooth muscle cells. Ann. Biomed. Eng. 2011, 39, 2750–2758. [Google Scholar] [CrossRef]
- Meng, H.; Tutino, V.M.; Xiang, J.; Siddiqui, A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. AJNR Am. J. Neuroradiol. 2014, 35, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Kimura, N.; Nakamura, M.; Komiya, K.; Nishi, S.; Yamaguchi, A.; Tanaka, O.; Misawa, Y.; Adachi, H.; Kawahito, K. Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy. J. Thorac. Cardiovasc. Surg. 2017, 153, S52–S62.e3. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Sakamoto, N.; Tomita, N.; Meng, H.; Sato, M.; Ohta, M. Influence of TGF-beta1 expression in endothelial cells on smooth muscle cell phenotypes and MMP production under shear stress in a co-culture model. Cytotechnology 2019, 71, 489–496. [Google Scholar] [CrossRef]
- Siddique, A.; Pause, I.; Narayan, S.; Kruse, L.; Stark, R.W. Endothelialization of PDMS-based microfluidic devices under high shear stress conditions. Colloids Surf. B Biointerfaces 2021, 197, 111394. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, Y.; Li, Y.; Shen, C. Hydrogel microfluidic-based liver-on-a-chip: Mimicking the mass transfer and structural features of liver. Biotechnol. Bioeng. 2021, 118, 612–621. [Google Scholar] [CrossRef]
- Shen, C.; Li, Y.; Wang, Y.; Meng, Q. Non-swelling hydrogel-based microfluidic chips. Lab Chip 2019, 19, 3962–3973. [Google Scholar] [CrossRef]
- van der Meer, A.D.; Poot, A.A.; Feijen, J.; Vermes, I. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 2010, 4, 11103. [Google Scholar] [CrossRef] [Green Version]
- Reinitz, A.; DeStefano, J.; Ye, M.; Wong, A.D.; Searson, P.C. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc. Res. 2015, 99, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Satoh, T.; Narazaki, G.; Sugita, R.; Kobayashi, H.; Sugiura, S.; Kanamori, T. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system. Lab Chip 2016, 16, 2339–2348. [Google Scholar] [CrossRef] [Green Version]
- Park, D.Y.; Kim, T.H.; Lee, J.M.; Ahrberg, C.D.; Chung, B.G. Circular-shaped microfluidic device to study the effect of shear stress on cellular orientation. Electrophoresis 2018, 39, 1816–1820. [Google Scholar] [CrossRef]
- Sonmez, U.M.; Cheng, Y.W.; Watkins, S.C.; Roman, B.L.; Davidson, L.A. Endothelial cell polarization and orientation to flow in a novel microfluidic multimodal shear stress generator. Lab Chip 2020, 20, 4373–4390. [Google Scholar] [CrossRef]
- Baratchi, S.; Tovar-Lopez, F.J.; Khoshmanesh, K.; Grace, M.S.; Darby, W.; Almazi, J.; Mitchell, A.; McIntyre, P. Examination of the role of transient receptor potential vanilloid type 4 in endothelial responses to shear forces. Biomicrofluidics 2014, 8, 044117. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.F.; Yu, J.Q.; Dalan, R.; Liu, A.Q.; Luo, K.Q. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis. Integr. Biol. 2014, 6, 511–522. [Google Scholar] [CrossRef]
- Plouffe, B.D.; Njoka, D.N.; Harris, J.; Liao, J.; Horick, N.K.; Radisic, M.; Murthy, S.K. Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. Langmuir 2007, 23, 5050–5055. [Google Scholar] [CrossRef]
- Rossi, M.; Lindken, R.; Hierck, B.P.; Westerweel, J. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. Lab Chip 2009, 9, 1403–1411. [Google Scholar] [CrossRef]
- Tsou, J.K.; Gower, R.M.; Ting, H.J.; Schaff, U.Y.; Insana, M.F.; Passerini, A.G.; Simon, S.I. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 2008, 15, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Mao, S.; Zhang, Q.; Li, W.; Lin, J.M. Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip. ACS Sens. 2019, 4, 521–527. [Google Scholar] [CrossRef]
- Galie, P.A.; van Oosten, A.; Chen, C.S.; Janmey, P.A. Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab Chip 2015, 15, 1205–1212. [Google Scholar] [CrossRef]
- Perrault, C.M.; Brugues, A.; Bazellieres, E.; Ricco, P.; Lacroix, D.; Trepat, X. Traction Forces of Endothelial Cells under Slow Shear Flow. Biophys. J. 2015, 109, 1533–1536. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, Z.L.; Wdzieczak-Bakala, J.; Pang, D.W.; Liu, J.; Chen, Y. Patterning cells and shear flow conditions: Convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response. Lab Chip 2011, 11, 4235–4240. [Google Scholar] [CrossRef]
- Akbari, E.; Spychalski, G.B.; Rangharajan, K.K.; Prakash, S.; Song, J.W. Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model. Lab Chip 2018, 18, 1084–1093. [Google Scholar] [CrossRef]
- Inglebert, M.; Locatelli, L.; Tsvirkun, D.; Sinha, P.; Maier, J.A.; Misbah, C.; Bureau, L. The effect of shear stress reduction on endothelial cells: A microfluidic study of the actin cytoskeleton. Biomicrofluidics 2020, 14, 024115. [Google Scholar] [CrossRef] [Green Version]
- Khan, O.F.; Sefton, M.V. Endothelial cell behaviour within a microfluidic mimic of the flow channels of a modular tissue engineered construct. Biomed. Microdevices 2011, 13, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Huk, D.J.; Wang, Q.; Lincoln, J.; Zhao, Y. A microfluidic shear device that accommodates parallel high and low stress zones within the same culturing chamber. Biomicrofluidics 2014, 8, 054106. [Google Scholar] [CrossRef] [Green Version]
- Venugopal Menon, N.; Tay, H.M.; Pang, K.T.; Dalan, R.; Wong, S.C.; Wang, X.; Li, K.H.H.; Hou, H.W. A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioeng. 2018, 2, 016103. [Google Scholar] [CrossRef]
- Arora, S.; Lam, A.J.Y.; Cheung, C.; Yim, E.K.F.; Toh, Y.C. Determination of critical shear stress for maturation of human pluripotent stem cell-derived endothelial cells towards an arterial subtype. Biotechnol. Bioeng. 2019, 116, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Booth, R.; Noh, S.; Kim, H. A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells. Lab Chip 2014, 14, 1880–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, K.; Munehira, Y.; Kobayashi, H.; Satoh, T.; Sugiura, S.; Kanamori, T. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. J. Biosci. Bioeng. 2014, 118, 327–332. [Google Scholar] [CrossRef]
- Liu, M.C.; Shih, H.C.; Wu, J.G.; Weng, T.W.; Wu, C.Y.; Lu, J.C.; Tung, Y.C. Electrofluidic pressure sensor embedded microfluidic device: A study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab Chip 2013, 13, 1743–1753. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Yuan, W.M.; Xiang, C.; Zeng, D.P.; Liu, B.; Qin, K.R. A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells. Biomech. Model. Mechanobiol. 2019, 18, 189–202. [Google Scholar] [CrossRef]
- Sei, Y.J.; Ahn, S.I.; Virtue, T.; Kim, T.; Kim, Y. Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor. Sci. Rep. 2017, 7, 10019. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Wu, L.; Wu, J.; Zheng, Y.; Zhao, H.; Jin, Q.; Zhao, J. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 2009, 9, 3118–3125. [Google Scholar] [CrossRef]
- Estrada, R.; Giridharan, G.A.; Nguyen, M.D.; Prabhu, S.D.; Sethu, P. Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions. Biomicrofluidics 2011, 5, 32006–3200611. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Estlack, Z.; Somaweera, H.; Wang, X.; Lacerda, C.M.R.; Kim, J. A microfluidic cardiac flow profile generator for studying the effect of shear stress on valvular endothelial cells. Lab Chip 2018, 18, 2946–2954. [Google Scholar] [CrossRef]
- Yang, Y.; Fathi, P.; Holland, G.; Pan, D.; Wang, N.S.; Esch, M.B. Pumpless microfluidic devices for generating healthy and diseased endothelia. Lab Chip 2019, 19, 3212–3219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Liu, X.; Zhang, X.; Wang, L.; Su, H.; He, N.; Zhang, D.; Li, Z.; Kang, H.; Sun, A.; et al. Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model. Lab Chip 2021, 21, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Zukerman, H.; Khoury, M.; Shammay, Y.; Sznitman, J.; Lotan, N.; Korin, N. Targeting functionalized nanoparticles to activated endothelial cells under high wall shear stress. Bioeng. Transl. Med. 2020, 5, e10151. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.M.; Abaci, H.E.; Xu, Y.; Gerecht, S. Endothelial progenitor cell recruitment in a microfluidic vascular model. Biofabrication 2015, 7, 045010. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.M.; Mavrogiannis, N.; Gagnon, Z.; Gerecht, S. Microfluidic platform for the real time measurement and observation of endothelial barrier function under shear stress. Biomicrofluidics 2018, 12, 042202. [Google Scholar] [CrossRef]
- Hsu, S.; Thakar, R.; Liepmann, D.; Li, S. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochem. Biophys. Res. Commun. 2005, 337, 401–409. [Google Scholar] [CrossRef]
- Didar, T.F.; Tabrizian, M. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels. Lab Chip 2012, 12, 4363–4371. [Google Scholar] [CrossRef]
- Hirose, S.; Tabata, Y.; Sone, K.; Takahashi, N.; Yoshino, D.; Funamoto, K. P21-activated kinase regulates oxygen-dependent migration of vascular endothelial cells in monolayers. Cell Adh. Migr. 2021, 15, 272–284. [Google Scholar] [CrossRef]
- Tabata, Y.; Yoshino, D.; Funamoto, K.; Koens, R.; Kamm, R.D. Migration of vascular endothelial cells in monolayers under hypoxic exposure. Integr. Biol. 2019, 11, 26–35. [Google Scholar] [CrossRef]
- Gnecco, J.S.; Pensabene, V.; Li, D.J.; Ding, T.; Hui, E.E.; Bruner-Tran, K.L.; Osteen, K.G. Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium. Ann. Biomed. Eng. 2017, 45, 1758–1769. [Google Scholar] [CrossRef] [Green Version]
- Griep, L.M.; Wolbers, F.; de Wagenaar, B.; ter Braak, P.M.; Weksler, B.B.; Romero, I.A.; Couraud, P.O.; Vermes, I.; van der Meer, A.D.; van den Berg, A. BBB on chip: Microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed. Microdevices 2013, 15, 145–150. [Google Scholar] [CrossRef]
- Wang, Y.I.; Abaci, H.E.; Shuler, M.L. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 2017, 114, 184–194. [Google Scholar] [CrossRef]
- Park, T.E.; Mustafaoglu, N.; Herland, A.; Hasselkus, R.; Mannix, R.; FitzGerald, E.A.; Prantil-Baun, R.; Watters, A.; Henry, O.; Benz, M.; et al. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 2019, 10, 2621. [Google Scholar] [CrossRef]
- Terrell-Hall, T.B.; Ammer, A.G.; Griffith, J.I.; Lockman, P.R. Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS 2017, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Huh, D.; Leslie, D.C.; Matthews, B.D.; Fraser, J.P.; Jurek, S.; Hamilton, G.A.; Thorneloe, K.S.; McAlexander, M.A.; Ingber, D.E. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 2012, 4, 159ra147. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, G.; Soroush, F.; Smith, A.; Kiani, M.F.; Prabhakarpandian, B.; Pant, K. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Microvasc. Res. 2015, 99, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Franklin-Murray, A.L.; Mallya, S.; Jankeel, A.; Sureshchandra, S.; Messaoudi, I.; Lodoen, M.B. Toxoplasma gondii Dysregulates Barrier Function and Mechanotransduction Signaling in Human Endothelial Cells. mSphere 2020, 5, e00550-19. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, A.D.; Vermeul, K.; Poot, A.A.; Feijen, J.; Vermes, I. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H719–H725. [Google Scholar] [CrossRef] [Green Version]
- Galie, P.A.; Nguyen, D.H.; Choi, C.K.; Cohen, D.M.; Janmey, P.A.; Chen, C.S. Fluid shear stress threshold regulates angiogenic sprouting. Proc. Natl. Acad. Sci. USA 2014, 111, 7968–7973. [Google Scholar] [CrossRef] [Green Version]
- Funamoto, K.; Yoshino, D.; Matsubara, K.; Zervantonakis, I.K.; Nakayama, M.; Masamune, J.; Kimura, Y.; Kamm, R.D. Endothelial monolayer permeability under controlled oxygen tension. Integr. Biol. 2017, 9, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, H.; Chung, M.; Jeon, N.L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 2013, 13, 1489–1500. [Google Scholar] [CrossRef]
- Oh, S.; Ryu, H.; Tahk, D.; Ko, J.; Chung, Y.; Lee, H.K.; Lee, T.R.; Jeon, N.L. “Open-top” microfluidic device for zzzzi three-dimensional capillary beds. Lab Chip 2017, 17, 3405–3414. [Google Scholar] [CrossRef]
- Campisi, M.; Shin, Y.; Osaki, T.; Hajal, C.; Chiono, V.; Kamm, R.D. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018, 180, 117–129. [Google Scholar] [CrossRef]
- Shirure, V.S.; Bi, Y.; Curtis, M.B.; Lezia, A.; Goedegebuure, M.M.; Goedegebuure, S.P.; Aft, R.; Fields, R.C.; George, S.C. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 2018, 18, 3687–3702. [Google Scholar] [CrossRef]
- Sobrino, A.; Phan, D.T.; Datta, R.; Wang, X.; Hachey, S.J.; Romero-López, M.; Gratton, E.; Lee, A.P.; George, S.C.; Hughes, C.C. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 2016, 6, 31589. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.L.; Campisi, M.; Osaki, T.; Possenti, L.; Mattu, C.; Adriani, G.; Kamm, R.D.; Chiono, V. Modeling Nanocarrier Transport across a 3D In Vitro Human Blood-Brain-Barrier Microvasculature. Adv. Health Mater. 2020, 9, e1901486. [Google Scholar] [CrossRef] [Green Version]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [Green Version]
Signal and Response by Flow | Name of Chamber | Flow Character | ECs on … | |
---|---|---|---|---|
Monolayer | Inside ECs/With ECs | Parallel (Figure 2) | One direction | Rigid wall |
T-chamber (Figure 3) | WSSG | Rigid wall | ||
Step (Figure 4) | Vortex | Rigid wall | ||
Cone plate (Figure 5) | Couette flow | Rigid wall | ||
Stretch (Figure 6) | One direction | Deformed wall | ||
Coculture with SMC | Cross-talk with SMC | Double-side flat (Figure 7A) | One direction | porous membrane with SMC in the oppposite side |
Double-side 3D (Figure 7B) | 3D tubular | |||
Single-side (Figure 7C) | One direction | Rigid wall with SMC | ||
Direct culture (Figure 7D) | One direction | Directly on SMC | ||
3D culture (Figure 7E) | One direction | Collagen type 1 gel with SMC | ||
Microfluidic cell culture | Cross-talk with other cells via ECM | Another type (Figure 7F) | 3D tubular | In hydrogel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohta, M.; Sakamoto, N.; Funamoto, K.; Wang, Z.; Kojima, Y.; Anzai, H. A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J. Funct. Biomater. 2022, 13, 92. https://doi.org/10.3390/jfb13030092
Ohta M, Sakamoto N, Funamoto K, Wang Z, Kojima Y, Anzai H. A Review of Functional Analysis of Endothelial Cells in Flow Chambers. Journal of Functional Biomaterials. 2022; 13(3):92. https://doi.org/10.3390/jfb13030092
Chicago/Turabian StyleOhta, Makoto, Naoya Sakamoto, Kenichi Funamoto, Zi Wang, Yukiko Kojima, and Hitomi Anzai. 2022. "A Review of Functional Analysis of Endothelial Cells in Flow Chambers" Journal of Functional Biomaterials 13, no. 3: 92. https://doi.org/10.3390/jfb13030092
APA StyleOhta, M., Sakamoto, N., Funamoto, K., Wang, Z., Kojima, Y., & Anzai, H. (2022). A Review of Functional Analysis of Endothelial Cells in Flow Chambers. Journal of Functional Biomaterials, 13(3), 92. https://doi.org/10.3390/jfb13030092